Search results for: calcium copper titanate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1503

Search results for: calcium copper titanate

1143 Feedback from a Service Evaluation of a Modified Intrauterine Device Insertor: A First Step to a Changement of the Standard of Iud Insertion Procedure

Authors: Desjardin, Michaels, Martinez, Ulmann

Abstract:

Copper IUD is one of the most efficient and cost-effective contraception. However, pain at insertion hampers the use of this method. This is especially unfortunate in nulliparous women, often younger, who are excellent candidates for this contraception, including Emergency Contraception. Standard insertion procedure of a copper IUD usually involves measurement of uterine cavity with an hysterometer and the use of a tenaculum in order to facilitate device insertion. Both procedures lead to patient pain which often constitutes a limitation of the method. To overcome these issues, we have developed a modified insertor combined with a copper IUD. The singular design of the inserter includes a flexible inflatable membrane technology allowing an easy access to the uterine cavity even in case of abnormal uterine positions or narrow cervical canal. Moreover, this inserter makes possible a direct IUD insertion with no hysterometry and no need for tenaculum. To assess device effectiveness and patient-reported pain, a study was conducted at two clinics in Fance with 31 individuals who wanted to use a copper IUD as contraceptive method. IUD insertions have been performed by four healthcare providers. Operators completed questionnaire and evaluated effectiveness of the procedure (including IUD correct fundal placement and other usability questions) as their satisfaction. Patient also completed questionnaire and pain during procedure was measured on a 10-cm Visual Analogue Scale (VAS). Analysis of the questionnaires indicates that correct IUD placement took place in more than 93% of women, which is a standard efficacy rate. It also demonstrates that IUD insertion resulted in no, light or moderate pain predominantly in nulliparous women. No insertion resulted in severe pain (none above 6cm on a 10-cm VAS). This translated by a high level of satisfaction from both patients and practitioners. In addition, this modified inserter allowed a simplification of the insertion procedure: correct fundal placement was ensured with no need for hysterometry (100%) prior to insertion nor for cervical tenaculum to pull on the cervix (90%). Avoidance of both procedures contributed to the decrease in pain during insertion. Taken together, the results of the study demonstrate that this device constitutes a significant advance in the use of copper IUDs for any woman. It allows a simplification of the insertion procedure: there is no need for pre-insertion hysterometry and no need for traction on the cervix with tenaculum. Increased comfort during insertion should allow a wider use of the method for nulliparous women and for emergency contraception. In addition, pain is often underestimated by practitioners, but fear of pain is obviously one of the blocking factors as indicated by the analysis of the questionnaire. This evaluation brings interesting information on the use of this modified inserter for standard copper IUD and promising perspectives to set up a changement in the standard of IUD insertion procedure.

Keywords: contraceptio, IUD, innovation, pain

Procedia PDF Downloads 58
1142 Determination of Heavy Metals in Canned Dry-Milk and Fish from Supermarkets in Addis Ababa

Authors: Kefyalew Muleta, Tetemke Mehari

Abstract:

Background: Human being require metallic elements such as copper and zinc up to certain limits that could cause problems if found in excess. Other metallic elements like cadmium and lead can be harmful to health if foodstuffs containing them are consumed regularly. Canned dry-milk and fish contain these metals in the journey from farm to fork. Objective: This study was designed to determine the concentration of Cd, Cu, Pb, and Zn in four brands of canned dry-milk and fish from supermarkets in Addis Ababa. Methods: Laboratory based cross-sectional study design was used to determine the concentration of the heavy metals in four different brands of canned dry-milk and fish imported from different country from February to March 2013. The foods brands were sampled by simple random sampling method from eight supermarkets in Addis Ababa and coded. Wet oxidation using HNO3 and H2O2 was used to extract the heavy metals from the foods samples and analyzed by Flame Atomic Absorption Spectroscopy. Conclusions: From this study, it can be concluded that the level of Cadmium and Copper residues in canned dry-milk significantly vary among brands; and the levels of copper residue significantly vary among brands of canned fish at 95 % level. The AM milk brand from Ethiopia was safe in cadmium level. The cadmium and lead level in the NF fish brands from Indonesia packed in vegetables oil, and the lead level in DF brand packed in brine are safe.

Keywords: AAS, canned dry milk, canned fish, Cd, Cu, Pb, Zn

Procedia PDF Downloads 394
1141 The Effectiveness of Bismuth Addition to Retard the Intermetallic Compound Formation

Authors: I. Siti Rabiatull Aisha, A. Ourdjini, O. Saliza Azlina

Abstract:

The aim of this paper is to study the effectiveness of bismuth addition in the solder alloy to retard the intermetallic compound formation and growth. In this study, three categories of solders such as Sn-4Ag-xCu (x = 0.5, 0.7, 1.0) and Sn-4Ag-0.5Cu-xBi (x = 0.1, 0.2, 0.4) were used. Ni/Au surface finish substrates were dipped into the molten solder at a temperature of 180-190 oC and allowed to cool at room temperature. The intermetallic compound (IMCs) were subjected to the characterization in terms of composition and morphology. The IMC phases were identified by energy dispersive x-ray (EDX), whereas the optical microscope and scanning electron microscopy (SEM) were used to observe microstructure evolution of the solder joint. The results clearly showed that copper concentration dependency was high during the reflow stage. Besides, only Ni3Sn4 and Ni3Sn2 were detected for all copper concentrations. The addition of Bi was found to have no significant effect on the type of IMCs formed, but yet the grain became further refined.

Keywords: Bismuth addition, intermetallic compound, composition, morphology

Procedia PDF Downloads 281
1140 Copper Complexe Derivative of Chalcone: Synthesis, Characterization, Electrochemical Properties and XRD/Hirschfeld Surface

Authors: Salima Tabti, Amel Djedouani., Djouhra Aggoun, Ismail Warad

Abstract:

The reaction of copper (II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) lead to a new complexe: Cu(L)₂(DMF)₂. The crystal structure of the Cu(L)₂(DMF)₂ complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexe was investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH₃CN solution, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couple. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces.

Keywords: chalcones, cyclic voltametry, X-ray, Hirschfeld surface

Procedia PDF Downloads 39
1139 Effect of Varying Scaffold Architecture and Porosity of Calcium Alkali Orthophosphate Based-Scaffolds for Bone Tissue Engineering

Authors: D. Adel, F. Giacomini, R. Gildenhaar, G. Berger, C. Gomes, U. Linow, M. Hardt, B. Peleskae, J. Günster, A. Houshmand, M. Stiller, A. Rack, K. Ghaffar, A. Gamal, M. El Mofty, C. Knabe

Abstract:

The goal of this study was to develop 3D scaffolds from a silica containing calcium alkali orthophosphate utilizing two different fabrication processes, first a replica technique namely the Schwartzwalder Somers method (SSM), and second 3D printing, i.e. Rapid prototyping (RP). First, the mechanical and physical properties of the scaffolds (porosity, compressive strength, and solubility) was assessed and second their potential to facilitate homogenous colonization with osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture. To this end murine and rat calavarie osteoblastic cells were dynamically seeded on both scaffold types under perfusion with concentrations of 3 million cells. The amount of cells and extracellular matrix as well as osteogenic marker expression was evaluated using hard tissue histology, immunohistochemistry, and histomorphometric analysis. Total porosities of both scaffolds were 86.9 % and 50% for SSM and RP respectively, Compressive strength values were 0.46 ± 0.2 MPa for SSM and 6.6± 0.8 MPa for RP. Regarding the cellular behavior, RP scaffolds displayed a higher cell and matrix percentage of 24.45%. Immunoscoring yielded strong osteocalcin expression of cells and matrix in RP scaffolds and a moderate expression in SSM scaffolds. 3D printed RP scaffolds displayed superior mechanical and biological properties compared to SSM. 3D printed scaffolds represent excellent candidates for bone tissue engineering.

Keywords: calcium alkali orthophosphate, extracellular matrix mineralization, osteoblast differentiation, rapid prototyping, scaffold

Procedia PDF Downloads 303
1138 Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance

Authors: Ayman M. Ibrahim, Jinpeng Cai, Peilun Shen, Dianwen Liu

Abstract:

The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface.

Keywords: sulfurization flotation, adsorption characteristics, malachite, hydrophobicity

Procedia PDF Downloads 49
1137 Soil Improvement through Utilization of Calcifying Bhargavaea cecembensis N1 in an Affordable Whey Culture Medium

Authors: Fatemeh Elmi, Zahra Etemadifar

Abstract:

Improvement of soil mechanical properties is crucial before its use in construction, as the low mechanical strength and unstable structure of soil in many parts of the world can lead to the destruction of engineering infrastructure, resulting in financial and human losses. Although, conventional methods, such as chemical injection, are often utilized to enhance soil strength and stiffness, they are generally expensive, require heavy machinery, and cause significant environmental effects due to chemical usage, and also disrupt urban infrastructure. Moreover, they are not suitable for treating large volume of soil. Recently, an alternative method to improve various soil properties, including strength, hardness, and permeability, has received much attention: the application of biological methods. One of the most widely used is biocementation, which is based on the microbial precipitation of calcium carbonte crystalls using ureolytic bacteria However, there are still limitations to its large-scale use that need to be resolved before it can be commercialized. These issues have not received enough attention in prior research. One limitation of MICP (microbially induced calcium carbonate precipitation) is that microorganisms cannot operate effectively in harsh and variable environments, unlike the controlled conditions of a laboratory. Another limitation of applying this technique on a large scale is the high cost of producing a substantial amount of bacterial culture and reagents required for soil treatment. Therefore, the purpose of the present study was to investigate soil improvement using the biocementation activity of poly-extremophile, calcium carbonate crystal- producing bacterial strain, Bhargavaea cecembensis N1, in whey as an inexpensive medium. This strain was isolated and molecularly identified from sandy soils in our previous research, and its 16S rRNA gene sequences was deposited in the NCBI Gene Bank with an accession number MK420385. This strain exhibited a high level of urease activity (8.16 U/ml) and produced a large amount of calcium carbonate (4.1 mg/ ml). It was able to improve the soil by increasing the compressive strength up to 205 kPa and reducing permeability by 36%, with 20% of the improvement attributable of calcium carbonate production. This was achieved using this strain in a whey culture medium. This strain can be an eco-friendly and economical alternative to conventional methods in soil stabilization, and other MICP related applications.

Keywords: biocementation, Bhargavaea cecembensis, soil improvement, whey culture medium

Procedia PDF Downloads 32
1136 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 52
1135 Variations in Water Supply and Quality in Selected Groundwater Sources in a Part of Southwest Nigeria

Authors: Samuel Olajide Babawale, O. O. Ogunkoya

Abstract:

The study mapped selected wells in Inisa town, Osun state, in the guinea savanna region of southwest Nigeria, and determined the water quality considering certain elements. It also assessed the variation in the elevation of the water table surface to depth of the wells in the months of August and November. This is with a view to determine the level of contamination of the water with respect to land use and anthropogenic activities, and also to determine the variation that occurs in the quantity of well water in the rainy season and the start of the dry season. Results show a random pattern of the distribution of the mapped wells and shows that there is a shallow water table in the study area. The temporal changes in the elevation show that there are no significant variations in the depth of the water table surface over the period of study implying that there is a sufficient amount of water available to the town all year round. It also shows a high concentration of sodium in the water sample analyzed compared to other elements that were considered, which include iron, copper, calcium, and lead. This is attributed majorly to anthropogenic activities through the disposal of waste in landfill sites. There is a low concentration of lead which is a good indication of a reduced level of pollution.

Keywords: anthropogenic activities, land use, temporal changes, water quality

Procedia PDF Downloads 116
1134 Immiscible Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: A Compartmentalized Approach

Authors: Sourav Biswas, Goutam Prasanna Kar, Suryasarathi Bose

Abstract:

In order to obtain better materials, control in the precise location of nanoparticles is indispensable. It was shown here that ordered arrangement of nanoparticles, possessing different characteristics (electrical/magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiations, the key parameters i.e. high electrical conductivity and large dielectric/magnetic loss are targeted here using a conducting inclusion [multiwall carbon nanotubes, MWNTs]; ferroelectric nanostructured material with associated relaxations in the GHz frequency [barium titanate, BT]; and a loss ferromagnetic nanoparticles [nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs was modified using an electron acceptor molecule; a derivative of perylenediimide, which facilitates π-π stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, ordered arrangement can be tailored. To accomplish this, both BT and NF was first hydroxylated followed by introducing amine-terminal groups on the surface. The latter facilitated in nucleophilic substitution reaction with PC and resulted in their precise location. In this study, we have shown for the first time that by compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection loss was ca. -18 dB (for MWNT/BT mixture) and -29 dB (for MWNT/NF mixture), and the shielding was primarily through reflection. Interestingly, by adopting the compartmentalized approach where in, the lossy materials were in the PC phase and the conducting inclusion (MWNT) in PVDF, an outstanding reflection loss of ca. -57 dB (for BT and MWNT combination) and -67 dB (for NF and MWNT combination) was noted and the shielding was primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.

Keywords: barium titanate, EMI shielding, MWNTs, nickel ferrite

Procedia PDF Downloads 426
1133 Microstructure and Properties of Cu-Bearing Hypereutectic High Chromium Cast Iron

Authors: Liqiang Gong, Hanguang Fu

Abstract:

In order to further improve the wear resistance of Hypereutectic High Chromium Cast iron (HHCCI), the effects of different Cu contents on the microstructure and properties of HHCCI were systematically studied. It was found that with the increase of Cu content, the carbide size was refined, and the increase of Cu content led to the increase of austenite and the decrease of hardness in as-cast HHCCI. After heat treatment at 1050 °C, the hardness of HHCCI increased significantly compared with as-cast. And with the increase of Cu content, the hardness of HHCCI increased first and then decreased, and the hardness was the highest when 0.5 wt.% Cu was added. The increase of copper content promotes the precipitation of secondary carbides and makes the interface between α-Fe and M23C6-type secondary carbides a semi-coherent boundary. With the increase of Cu content, the wear loss of HHCCI decreased after heat treatment at 1050 °C, and the wear resistance improved. When the Cu content increased to 1.0 wt.%, the wear resistance of HHCCI was the best, which was 2.6 times that of copper-free HHCCI. The continued increase of copper content has no obvious effect on the wear resistance of HHCCI. In addition, a small amount of Cu tends to adsorb on the (0001) preferential growth surface of M₇C₃-type carbides, thereby refining the carbides. From the First-principles calculations, the solid solution strengthening effect of Cu on the matrix and the adsorption and refinement of carbides were revealed, and the influence mechanism on the wear resistance of HHCCI was characterized.

Keywords: hypereutectic high chromium cast iron, cu alloying, carbides, wear resistance, first-principles calculations

Procedia PDF Downloads 48
1132 Multi-Walled Carbon Nanotube Based Water Filter for Virus Pathogen Removal

Authors: K. Domagala, D. Kata, T. Graule

Abstract:

Diseases caused by contaminated drinking water are the worldwide problem, which leads to the death and severe illnesses for hundreds of millions million people each year. There is an urgent need for efficient water treatment techniques for virus pathogens removal. The aim of the research was to develop safe and economic solution, which help with the water treatment. In this study, the synthesis of copper-based multi-walled carbon nanotube composites is described. Proposed solution utilize combination of a low-cost material with a high active surface area and copper antiviral properties. Removal of viruses from water was possible by adsorption based on electrostatic interactions of negatively charged virus with a positively charged filter material.

Keywords: multi walled carbon nanotubes, water purification, virus removal, water treatment

Procedia PDF Downloads 114
1131 Relationship of Trace Minerals Nutritional Status of Camel (Camelus dromedarius) to Their Contents in Egyptian Feedstuff

Authors: Maha Mohamed Hady Ali, M. A. El-Sayed

Abstract:

Camel (Camelus dromedarius) is very important animal in many arid and semi-arid zones of tropical and subtropical regions as it serves as dual purpose providing meat and milk for human and as draft animal. Camel, like other animal must receive all essential nutrients despite the hostile environment. A study was conducted to evaluate the nutritional status of some micro-minerals of camel under Egyptian environmental condition. Forty five blood samples were collected from apparently healthy male camels with an average age between 2-6 years at the slaughter house in Cairo province, Egypt. The animals were fed mainly on berseem (Trifolium alexandrinum) or concentrate with straw before slaughtering. The collected serum and feedstuff samples were subjected to copper, iron, selenium and zinc analysis using Atomic absorption spectrophotometer. The data showed variation in the level of copper, iron, selenium and zinc in the serum of the dromedary camel as well as in the feedstuffs. Furthermore, the results indicated that the micro- minerals status of feeds may not always reflected as such in camel blood suggesting some role of bioavailability. The main reason for the lack of such reflection seems to be the wide diversity exists in the surrounding environment (forages and plants) as well as the bioavailability of such minerals. Since the requirement of micro-minerals have not been established for camel, more researches must be focused on this topic.

Keywords: camel, copper, egypt, feed stuff, iron, selenium, zinc

Procedia PDF Downloads 494
1130 Hot Corrosion Behavior of Calcium Zirconate Modified YSZ Coatings

Authors: Naveed Ejaz, Liaqat Ali, Amer Nusair

Abstract:

Thermal barrier coatings (TBCs) serve as thermal barriers against the high temperature of the hot regions of the aircraft turbine engines keeping the surface of the turbine blades, vanes and combustion chamber at comparatively lower temperature. The life of these coatings depends on many in-service environmental factors. Among these factors, the behavior of the bond coat as well as the top coat at high temperature aggravated by the corrosive environments having S, V, Na and Cl plays a key role. The incorporation of the 5-15% CaZrO3 in YSZ coatings was studied after hot corrosion in vanadium oxide environment. It was observed that the reactivity of the V gradually switched from Y to Ca making CaV2O4 instead of YVO4; the percentage of CaV2O4 increased with the increase of CaZrO3 in YSZ. It eventually prevented leaching out of the Y from YSZ leaving the YSZ without any harmful phase change. The thermal insulation was found to be improved in case of CaZrO3 incorporated YSZ coatings as compared to only YSZ coating.

Keywords: hot corrosion, thermal barrier coatings, yttria stabilized zirconia, calcium zirconate

Procedia PDF Downloads 389
1129 Phytochemical Screening, Antioxidant Potential, and Mineral Composition of Dried Abelmoschus esculentus L. Fruits Consume in Gada Area of Sokoto State, Nigeria

Authors: I. Sani, F. Bello, I. M. Fakai, A. Abdulhamid

Abstract:

Abelmoschus esculentus L. fruit is very common especially in northern part of Nigeria, but people are ignorant of its medicinal and pharmacological benefits. Preliminary phytochemical screening, antioxidant potential and mineral composition of the dried form of this fruit were determined. The Phytochemical screening was conducted using standard methods. Antioxidant potential screening was carried out using Ferric Reducing Antioxidant Power Assay (FRAP) method, while, the mineral compositions were analyzed using an atomic absorption spectrophotometer by wet digest method. The result of the qualitative phytochemical screening revealed that the fruits contain saponins, flavonoids, tannins, steroids, and terpenoids, while, anthraquinone, alkaloids, phenols, glycosides, and phlobatannins were not detected. The quantitative analysis revealed that the fruits contain saponnins (380 ± 0.020 mg/g), flavonoids (240±0.01 mg/g), and tannins (21.71 ± 0.66 mg/ml). The antioxidant potential was determined to be 54.1 ± 0.19%. The mineral composition revealed that 100 g of the fruits contains 97.52 ± 1.04 mg of magnesium (Mg), 94.53 ± 3.21 mg of calcium (Ca), 77.10 ± 0.79 mg of iron (Fe), 47.14 ± 0.41 mg of zinc (Zn), 43.96 ± 1.49 mg of potassium (K), 42.02 ± 1.09 mg of sodium (Na), 0.47 ± 0.08 mg of copper (Cu) and 0.10 ± 0.02 mg of lead (Pb). These results showed that the Abelmoschus esculentus L. fruit is a good source of antioxidants, and contains an appreciable amount of phytochemicals, therefore, it has some pharmacological attributes. On the other side, the fruit can serve as a nutritional supplement for Mg, Ca, Fe, Zn, K, and Na, but a poor source of Cu, and contains no significant amount of Pb.

Keywords: Abelmoschus esculentus Fruits, antioxidant potential, mineral composition, phytochemical screening

Procedia PDF Downloads 352
1128 Comparison of Particle Size for ɑ(Alpha) Fe2O3 and ɤ(Gamma)Fe2O3 on Heat Transfer Performance in an Copper Oscillating Heat Pipe

Authors: Hamid Reza Goshayeshi

Abstract:

The effect of ɑ(alpha) Fe2O3 and ɤ(gamma)Fe2O3 particles on the heat transfer performance of an oscillating heat pipe was investigated experimentally. Kerosene was used as the base fluid for the OHP. Six size particles with average diameters of 10 nm, 20 nm, and 30 nm ɑFe2O3 and ɤFe2O3 were investigated, respectively. Experimental results show that the ɤFe2O3 particles added in the OHP significantly affect the heat transfer performance. When the OHP was charged with kerosene and 20 nm ɤ Fe2O3 particles, the OHP can achieve the best heat transfer performance among six particles investigated in this research.

Keywords: copper oscillating heat pipe, heat transfer, flow, comparison of ɑ(alpha)Fe2O3 and ɤ(gamma)Fe2O3, increase heat transfer

Procedia PDF Downloads 294
1127 Biological Organic or Inorganic Sulfur Sources Feeding Effects on Intake and Some Blood Metabolites of Close-Up Holstein Cows

Authors: Mehdi Kazemi-Bonchenari, Esmaeil Manidari, Vahid Keshavarz

Abstract:

This study was carried out to investigate the effects of increased level of sulfur by supplementing magnesium sulfate with or without biologically organic source in dairy cow close-up diets on dry matter intake (DMI) and some blood metabolites. The 24 multiparous close-up Holstein cows averaging body weight 687.94 kg and days until expected calving date 21.89 d were allocated in three different treatments (8 cows per each) in a completely randomized design. The first treatment (T1) has contained 0.21% sulfur (DM basis), the second treatment (T2) has contained 0.41% sulfur which entirely supplied through magnesium sulfate and the third treatment (T3) has contained 0.41% sulfur which supplied through combination of magnesium sulfate and an organic source of sulfur. All the cows were fed same diet after parturition until 21 d. The DMI for both pre-calving (P < 0.001) and post-calving was affected by treatments (P < 0.004) and T2 showed the lowest DMI among treatments. Among the blood metabolites, glucose, calcium, and copper were decreased in T2 (P < 0.05). However, blood concentrations of BHBA, NEFA, urea, CPK, and AST were increased in T2 (P < 0.05). The results of the present study indicate that although magnesium sulfate has negative effect on dairy cow health and performance, a combination of magnesium sulfate and biological organic source of sulfur in close-up diets could have positive effects on DMI and performance of Holstein dairy cows.

Keywords: organic sulfur, dairy cow, intake, blood metabolites

Procedia PDF Downloads 287
1126 Exploring the Influences on Entrainment of Serpentines by Grinding and Reagents

Authors: M. Tang, S. M. Wen, D. W. Liu

Abstract:

This paper presents the influences on the entrainment of serpentines by grinding and reagents during copper–nickel sulfide flotation. The previous bench flotation tests were performed to extract the metallic values from the ore in Yunnan Mine, China and the relatively satisfied results with recoveries of 86.92% Cu, 54.92% Ni, and 74.73% Pt+Pd in the concentrate were harvested at their grades of 4.02%, 3.24% and 76.61 g/t, respectively. However, the content of MgO in the concentrate was still more than 19%. Micro-flotation tests were conducted with the objective of figuring out the influences on the entrainment of serpentines into the concentrate by particle size, flocculants or depressants and collectors, as well as visual observations in suspension by OLYMPUS camera. All the tests results pointed to the presences of both “entrapped-in” serpentines and its coating on the hydrophobic flocs resulted from strong collectors (combination of butyl xanthate, butyl ammonium dithophosphate, even after adding carboxymethyl cellulose as effective depressant. And fine grinding may escalate the entrainment of serpentines in the concentrate.

Keywords: serpentine, copper and nickel sulfides, flotation, entrainment

Procedia PDF Downloads 292
1125 Efficacy of Crystalline Admixtures in Self-Healing Capacity of Fibre Reinforced Concrete

Authors: Evangelia Tsampali, Evangelos Yfantidis, Andreas Ioakim, Maria Stefanidou

Abstract:

The purpose of this paper is the characterization of the effects of crystalline admixtures on concrete. Crystallites, aided by the presence of humidity, form idiomorphic crystals that block cracks and pores resulting in reduced porosity. In this project, two types of crystallines have been employed. The hydrophilic nature of crystalline admixtures helps the components to react with water and cement particles in the concrete to form calcium silicate hydrates and pore-blocking precipitates in the existing micro-cracks and capillaries. The underlying mechanism relies on the formation of calcium silicate hydrates and the resulting deposits of these crystals become integrally bound with the hydrated cement paste. The crystalline admixtures continue to activate throughout the life of the composite material when in the presence of moisture entering the concrete through hairline cracks, sealing additional gaps. The resulting concrete exhibits significantly increased resistance to water penetration under stress. Admixtures of calcium aluminates can also contribute to this healing mechanism in the same manner. However, this contribution is negligible compared to the calcium silicate hydrates due to the abundance of the latter. These crystalline deposits occur throughout the concrete volume and are a permanent part of the concrete mass. High-performance fibre reinforced cementitious composite (HPFRCC) were produced in the laboratory. The specimens were exposed in three healing conditions: water immersion until testing at 15 °C, sea water immersion until testing at 15 °C, and wet/dry cycles (immersion in tap water for 3 days and drying for 4 days). Specimens were pre-cracked at 28 days, and the achieved cracks width were in the range of 0.10–0.50 mm. Furthermore, microstructure observations and Ultrasonic Pulse Velocity tests have been conducted. Based on the outcomes, self-healing related indicators have also been defined. The results show almost perfect healing capability for specimens healed under seawater, better than for specimens healed in water while inadequate for the wet/dry exposure in both of the crystalline types.

Keywords: autogenous self-healing, concrete, crystalline admixtures, ultrasonic pulse velocity test

Procedia PDF Downloads 106
1124 The Hydro-Geology and Drinking Water Quality of Ikogosi Warm Spring in South West Nigeria

Authors: Ikudayisi Akinola, Adeyemo Folasade, Adeyemo Josiah

Abstract:

This study focuses on the hydro-geology and chemistry of Ikogosi Warm Spring in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total dissolved solid and heavy metals. The measured parameters in the water samples are within World Health Organisation standards for fresh water. The study of the geology of the warm spring reveals that the study area is underlain by a group of slightly migmatised to non-migmatised paraschists and meta-igneous rocks. The concentration levels of selected heavy metals, (Copper, Cadmium, Zinc, Arsenic and Cromium) were determined in the water (ppm) samples. Chromium had the highest concentration value of 1.52ppm (an average of 49.67%) and Cadmium had the lowest concentration with value of 0.15ppm (an average of 4.89%). Comparison of these results showed that, their mean levels are within the standard values obtained in Nigeria. It can be concluded that both warm and spring water are safe for drinking.

Keywords: cold spring, Ikogosi, melting point, warm spring, water samples

Procedia PDF Downloads 523
1123 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results

Authors: Jiri Brozovsky

Abstract:

Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.

Keywords: calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity

Procedia PDF Downloads 397
1122 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 112
1121 Effects of Copper Oxide Doping on Hydrothermal Ageing in Alumina Toughened Zirconia

Authors: Mohamed Abbas, Ramesh Singh

Abstract:

This study investigates the hydrothermal aging behavior of undoped and copper oxide-doped alumina-toughened zirconia (ATZ). The ATZ ceramic composites underwent conventional sintering at temperatures ranging from 1250 to 1500°C with a holding time of 12 minutes. XRD analysis revealed a stable 100% tetragonal phase for conventionally sintered ATZ samples up to 1450°C, even after 100 hours of exposure. At 1500℃, XRD patterns of both undoped and doped ATZ samples showed no phase transformation after up to 3 hours of exposure to superheated steam. Extended exposure, however, resulted in phase transformation beyond 10 hours. CuO-doped ATZ samples initially exhibited lower monoclinic content, gradually increasing with aging. Undoped ATZ demonstrated better-aging resistance, maintaining ~40% monoclinic content after 100 hours. FESEM images post-aging revealed surface roughness changes due to the tetragonal-to-monoclinic phase transformation, with limited nucleation in the largest tetragonal grains. Fracture analysis exhibited macrocracks and microcracks on the transformed surface layer after aging. This study found that 0.2wt% CuO doping did not prevent the low-temperature degradation (LTD) phenomenon at elevated temperatures. Transformation zone depth (TZD) calculations supported the trend observed in the transformed monoclinic phase.

Keywords: alumina toughened zirconia, conventional sintering, copper oxide, hydrothermal ageing

Procedia PDF Downloads 46
1120 Bifunctional Electrospun Fibers Based on Poly(Lactic Acid)/Calcium Oxide Nanocomposites as a Potential Scaffold for Bone Tissue Engineering

Authors: Daniel Canales, Fabián Alvarez, Pablo Varela, Marcela Saavedra, Claudio García, Paula Zapata

Abstract:

Calcium oxide nanoparticles (n-CaO) ca. 8 nm were obtained from eggshell waste. The n-CaO was incorporated into Poly(lactic acid) PLA matrix in 10 and 20 wt.% of filler content by electrospinning process to obtain PLA/n-CaO nanocomposite fibers as a potential use in scaffold for bone tissue regeneration. The fibers morphology and diameter were homogeneity, the PLA had a diameter of 2.2 ± 0.8 µm and, with the nanoparticles incorporation (20wt.%), reached ca. 2.9 ± 0.9 µm. The PLA/n-CaO nanocomposites fibers showed in vitro bioactivity, capable of inducing the precipitation of hydroxyapatite (HA) layer in the fiber surface after 7 days in Simulated Body Solution (SBF). The biocidal and biological properties of PLA/n-Cao with 20 wt.% were evaluated, showing a 30% reduction in bacterial viability against S. aureus and 11% for E. coli after 6 hours of bacterial suspensions exposure. Furthermore, the fibers did not show a cytotoxic effect on the bone marrow ST-2 cell line, permitting the cell adhesion and proliferation in Roswell Park Memorial Institute medium (RPMI). The PLA/n-CaO with 20 wt.% of nanoparticles showed a higher capacity to promote the osteogenic differentiation, significantly increasing the alkaline phosphatase (ALP) expression after 7 days compared to PLA and cell control. The in vivo analysis corroborated the biocompatibility of scaffolds prepared, the presence of n-CaO in PLA reduced the formation of fibrous encapsulation of the material improve the healing process.

Keywords: electrospun scaffolds, PLA based nanocomposites, calcium oxide nanoparticles, bioactive materials, tissue engineering

Procedia PDF Downloads 69
1119 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.

Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics

Procedia PDF Downloads 248
1118 Geochemical Controls of Salinity in a Typical Acid Mine Drainage Neutralized Groundwater System

Authors: Modreck Gomo

Abstract:

Although the dolomite and calcite carbonates can neutralize Acid Mine Drainage (AMD) and prevent leaching of metals, salinity still remains a huge problem. The study presents a conceptual discussion of geochemical controls of salinity in a typical calcite and dolomite AMD neutralised groundwater systems. Thereafter field evidence is presented to support the conceptual discussions. 1020 field data sets of from a groundwater system reported to be under circumneutral conditions from the neutralization effect of calcite and dolomite is analysed using correlation analysis and bivariate plots. Field evidence indicates that sulphate, calcium and magnesium are strongly and positively correlated to Total Dissolved Solids (TDS) which is used as measure of salinity. In this, a hydrogeochemical system, the dissolution of sulphate, calcium and magnesium form AMD neutralization process contributed 50%, 10% and 5% of the salinity.

Keywords: acid mine drainage, carbonates, neutralization, salinity

Procedia PDF Downloads 122
1117 Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon

Authors: Serife Parlayici, Erol Pehlivan

Abstract:

In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively.

Keywords: plum-stone, activated carbon, copper and lead, isotherms

Procedia PDF Downloads 346
1116 Development of Multilayer Capillary Copper Wick Structure using Microsecond CO₂ Pulsed Laser

Authors: Talha Khan, Surendhar Kumaran, Rajeev Nair

Abstract:

The development of economical, efficient, and reliable next-generation thermal and water management systems to provide efficient cooling and water management technologies is being pursued application in compact and lightweight spacecraft. The elimination of liquid-vapor phase change-based thermal and water management systems is being done due to issues with the reliability and robustness of this technology. To achieve the motive of implementing the principle of using an innovative evaporator and condenser design utilizing bimodal wicks manufactured using a microsecond pulsed CO₂ laser has been proposed in this study. Cylin drical, multilayered capillary copper wicks with a substrate diameter of 39 mm are additively manufactured using a pulsed laser. The copper particles used for layer-by-layer addition on the substrate measure in a diameter range of 225 to 450 micrometers. The primary objective is to develop a novel, high-quality, fast turnaround, laser-based additive manufacturing process that will eliminate the current technical challenges involved with the traditional manufacturing processes for nano/micro-sized powders, like particle agglomeration. Raster-scanned, pulsed-laser sintering process has been developed to manufacture 3D wicks with controlled porosity and permeability.

Keywords: liquid-vapor phase change, bimodal wicks, multilayered, capillary, raster-scanned, porosity, permeability

Procedia PDF Downloads 167
1115 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles

Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz

Abstract:

Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.

Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts

Procedia PDF Downloads 137
1114 Reinforcement of Calcium Phosphate Cement with E-Glass Fibre

Authors: Kanchan Maji, Debasmita Pani, Sudip Dasgupta

Abstract:

Calcium phosphate cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve its mechanical strength. Here we study the setting behaviour of Si-doped and un-doped alpha tri-calcium phosphate (α-TCP) based CPC and its reinforcement with the addition of E-glass fibre. Alpha tri-calcium phosphate powders were prepared by solid state sintering of CaCO3, CaHPO4 and tetra ethyl ortho silicate (TEOS) was used as silicon source to synthesise Si doped α-TCP powders. Alpha tri-calcium phosphate based CPC hydrolyzes to form hydroxyapatite (HA) crystals having excellent osteoconductivity and bone-replacement capability thus self-hardens through the entanglement of HA crystals. Setting time, phase composition, hydrolysis conversion rate, microstructure, and diametral tensile strength (DTS) of un-doped CPC and Si-doped CPC were studied and compared. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9-432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. The intensities of the α-TCP peaks of (201) and (161) at 2θ of 22.2°and 24.1° decreased when the time of immersion of CPC in SBF increased from 0 hours to 10 days, due to its transformation into HA. As Si incorporation in the crystal lattice stabilised the TCP phase, Si doped CPC showed a little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. This lower porosity and greater compactness in the microstructure attributes to greater DTS values observed in Si-doped CPC. E-glass fibres of the average diameter of 12 μm were cut into approximately 1 mm in length and immersed in SBF to deposit carbonated apatite on its surface. This was performed to promote HA crystal growth and entanglement along the fibre surface to promote stronger interface between dispersed E-glass fibre and CPC matrix. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resist the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its bioactivity.

Keywords: Calcium phosphate cement, biocompatibility, e-glass fibre, diametral tensile strength

Procedia PDF Downloads 330