Search results for: electrochemical synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2791

Search results for: electrochemical synthesis

2431 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell

Authors: Sujit Kumar Guchhait, Subir Paul

Abstract:

One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.

Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM

Procedia PDF Downloads 303
2430 Synthesis of Rare Earth Doped Nano-Phosphors through the Use of Isobutyl Nitrite and Urea Fuels: Study of Microstructure and Luminescence Properties

Authors: Seyed Mahdi Rafiaei

Abstract:

In this investigation, red emitting Eu³⁺ doped YVO₄ nano-phosphors have been synthesized via the facile combustion method using isobutyl nitrite and urea fuels, individually. Field-emission scanning electron microscope (FE-SEM) images, high resolution transmission electron microscope (TEM) images and X-ray diffraction (XRD) spectra reveal that the mentioned fuels can be used successfully to synthesis YVO₄: Eu³⁺ nano-particles. Interestingly, the fuels have a large effect on the size and morphology of nano-phosphors as well as luminescence properties. Noteworthy the use of isobutyl nitrite provides an average particle size of 65 nm, while the employment of urea, results in the formation of larger particles and also provides higher photoluminescence emission intensity. The improved luminescence performance is attributed to the condition of chemical reaction via the combustion synthesis and the size of synthesized phosphors.

Keywords: phosphors, combustion, fuels, luminescence, nanostructure

Procedia PDF Downloads 138
2429 Alumina Nanoparticles in One-Pot Synthesis of Pyrazolopyranopyrimidinones

Authors: Saeed Khodabakhshi, Alimorad Rashidi, Ziba Tavakoli, Sajad Kiani, Sadegh Dastkhoon

Abstract:

Alumina nanoparticles (γ-Al2O3 NPs) were prepared via a new and simple synthetic route and characterized by field emission scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. The catalytic activity of prepared γ-Al2O3 NPs was investigated for the one-pot, four-component synthesis of fused tri-heterocyclic compounds containing pyrazole, pyran, and pyrimidine. This procedure has some advantages such as high efficiency, simplicity, high rate and environmental safety.

Keywords: alumina nanoparticles, one-pot, fused tri-heterocyclic compounds, pyran

Procedia PDF Downloads 332
2428 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)

Procedia PDF Downloads 436
2427 Arsenite Remediation by Green Nano Zero Valent Iron

Authors: Ratthiwa Deewan, Visanu Tanboonchuy

Abstract:

The optimal conditions for green synthesis of zero-valent (G-NZVI) synthesis are investigated in this study using a Box Behnken design. The factors that were used in the study consisted of 3 factors as follows: the iron solution to mango peel extract ratio (1:1-1:3), feeding rate of mango peel extracts (1-5 mL/min), and agitation speed (300-30 rpm). The results showed that the optimization of conditions using the regression model was appropriate. The optimal conditions of the synthesis of G-NZVI for arsenate removal are the iron solution to mango peel extract ratio of 1:1, the feeding rate of mango peel extract at 5 mL/min, and the agitation speed rate of 300 rpm, which was able to arsenate removal of 100%.

Keywords: Box Behnken design, arsenate removal, green nano zero valent iron, arsenic

Procedia PDF Downloads 33
2426 Non Enzymatic Electrochemical Sensing of Glucose Using Manganese Doped Nickel Oxide Nanoparticles Decorated Carbon Nanotubes

Authors: Anju Joshi, C. N. Tharamani

Abstract:

Diabetes is one of the leading cause of death at present and remains an important concern as the prevalence of the disease is increasing at an alarming rate. Therefore, it is crucial to diagnose the accurate levels of glucose for developing an efficient therapeutic for diabetes. Due to the availability of convenient and compact self-testing, continuous monitoring of glucose is feasible nowadays. Enzyme based electrochemical sensing of glucose is quite popular because of its high selectivity but suffers from drawbacks like complicated purification and immobilization procedures, denaturation, high cost, and low sensitivity due to indirect electron transfer. Hence, designing a robust enzyme free platform using transition metal oxides remains crucial for the efficient and sensitive determination of glucose. In the present work, manganese doped nickel oxide nanoparticles (Mn-NiO) has been synthesized onto the surface of multiwalled carbon nanotubes using a simple microwave assisted approach for non-enzymatic electrochemical sensing of glucose. The morphology and structure of the synthesized nanostructures were characterized using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). We demonstrate that the synthesized nanostructures show enormous potential for electrocatalytic oxidation of glucose with high sensitivity and selectivity. Cyclic voltammetry and square wave voltammetry studies suggest superior sensitivity and selectivity of Mn-NiO decorated carbon nanotubes towards the non-enzymatic determination of glucose. A linear response between the peak current and the concentration of glucose has been found to be in the concentration range of 0.01 μM- 10000 μM which suggests the potential efficacy of Mn-NiO decorated carbon nanotubes for sensitive determination of glucose.

Keywords: diabetes, glucose, Mn-NiO decorated carbon nanotubes, non-enzymatic

Procedia PDF Downloads 236
2425 Synthesis, Characterization, and Properties Study of New Magnetic Materials

Authors: Messai Amel, Badis Zakaria, Benali-Cherif Nourredine, Dominique Luneaub

Abstract:

We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nano sciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base. Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper (II) has been investigated. Tetra nuclear complex with a cubane like core have been synthesized with (Sciff base), with the same base and cobalt (II) we obtain an other single magnetic complex completely different. In this presentation, we report the synthesis, crystal structure and magnetic properties of the tetranuclear compound (Cu4 L4), and the tetranuclear compound. (Co4L4)

Keywords: cluster-assembled materials, magnetic compounds, Sciff base, cupper, cobalt

Procedia PDF Downloads 451
2424 Characteristics of a Dye-Entrapped Polypyrrole Film Prepared in the Presence of a Different Dye

Authors: M. Mominul Haque, Danny KY. Wong

Abstract:

In this paper, we will demonstrate the feasibility of selectively removing the azo dye, Acid Red 1, in the presence of a second dye, Indigo Carmine, at conducting polypyrrole films. A long-term goal of this work is to develop an efficient and effective electrochemical treatment of textile effluents that does not yield any toxic by-products. Specifically, pyrrole was initially electrochemically oxidised in the presence of Acid Red 1 to prepare an Acid Red 1-entrapped polypyrrole film. Next, the Acid Red 1 entrapped film was electrochemically reduced to expel the dye from the film. The film was then ready for use in removing the dye in an Acid Red 1 solution. The entrapment efficiency of the film was then studied by spectroscopically determining the change in the absorbance of the dye solution. These experiments were repeated using Indigo Carmine or a mixture of Acid Red 1 and Indigo Carmine, in place of Acid Red 1. Therefore, this has given rise to an environmentally friendly treatment method for textile effluents. In our work, we have also studied the characteristics of Acid Red 1- and Indigo Carmine-entrapped polypyrrole films by scanning electron microscopy, X-ray diffraction and Fourier transfer infrared spectroscopy.

Keywords: azo dye, electrochemical treatment, polypyrrole, Acid Red 1

Procedia PDF Downloads 407
2423 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor

Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin

Abstract:

This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.

Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling

Procedia PDF Downloads 393
2422 Synthesis, Characterization and Cytotoxic Effect of Eu2O3-doped ZnO Nanostructures

Authors: Otilia R. Vasile, Florina C. Ilie, Irina F. Nicoara, Cristina D. Ghitulica, Roxana Trusca, Ovidiu Oprea, Vasile A. Surdu, Bogdan S. Vasile, Ecaterina Adronescu

Abstract:

In this work ZnO nanostructures (nanopowders and nanostars) have been synthesized via a simple sol-gel method. The used methods for synthesizing the nanostructures involve two steps as follows: (1) precipitation of zinc acetate precursor for the synthesis of ZnO nanopowders and zinc chloride precursor for the synthesis of ZnO nanostars and (2) addition of Eu2O3 in different concentrations (1%, 3%, and 5%) using europium acetate as precursor. Detailed crystalline parameters for each of the synthetized species were analysed using X-ray diffraction. Structural transitions were also discussed. The structure and morphology of the as-prepared ZnO nanopowders and nanostars were investigated by electron microscopy. TEM investigations have shown an average particle size range from 23 to 29 nm and polyhedral and spherical morphology with tendency to form aggregates for nanopowders. For nanostars structures, a star-like morphology could be observed. Cytotoxicity tests on MG-63 cell lines were also performed. Photocatalytic activity of ZnO nanopowders have reached higher values compared to ZnO nanostars.

Keywords: cytotoxicity, photocatalytic activity, TEM, ZnO

Procedia PDF Downloads 562
2421 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 70
2420 Synthesis, Characterization and Applications of Novel Hydrogels Based On Chitosan Derivatives

Authors: Mahmoud H. Aboul-Ela, Riham R. Mohamed, Magdy W. Sabaa

Abstract:

Synthesis of cross-linked hydrogels composed of trimethyl chitosan (TMC) and poly(vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, XRD, SEM and TGA. The prepared hydrogels were investigated as adsorbent materials for some transition metal ions from their aqueous solutions. Moreover, the swell ability of the prepared hydrogels was also investigated in both acidic and alkaline pHs, as well as in simulated body fluid (SBF).

Keywords: trimethyl chitosan, hydrogels, metal uptake, superabsorbent materials

Procedia PDF Downloads 392
2419 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas

Authors: Thulane Paepae, Tumisang Seodigeng

Abstract:

This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.

Keywords: attainable regions, dimethyl ether, optimal reaction network, GH Space

Procedia PDF Downloads 241
2418 Transport Properties of Alkali Nitrites

Authors: Y. Mateyshina, A.Ulihin, N.Uvarov

Abstract:

Electrolytes with different type of charge carrier can find widely application in different using, e.g. sensors, electrochemical equipments, batteries and others. One of important components ensuring stable functioning of the equipment is electrolyte. Electrolyte has to be characterized by high conductivity, thermal stability, and wide electrochemical window. In addition to many advantageous characteristic for liquid electrolytes, the solid state electrolytes have good mechanical stability, wide working range of temperature range. Thus search of new system of solid electrolytes with high conductivity is an actual task of solid state chemistry. Families of alkali perchlorates and nitrates have been investigated by us earlier. In literature data about transport properties of alkali nitrites are absent. Nevertheless, alkali nitrites MeNO2 (Me= Li+, Na+, K+, Rb+ and Cs+), except for the lithium salt, have high-temperature phases with crystal structure of the NaCl-type. High-temperature phases of nitrites are orientationally disordered, i.e. non-spherical anions are reoriented over several equivalents directions in the crystal lattice. Pure lithium nitrite LiNO2 is characterized by ionic conductivity near 10-4 S/cm at 180°C and more stable as compared with lithium nitrate and can be used as a component for synthesis of composite electrolytes. In this work composite solid electrolytes in the binary system LiNO2 - A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) were synthesized and their structural, thermodynamic and electrical properties investigated. Alkali nitrite was obtained by exchange reaction from water solutions of barium nitrite and alkali sulfate. The synthesized salt was characterized by X-ray powder diffraction technique using D8 Advance X-Ray Diffractometer with Cu K radiation. Using thermal analysis, the temperatures of dehydration and thermal decomposition of salt were determined.. The conductivity was measured using a two electrode scheme in a forevacuum (6.7 Pa) with an HP 4284A (Precision LCR meter) in a frequency range 20 Hz < ν < 1 MHz. Solid composite electrolytes LiNO2 - A A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) have been synthesized by mixing of preliminary dehydrated components followed by sintering at 250°C. In the series of nitrite of alkaline metals Li+-Cs+, the conductivity varies not monotonically with increasing radius of cation. The minimum conductivity is observed for KNO2; however, with further increase in the radius of cation in the series, the conductivity tends to increase. The work was supported by the Russian Foundation for Basic research, grant #14-03-31442.

Keywords: conductivity, alkali nitrites, composite electrolytes, transport properties

Procedia PDF Downloads 322
2417 BaFe12O19/Polythiophene Nanocomposite as Electrochemical Supercapacitor Electrode

Authors: H. Farokhi, A. Bahadoran

Abstract:

This paper is focused on the absorbance and magnetic properties of a novel nanocomposite based on conducting polymer, carbon black and barium hexaferrite in epoxy resin on the E-glass fibre substrate. The highly conductive nanocomposite was provided by in-situ polymerization of aniline in the presence of carbon black (C) and barium hexaferrite (BaFe12O19) as electromagnetic absorbance material. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). SEM images showed the uniformly coated PAni on the surface of carbon black and barium hexaferrite. XRD peaks also verified the presence of carbon black and barium hexaferrite in the nanocomposite. The microwave characteristics determined from the magnetic and dielectric properties of the elastomeric composites obtained from scattering data by fitting the samples in a waveguide, where measured in the frequency in X-band frequency range, the range of 8 to 12 GHz. The reflection losses were evaluated to be less than −5dB over the whole X-band frequency (8–12 GHz) for the thickness of 1.4mm.

Keywords: conductive polymer, magnetic materials, capacitance, electrochemical cell

Procedia PDF Downloads 250
2416 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 66
2415 Architectural Design Studio (ADS) as an Operational Synthesis in Architectural Education

Authors: Francisco A. Ribeiro Da Costa

Abstract:

Who is responsible for teaching architecture; consider various ways to participate in learning, manipulating various pedagogical tools to streamline the creative process. The Architectural Design Studio (ADS) should become a holistic, systemic process responding to the complexity of our world. This essay corresponds to a deep reflection developed by the author on the teaching of architecture. The outcomes achieved are the corollary of experimentation; discussion and application of pedagogical methods that allowed consolidate the creativity applied by students. The purpose is to show the conjectures that have been considered effective in creating an intellectual environment that nurtures the subject of Architectural Design Studio (ADS), as an operational synthesis in the final stage of the degree. These assumptions, which are part of the proposed model, displaying theories and teaching methodologies that try to respect the learning process based on student learning styles Kolb, ensuring their latent specificities and formulating the structure of the ASD discipline. In addition, the assessing methods are proposed, which consider the architectural Design Studio as an operational synthesis in the teaching of architecture.

Keywords: teaching-learning, architectural design studio, architecture, education

Procedia PDF Downloads 391
2414 Orange Peel Extracts (OPE) as Eco-Friendly Corrosion Inhibitor for Carbon Steel in Produced Oilfield Water

Authors: Olfat E. El-Azabawy, Enas M. Attia, Nadia Shawky, Amira M. Hypa

Abstract:

In this work, an attempt is made to study the effects of orange peel extract (OPE) as an environment-friendly corrosion inhibitor for carbon steel (CS) within a formation water solution (FW). The study was performed in different concentrations (0.5-2.5% (v/v)) of peel extracts at ambient temperatures (25oC) and (2.5% (v/v)) at temperature range (25- 55 oC) by weight loss measurements, open circuit potential, potentiodynamic polarization and electrochemical impedance. The inhibition efficiency was calculated from all measurements and confirmed by energy-dispersive X-ray spectroscopy (EDS). Inhibition was found to increase with increasing inhibitors concentration and decrease with increasing temperature. It was seen that IE% is about 92.84% in the presence of 2.5% (v/v) of orange peel inhibitor by using weight loss method. The adsorption process was of physical type and obey Langmuir adsorption isotherm. Also, adsorption, as well as the inhibition process, followed first-order kinetics at all concentrations.

Keywords: eco-friendly corrosion inhibitor, OPE, oilfield water, electrochemical impedance

Procedia PDF Downloads 151
2413 Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications

Authors: Mohamed Achehboune, Mohammed Khenfouch, Issam Boukhoubza, Bakang Mothudi, Izeddine Zorkani, Anouar Jorio

Abstract:

Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices.

Keywords: green synthesis, hafnium-doped-zinc oxide, nanostructures, optoelectronic

Procedia PDF Downloads 271
2412 Reference Intensity Ratio Semi-Quantitative Analysis of Cordierite-Mullite Synthesis by a Solid State Method

Authors: D. Wattanasiriwech, S. Wattanasiriwech

Abstract:

In this paper, attempt to synthesize designed cordierite-mullite system with various ratios was performed using a solid-state method. Alumina, quartz, magnesia, and talc were used as starting materials for the synthesis. Talc was added for two purposes; to assist the reaction progress and to be the Mg source. The raw materials were mixed and fired at 1350°C for 2 h and 1400°C for 2 and 4 h. The resulting phase compositions were analysed using the Reference Intensity Ratio (RIR) semi-quantitative analysis method. The highest amount of cordierite up to Cordierite phase 96% could be obtained at the firing scheme of 1400°C for 4 h in the C100-M0. Mullite could not be formed at the selected scheme if talc did not present so no pure mullite was observed in the selected firing regime. The highest amount of mullite co-existed with cordierite and other phases were 74%.

Keywords: RIR semi-quantitative analysis, cordierite-mullite system, solid state synthesis, X-Ray diffraction

Procedia PDF Downloads 170
2411 Green Synthesis of Zinc Oxide Nano Particles Using Tomato (Lycopersicon esculentum) Extract and Its Application for Solar Cell

Authors: Prasanta Sutradhar, Mitali Saha

Abstract:

With an increasing awareness of green and clean energy, zinc oxide based solar cells were found to be suitable candidates for cost-effective and environmentally friendly energy conversion devices. In this work, we have reported the green synthesis of zinc oxide nanoparticles (ZnO) by thermal method and under microwave irradiation using the aqueous extract of tomatoes as non-toxic and ecofriendly reducing material. The synthesized ZnO nanoparticles were characterised by UV-Visible spectroscopy (UV-Vis), infra-red spectroscopy (IR), particle size analyser (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X- ray diffraction study (XRD). A series of ZnO nanocomposites with titanium dioxide nanoparticles (TiO2) and graphene oxide (GO) were prepared for photovoltaic application. Structural and morphological studies of these nanocomposites were carried out using UV-vis, SEM, XRD, and AFM. The current-voltage measurements of the nanocomposites demonstrated enhanced power conversion efficiency of 6.18% in case of ZnO/GO/TiO2 nanocomposite.

Keywords: ZnO, green synthesis, microwave, nanocomposites, I-V characteristics

Procedia PDF Downloads 402
2410 Chemical and Electrochemical Syntheses of Two Organic Components of Ginger

Authors: Adrienn Kiss, Karoly Zauer, Gyorgy Keglevich, Rita Molnarne Bernath

Abstract:

Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans.

Keywords: ferulic acid, ginger, synthesis, zingerone

Procedia PDF Downloads 175
2409 Synthesis and Characterization of Carboxymethyl Cellulose from Rice Stubble Cellulose

Authors: Rungsinee Sothornvit, Pattrathip Rodsamran

Abstract:

Rice stubble consists of a high content of cellulose and can be synthesized as a cellulose derivative such as carboxymethyl cellulose (CMC) to value added products from agricultural waste. Therefore, the synthesis conditions and characterization the properties of CMC from rice stubble (CMCr) were investigated. Hemicellulose and lignin were first removed from the rice stubble using 10% NaOH at 55 C for 3 h and 5% NaOCl at 75 C for 15 min, respectively. Rice stubble cellulose was swollen in 30% NaOH and isopropanol as a solvent. The content of chloroacetic acid (5–7 g in 5 g of alkali cellulose), reaction temperature (50 and 70 C) and time (180, 270 and 360 min) were explored to obtain CMC. It was found that synthesis conditions did not affect significantly on moisture content and pH of CMCr. The best quality of CMCr was synthesized by using 7 g of chloroacetic acid and reacted at 50 C for 180 min based on 5 g of rice stubble cellulose. Degree of substitution (DS), viscosity and purity of CMCr were 0.64, 36.03 cP and 90.18 %, respectively. Furthermore, Fourier transform infrared (FT–IR) spectroscopy confirmed the presence of carboxymethyl substituents. CMCr was categorized in commercial scale as a low viscosity material and it can be used as film forming packaging materials for food and pharmaceutical product applications.

Keywords: rice stubble, cellulose, carboxymethyl cellulose, degree of substitution, purity

Procedia PDF Downloads 393
2408 Synthesis and Characterization of Some 1, 2, 3-Triazole Derivatives Containing the Chalcone Moiety and Evaluation for their Antimicrobial and Antioxidant Activity

Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya

Abstract:

Triazoles are basic five-membered ring heterocycles with an unsaturated, six-delocalized electron ring system. Since the dawn of click chemistry, triazoles have represented a functional heterocyclic core that has been the foundation of medicinal chemistry. The compounds with 1,2,3-triazole rings can be used in several fields, including medicine, organic synthesis, polymer chemistry, fluorescent imaging, horticulture, and industries, to name a few. Besides that, they found it to have health applications in the prevention and reduction of the risk of diseases, such as anti-cancer, antimicrobial, antiviral, and anti-inflammatory properties. Here, we present the synthesis of twelve 1,2,3-triazolyl chalcone derivatives (4a–l), which were produced in high yields by coupling substituted aldehydes and triazolyl acetophenone (3a–d) in ethanol. The title products were characterized by physicochemical, infrared, nuclear magnetic resonance, and mass spectral methods. The in vitro tests were used to evaluate the antioxidant and antimicrobial activity of each of the prepared molecules. The preliminary assessment and 2,2-diphenyl-1-picrylhydrazyl activity of the title compounds showed significantly higher antibacterial activity and moderate-to-good antifungal and antioxidant activities compared to their standards. This work presents the synthesis of triazolyl chalcone derivatives and their biological activity. Based on the findings, these compounds could be used as lead compounds in antimicrobial and antioxidant research in the future.

Keywords: antibacterial activity, antifungal activity, antioxidant activity, chalcone, 1, 2, 3-triazole

Procedia PDF Downloads 128
2407 Sulfonic Acid Functionalized Ionic Liquid in Combinatorial Approach: A Recyclable and Water Tolerant-Acidic Catalyst for Friedlander Quinoline Synthesis

Authors: Jafar Akbari

Abstract:

Quinolines are very important compounds partially because of their pharmacological properties which include wide applications in medicinal chemistry. notable among them are antimalarial drugs, anti-inflammatory agents, antiasthamatic, antibacterial, antihypertensive, and tyrosine kinase inhibiting agents. Despite quinoline usage in pharmaceutical and other industries, comparatively few methods for their preparation have been reported.The Friedlander annulation is one of the simplest and most straightforward methods for the synthesis of poly substituted quinolines. Although, modified methods employing lewis or br¢nsted acids have been reported for the synthesis of quinolines, the development of water stable acidic catalyst for quinoline synthesis is quite desirable. One of the most remarkable features of ionic liquids is that the yields can be optimized by changing the anions or the cations. Recently, sulfonic acid functionalized ionic liquids were used as solvent-catalyst for several organic reactions. We herein report the one pot domino approach for the synthesis of quinoline derivatives in Friedlander manner using TSIL as a catalyst. These ILs are miscible in water, and their homogeneous system is readily separated from the reaction product, combining advantages of both homogeneous and heterogeneous catalysis. In this reaction, the catalyst plays a dual role; it ensures an effective condensation and cyclization of 2-aminoaryl ketone with second carbonyl group and it also promotes the aromatization to the final product. Various types of quinolines from 2-aminoaryl ketones and β-ketoesters/ketones were prepared in 85-98% yields using the catalytic system of SO3-H functionalized ionic liquid/H2O. More importantly, the catalyst could be easily recycled for five times without loss of much activity.

Keywords: antimalarial drugs, green chemistry, ionic liquid, quinolines

Procedia PDF Downloads 210
2406 Flexible Laser Reduced Graphene Oxide/MnO2 Electrode for Supercapacitor Applications

Authors: Ingy N. Bkrey, Ahmed A. Moniem

Abstract:

We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50 μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.

Keywords: electrode deposition, flexible, graphene oxide, graphene, high power CO2 Laser, MnO2

Procedia PDF Downloads 318
2405 Preparation and Characterization of Supported Metal Nanocrystal Using Simple Heating Method for Renewable Diesel Synthesis from Nyamplung Oil (Calophyllum inophyllum Oil)

Authors: Aida Safiera, Andika Dwi Rubyantoro, Muhammad Bagus Prakasa

Abstract:

Indonesia’s needs of diesel oil each year are increasing and getting urge. However, that problems are not supported by the amount of oil production that still low and also influenced by the fact of oil reserve is reduced. Because of that, the government prefers to import from other countries than fulfill the needs of diesel. To anticipate that problem, development of fuel based on renewable diesel is started. Renewable diesel is renewable alternative fuel that is hydrocarbon derivative from decarbonylation of non-edible oil. Indonesia is rich with natural resources, including nyamplung oil (Calophyllum inophyllum oil) and zeolite. Nyamplung oil (Calophyllum inophyllum oil) has many stearic acids which are useful on renewable diesel synthesis meanwhile zeolite is cheap. Zeolite is many used on high temperature reaction and cracking process on oil industry. Zeolite also has advantages which are a high crystallization, surface area and pores. In this research, the main focus that becomes our attention is on preparation and characterization of metal nanocrystal. Active site that used in this research is Nickel Molybdenum (NiMo). The advantage of nanocrystal with nano scale is having larger surface area. The synthesis of metal nanocrystal will be done with conventional preparation modification method that is called simple heating. Simple heating method is a metal nanocrystal synthesis method using continuous media which is polymer liquid. This method is a simple method and produces a small particles size in a short time. Influence of metal nanocrystal growth on this method is the heating profile. On the synthesis of nanocrystal, the manipulated variables are temperature and calcination time. Results to achieve from this research are diameter size on nano scale (< 100 nm) and uniform size without any agglomeration. Besides that, the conversion of synthesis of renewable diesel is high and has an equal specification with petroleum diesel. Catalyst activities are tested by FT-IR and GC-TCD on decarbonylation process with a pressure 15 bar and temperature 375 °C. The highest conversion from this reaction is 35% with selectivity around 43%.

Keywords: renewable diesel, simple heating, metal nanocrystal, NiMo, zeolite

Procedia PDF Downloads 231
2404 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation

Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher

Abstract:

Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.

Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment

Procedia PDF Downloads 119
2403 Mesoporous Carbon Ceramic SiO2/C Prepared by Sol-Gel Method and Modified with Cobalt Phthalocyanine and Used as an Electrochemical Sensor for Nitrite

Authors: Abdur Rahim, Lauro Tatsuo Kubota, Yoshitaka Gushikem

Abstract:

Carbon ceramic mesoporous SiO2/50wt%C (SBET= 170 m2g-1), where C is graphite, was prepared by the sol gel method. Scanning electron microscopy images and the respective element mapping showed that, within the magnification used, no phase segregation was detectable. It presented the electric conductivities of 0.49 S cm-1. This material was used to support cobalt phthalocyanine, prepared in situ, to assure a homogeneous dispersion of the electro active complex in the pores of the matrix. The surface density of cobalt phthalocyanine, on the matrix surfaces was 0.015 mol cm-2. Pressed disk, made with SiO2/50wt%C/CoPc, was used to fabricate an electrode and tested as sensors for nitrite determination by electro chemical technique. A linear response range between 0.039 and 0.42 mmol l−1,and correlation coefficient r=0.9996 was obtained. The electrode was chemically very stable and presented very high sensitivity for this analyte, with a limit of detection, LOD = 1.087 x 10-6 mol L-1.

Keywords: SiO2/C/CoPc, sol-gel method, electrochemical sensor, nitrite oxidation, carbon ceramic material, cobalt phthalocyanine

Procedia PDF Downloads 317
2402 Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution

Authors: H. Elmsellem, A. Aouniti, S. Radi, A. Chetouani, B. Hammouti

Abstract:

The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT).

Keywords: mild steel, Schiff base, inhibition, corrosion, HCl, quantum chemical

Procedia PDF Downloads 333