Search results for: allogeneic hematopoietic stem cell transplantation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4295

Search results for: allogeneic hematopoietic stem cell transplantation

3935 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed

Authors: Marion G. Ben-Jacob, David Wang

Abstract:

There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.

Keywords: emporium model, mathematics, pedagogy, STEM

Procedia PDF Downloads 77
3934 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane

Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.

Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced

Procedia PDF Downloads 296
3933 Measuring Student Teachers' Attitude and Intention toward Cell-Phone Use for Learning in Nigeria

Authors: Shittu Ahmed Tajudeen

Abstract:

This study examines student-teachers’ attitude and intention towards cell-phone use for learning. The study involves one hundred and ninety (190) trainee teachers in one of the Institutes of Education in Nigeria. The data of the study was collected through a questionnaire on a rating of seven point likert-type Scale. The data collected was used to test the hypothesized model of the study using Structural Equation Modeling approach. The finding of the study revealed that Perceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN) and Attitude significantly influence students’ intention towards adoption of cell-phone for learning. The study showed that perceived ease of use stands to be the strongest predictor of cell-phone use. The model of the study exhibits a good-fit with the data and provides an explanation on student- teachers’ attitude and intention towards cell-phone for learning.

Keywords: cell-phone, adoption, structural equation modeling, technology acceptance model

Procedia PDF Downloads 458
3932 ALDH1A1 as a Cancer Stem Cell Marker: Value of Immunohistochemical Expression in Benign Prostatic Hyperplasia, Prostatic Intraepithelial Neoplasia, and Prostatic Adenocarcinoma

Authors: H. M. Abdelmoneim, N. A. Babtain, A. S. Barhamain, A. Z. Kufiah, A. S. Malibari, S. F. Munassar, R. S. Rawa

Abstract:

Introduction: Prostate cancer is one of the most common causes of morbidity and mortality in men in developed countries. Cancer Stem Cells (CSCs) could be responsible for the progression and relapse of cancer. Therefore, CSCs markers could provide a prognostic strategy for human malignancies. Aldehyde dehydrogenase 1A1 (ALDH1A1) activity has been shown to be associated with tumorigenesis and proposed to represent a functional marker for tumor initiating cells in various tumor types including prostate cancer. Material & Methods: We analyzed the immunohistochemical expression of ALDH1A1 in benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinoma and assessed their significant correlations in 50 TURP sections. They were microscopically interpreted and the results were correlated with histopathological types and tumor grade. Results: In different prostatic histopathological lesions we found that ALDH1A1 expression was low in BPH (13.3%) and PIN (6.7%) and then its expression increased with prostatic adenocarcinoma (40%), and this was statistically highly significant (P value = 0.02). However, in different grades of prostatic adenocarcinoma we found that the higher the Gleason grade the higher the expression for ALDH1A1 and this was statistically significant (P value = 0.02). We compared the expression of ALDH1A1 in PIN and prostatic adenocarcinoma. ALDH1A1 expression was decreased in PIN and highly expressed in prostatic adenocarcinoma and this was statistically significant (P value = 0.04). Conclusion: Increasing ALDH1A1 expression is correlated with aggressive behavior of the tumor. Immunohistochemical expression of ALDH1A1 might provide a potential approach to study tumorigenesis and progression of primary prostate carcinoma.

Keywords: ALDH1A1, BPH, PIN, prostatic adenocarcinoma

Procedia PDF Downloads 263
3931 Low Temperature Solution Processed Solar Cell Based on ITO/PbS/PbS:Bi3+ Heterojunction

Authors: M. Chavez, H. Juarez, M. Pacio, O. Portillo

Abstract:

PbS chemical bath heterojunction sollar cells have shown significant improvements in performance. Here we demonstrate a solar cell based on the heterojunction formed between PbS layer and PbS:Bi3+ thin films that are deposited via solution process at 40°C. The device achieve an current density of 4 mA/cm2. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication.

Keywords: PbS doped, Bismuth, solar cell, thin films

Procedia PDF Downloads 558
3930 Effect of Nicorandil, Bone Marrow-Derived Mesenchymal Stem Cells and Their Combination in Isoproterenol-Induced Heart Failure in Rats

Authors: Sarah Elsayed Mohammed, Lamiaa Ahmed Ahmed, Mahmoud Mohammed Khattab

Abstract:

Aim: The aim of the present study was to investigate whether combined nicorandil and bone marrow-derived mesenchymal stem cells (BMDMSC) treatment could offer an additional benefit in ameliorating isoproterenol (ISO)-induced heart failure in rats. Methods: ISO (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively. By day 3, electrocardiographic changes were recorded and serum was separated for determination of CK-MB level for confirmation of myocardial damage. Nicorandil (3 mg/kg/day) was then given orally with or without a single i.v. BMDMSC administration. Electrocardiography and echocardiography were recorded 2 weeks after beginning of treatment. Rats were then sacrificed and ventricles were isolated for estimation of vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) contents, caspase-3 activity as well as inducible nitric oxide synthase (iNOS) and connexin-43 protein expressions. Moreover, histological analysis of myocardial fibrosis was performed and cryosections were done for estimation of homing of BMDMSC. Results: ISO induced a significant increase in ventricles/body weight ratio, left ventricular end diastolic (LVEDD) and systolic dimensions (LVESD), ST segment and QRS duration. Moreover, myocardial fibrosis as well as VEGF, TNF-α and TGF-β contents were significantly increased. On the other hand, connexin-43 protein expression was significantly decreased, while caspase-3 and iNOS protein expressions were significantly increased. Combined therapy provided additional improvement compared to cell treatment alone towards reducing cardiac hypertrophy, fibrosis and inflammation. Furthermore, combined therapy induced significant increase in angiogenesis and BMDMSC homing and prevented ISO induced changes in iNOS, connexin-43 and caspase-3 protein expressions. Conclusion: Combined nicorandil/BMDMSC treatment was superior to BMDMSC alone towards preventing ISO-induced heart failure in rats.

Keywords: fibrosis, isoproterenol, mesenchymal stem cells, nicorandil

Procedia PDF Downloads 534
3929 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Ross Lee, Pritpal Singh, Andrew Jester

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, new battery technology is necessary for grid applications to curtail these risks. Biological cells, such as human neurons and electrolytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell, akin to the charging/discharging of a battery cell. This work serves as the first step to developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na⁺-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior similar to human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: battery, biomimetic, electrolytes, human neurons, ion-selective membranes, membrane potential

Procedia PDF Downloads 122
3928 Hsa-miR-326 Functions as a Tumor Suppressor in Non-Small Cell Lung Cancer through Targeting CCND1

Authors: Cheng-Cao Sun, Shu-Jun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, De-Jia Li

Abstract:

Hsa-miRNA-326 (miR-326) has recently been discovered having anticancer efficacy in different organs. However, the role of miR-326 on non-small cell lung cancer (NSCLC) is still ambiguous. In this study, we investigated the role of miR-326 on the development of NSCLC. The results indicated that miR-326 was significantly down-regulated in primary tumor tissues and very low levels were found in NSCLC cell lines. Ectopic expression of miR-326 in NSCLC cell lines significantly suppressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibition of cyclin D1, cyclin D2, CDK4, and up-regulation of p57(Kip2) and p21(Waf1/Cip1). In addition, miR-326 induced apoptosis, as indicated by concomitantly with up-regulation of key apoptosis protein cleaved caspase-3, and down-regulation of anti-apoptosis protein Bcl2. Moreover, miR-326 inhibited cellular migration and invasiveness through inhibition of matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene CCND1 was revealed to be a putative target of miR-326, which was inversely correlated with miR-326 expression in NSCLC. Taken together, our results demonstrated that miR-326 played a pivotal role on NSCLC through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic CCND1.

Keywords: hsa-miRNA-326 (miR-326), cyclin D1, non-small cell lung cancer (NSCLC), proliferation, apoptosis

Procedia PDF Downloads 308
3927 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques

Authors: Amir Peyman Soleymani, Jasna Jankovic

Abstract:

The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.

Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations

Procedia PDF Downloads 158
3926 Low Power CNFET SRAM Design

Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor

Abstract:

CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.

Keywords: SRAM cell, CNFET, low power, HSPICE

Procedia PDF Downloads 417
3925 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-wattfluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: solar cell, solar-cell power generating system, computer, systems engineering

Procedia PDF Downloads 329
3924 Post Operative Analgesia after Orthotopic Liver Transplantation; A Clinical Randomized Trial

Authors: Soudeh Tabashi, Mohammadreza Moshari, Parisa Sezari

Abstract:

Introduction: Postoperative analgesia in Orthotopic Liver Transplantation (OLT) surgery is challenging for anesthesiologists. Although OLT is one of the most extensive abdominal operations, it seems that patients don’t suffer from severe post operative pain. On the other hands drug metabolism is unpredictable due to unknown graft function. The aim of this study was to compare intraoperative infusion of remifentanil versus fentanyl in postoperative opioid demand in patients with OLT and evaluating the complications in two groups. Method: In this double-blind clinical trial 34 patients who had OLT were included. They divided randomly in two groups of Remifentanil (R) and Fentanyl (F). Patients in group R and F received infusion of Remifentanil 0.3-1 µg/Kg/min and Fentanyl 0.3-1 µg/Kg/min during maintenance of anesthesia. Post operative pain were measured in 6, 12, 18, 24 hours and second and third days after surgery with Numeric Rate Scale (NRS). Patients had received intravenous acetaminophen as rescue therapy with NRS of 3 or more. In addition to demographic information, post operative opioid consumption were recorded as the primary outcome. Intraoperative blood transfusion, intraoperative inotropic drugs consumption, weaning time and intensive care unit stay were also evaluated. Results: Total dose of acetaminophen consumption in first 3 days after surgery did not have significant difference between two groups (Pvalue=0.716). intraoperative inotrope consumption, blood transfusion and post operative weaning time and ICU stay were also similar in both groups. Conclusion: This study demonstrates that intraoperative infusion of remifentanil in OLT have the same effect on post operative pain management as fentanyl. Despite the complications of operation were not increased by remifentanil.

Keywords: liver transplantation, postoperative pain, remifentanil, fentanyl

Procedia PDF Downloads 71
3923 Laser Based Microfabrication of a Microheater Chip for Cell Culture

Authors: Daniel Nieto, Ramiro Couceiro

Abstract:

Microfluidic chips have demonstrated their significant application potentials in microbiological processing and chemical reactions, with the goal of developing monolithic and compact chip-sized multifunctional systems. Heat generation and thermal control are critical in some of the biochemical processes. The paper presents a laser direct-write technique for rapid prototyping and manufacturing of microheater chips and its applicability for perfusion cell culture outside a cell incubator. The aim of the microheater is to take the role of conventional incubators for cell culture for facilitating microscopic observation or other online monitoring activities during cell culture and provides portability of cell culture operation. Microheaters (5 mm × 5 mm) have been successfully fabricated on soda-lime glass substrates covered with aluminum layer of thickness 120 nm. Experimental results show that the microheaters exhibit good performance in temperature rise and decay characteristics, with localized heating at targeted spatial domains. These microheaters were suitable for a maximum long-term operation temperature of 120ºC and validated for long-time operation at 37ºC. for 24 hours. Results demonstrated that the physiology of the cultured SW480 adenocarcinoma of the colon cell line on the developed microheater chip was consistent with that of an incubator.

Keywords: laser microfabrication, microheater, bioengineering, cell culture

Procedia PDF Downloads 300
3922 In vitro Study on Characterization and Viability of Vero Cell Lines after Supplementation with Porcine Follicular Fluid Proteins in Culture Medium

Authors: Mayuva Youngsabanant, Suphaphorn Rabiab, Hatairuk Tungkasen, Nongnuch Gumlungpat, Mayuree Pumipaiboon

Abstract:

The porcine follicular fluid proteins (pFF) of healthy small size ovarian follicles (1-3 mm in diameters) of Large White pig ovaries were collected by sterile technique. They were used for testing the effect on cell viability and characterization of Vero cell lines using MTT assay. Two hundred microliter of round shape Vero cell lines were culture in 96 well plates with DMEM for 24 h. After that, they were attachment to substrate and some changed into fibroblast shape and spread over the surface after culture for 48 h. Then, Vero cell lines were treated with pFF at concentration of 2, 4, 20, 40, 200, 400, 500, and 600 µg proteins/mL for 24 h. Yields of the best results were analyzed by using one-way ANOVA. MTT assay reviewed an increasing in percentage of viability of Vero cell lines indicated that at concentration of 400-600 µg proteins/mL showed higher percentage of viability (115.64 ± 6.95, 106.91 ± 5.27 and 116.73 ± 20.15) than control group. They were significantly different from the control group (p < 0.05) but lower than the positive control group (DMEM with 10% heat treated fetal bovine serum). Cell lines showed normal character in fibroblast elongate shape after treated with pFF except in high concentration of pFF. This result implies that pFF of small size ovarian follicle at concentration of 400-600 µg proteins/mL could be optimized concentration for using as a supplement in Vero cell line culture medium to promote cell viability instead of growth hormone from fetal bovine serum. This merit could be applied in other cell biotechnology researches. Acknowledgements: This work was funded by a grant from Silpakorn University and Faculty of Science, Silpakorn University, Thailand.

Keywords: cell viability, porcine follicular fluid, MTT assay, Vero cell line

Procedia PDF Downloads 136
3921 Hyaluronic Acid - Alginate Hydrogel for the Transdifferentiation of Testis Cells into Erythrocyte and Hepatocyte-like Cells; A Practice Within an Effective Agent Choice

Authors: Leila Rashki Ghaleno, Mohamad Amin Hajari, Leila Montazeri, Abdolhossein Shahverdi, Mojtaba Rezazadeh Valojerdi

Abstract:

Background: Spermatogonia stem cells (SSCs) exhibit pluripotency, enabling them to undergo differentiation into many cell lineages, including neurons, glia, endothelial cells, and hepatocytes when cultured in vitro. Although the specific mechanisms are not yet fully understood, it has been observed that biopolymer agents, such as hyaluronic acid (HA) and alginate (Alg), have the potential to induce transdifferentiation of SSCs. The current work aimed to examine the process of in vitro spermatogenesis and the conversion of mouse testicular cells into hepatocytes and erythrocyte-like cells utilizing the HA-Alg hydrogel. Method: After being extracted from the testes of a 5-day postpartum mouse (5 DPP), the testicular cells were separated into two enzymatic stages and then put into a composite hydrogel containing 0.5% HA and 1% alginate. On days 14 and 28 of culture, the colonies' growth, the cells' viability, and their histology were assessed. Result: Despite observing significant cell proliferation on day 14 and the development of circular-shaped organoids on day 28, it was noted that the organoids generated in the HA-Alg medium tended to maintain their circular morphology on day 28. Notably, the testicular cells underwent transdifferentiation into cell types resembling erythrocytes and hepatocytes. The hepatocyte-like cells exhibited the presence of glycogen and lipid deposits, indicating their hepatocyte-like characteristics. Interestingly, immunostaining analysis revealed the secretion of albumin and the presence of VEGFR on day 14. However, on day 28, albumin expression was not detected, while the expression of Sox9 (a marker for hepatocytes), Vegf, CD34, and C-kit (markers for erythrocytes) showed increased levels in the gene expression evaluation. Conclusion: The present findings indicated that HA-Alg could be a potent and effective agent for the transdifferentiation of testis cells into erythrocyte and hepatocyte-like cells, as recent studies have confirmed the transformation of SSCs into hepatocyte cells during in vitro culture.

Keywords: 3D culture, mouse testicular cell, hyaluronic acid, liver organoids

Procedia PDF Downloads 72
3920 Laser Welding Technique Effect for Proton Exchange Membrane Fuel Cell Application

Authors: Chih-Chia Lin, Ching-Ying Huang, Cheng-Hong Liu, Wen-Lin Wang

Abstract:

A complete fuel cell stack comprises several single cells with end plates, bipolar plates, gaskets and membrane electrode assembly (MEA) components. Electrons generated from cells are conducted through bipolar plates. The amount of cells' components increases as the stack voltage increases, complicating the fuel cell assembly process and mass production. Stack assembly error influence cell performance. PEM fuel cell stack importing laser welding technique could eliminate transverse deformation between bipolar plates to promote stress uniformity of cell components as bipolar plates and MEA. Simultaneously, bipolar plates were melted together using laser welding to decrease interface resistance. A series of experiments as through-plan and in-plan resistance measurement test was conducted to observe the laser welding effect. The result showed that the through-plane resistance with laser welding was a drop of 97.5-97.6% when the contact pressure was about 1MPa to 3 MPa, and the in-plane resistance was not significantly different for laser welding.

Keywords: PEM fuel cell, laser welding, through-plan, in-plan, resistance

Procedia PDF Downloads 513
3919 Device Modelling and Analysis of Eco-friendly Inverted Solar Cell Structure Using Valency Ordered Inorganic Double Perovskite Material

Authors: Sindhu S Nair, Atul Thakur, Preeti Thakur, Trukhanov Alex

Abstract:

Perovskite-based absorbing materials that are organic, inorganic, or hybrid have gained interest as an appealing candidate for the development of solar cell devices. Lead-based perovskites are among the most promising materials, but their application is plagued with toxicity and stability concerns. Most of the perovskite solar cell consists of conventional (n-i-p) structure with organic or inorganic charge transport materials. The commercial application of such device is limited due to higher J-V hysteresis and the need for high temperature during fabrication. This numerical analysis primarily directs to investigate the performance of various inorganic lead-free valency ordered double perovskite absorber materials and to develop an inverted perovskite solar cell device structure. Simulation efforts using SCAPS-1D was carried out with various organic and inorganic charge transport materials with absorber layer materials, and their performance has been evaluated for various factors of thickness, absorber thickness, absorber defect density, and interface defect density to achieve the optimized structure.

Keywords: perovskite materials, solar cell, inverted solar cell, inorganic perovskite solar cell materials, cell efficiency

Procedia PDF Downloads 89
3918 Hsa-miR-329 Functions as a Tumor Suppressor through Targeting MET in Non-Small Cell Lung Cancer

Authors: Cheng-Cao Sun, Shu-Jun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, De-Jia Li

Abstract:

MicroRNAs (miRNAs) act as key regulators of multiple cancers. Hsa-miR-329 (miR-329) functions as a tumor suppressor in some malignancies. However, its role on lung cancer remains poorly understood. In this study, we investigated the role of miR-329 on the development of lung cancer. The results indicated that miR-329 was decreased in primary lung cancer tissues compared with matched adjacent normal lung tissues and very low levels were found in a non-small cell lung cancer (NSCLC) cell lines. Ectopic expression of miR-329 in lung cancer cell lines substantially repressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibiting cyclin D1, cyclin D2, and up-regulatiing p57(Kip2) and p21(WAF1/CIP1). In addition, miR-329 promoted NSCLC cell apoptosis, as indicated by up-regulation of key apoptosis gene cleaved caspase-3, and down-regulation of anti-apoptosis gene Bcl2. Moreover, miR-329 inhibited cellular migration and invasiveness through inhibiting matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene MET was revealed to be a putative target of miR-329, which was inversely correlated with miR-329 expression. Furthermore, down-regulation of MET by siRNA performed similar effects to over-expression of miR-329. Collectively, our results demonstrated that miR-329 played a pivotal role in lung cancer through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic MET.

Keywords: hsa-miRNA-329(miR-329), MET, non-small cell lung cancer (NSCLC), proliferation, apoptosis

Procedia PDF Downloads 411
3917 Cytotoxicity of a Short Chain Fatty Acid Histone Deactylase Inhibitor on HCT116 Human Colorectal Carcinoma Cell Line

Authors: N. A. Kazemi Sefat, M. M. Mohammadi, J. Hadjati, S. Talebi, M. Ajami, H. Daneshvar

Abstract:

Colorectal cancer metastases result in a significant number of cancer related deaths. Histone deacetylase (HDAC) inhibitors induce growth arrest and apoptosis in a variety of human cancer cells. Sodium butyrate (SB) is a short chain fatty acid, belongs to HDAC inhibitors which is released in the colonic lumen as a consequence of fiber fermentation. In this study, we are about to assess the effect of sodium butyrate on HCT116 human colorectal carcinoma cell line. The viability of cells was measured by microscopic morphologic study and MTT assay. After 48 hours, treatments more than 10 mM lead to cell injury in HCT116 by increasing cell granulation and decreasing cell adhesion (p>0.05). After 72 hours, treatments at 10 mM and more lead to significant cell injury (p<0.05). Our results may suggest that the gene expression which is contributed in cell proliferation and apoptosis has been changed under pressure of HDAC inhibition.

Keywords: colorectal cancer, sodium butyrate, cytotoxicity, MTT

Procedia PDF Downloads 365
3916 The Word of Nīhaštan (See, Pay Attention), in Bakhtiari Dialect; Root and Morphology

Authors: Behzad Moeini Sam, Sara Mohammadi Avandi, Behrang Kiani

Abstract:

Chain-linked Iranian dialects preserve Old Iranian traits, echoing Indo-Iranian and Indo-European roots. Bakhtiari, a southwestern Neo-Iranian variant, descends from Middle Western Iranian and Old Persian, inheriting their linguistic DNA. These vernaculars, especially Bakhtiari, showcase ancestral features in grammar, vocabulary, and phonemes. Dialects, more than standard tongues, reveal their true lineage. To grasp their essence, one must delve into their linguistic structure, where authenticity and heritage intertwine. This article aims to investigate the word "nīhaštan" (present stem: niyar, niyyar) in Bakhtiari. It does not appear in Middle and Old Persian texts but has remained in the Bakhtiari dialect. Based on this, the study method is to find the word's root and the grammatical morphology, which follows an ancient grammatical structure. Tracing the word's etymology reveals a compelling path. The root har emerges as the probable source, while its form echoes the aorist stem's pattern. This analysis provides a sound foundation for understanding the word's linguistic journey.

Keywords: Nihaštan, Bakhtiari, aorist stem, root

Procedia PDF Downloads 14
3915 Summer STEM Camp for Elementary Students: A Conduit to Pre-Service Teacher Training to Learn How to Include a Makerspace for an Inclusive Classroom

Authors: Jennifer Gallup, Beverly Ray, Esther Ntuli

Abstract:

Many students such as students from linguistically or culturally diverse backgrounds and those with a disability remain chronically underrepresented in higher level science and mathematics disciplines as well as many hands-on-lab-based activities due to the need for remedial reading and mathematics instruction. Makerspace labs can be a conduit for supporting inclusive learning for these students through hands-on active learning strategies that support equitable access to STEM disciplines. Makerspace is a physical space where individuals gather to create, invent, innovate, and learn while using hands-on materials such as 2D and 3D printers, software programs, electronics, and other tools and supplies. Makerspaces are emerging across many P-12 settings; however, many teachers enter the field not prepared to harness the power inherent in a makerspace, especially for those with disabilities and differing needs. This paper offers suggestions on teaching pre-service teachers and practicing teachers how to incorporate a makerspace into their professional practice through guided instruction and hands-on practice. Recommendations for interested stakeholders are included as well.

Keywords: STEM learning, technology, autism, students with disabilities, makerspace

Procedia PDF Downloads 98
3914 Effectiveness of an Intervention to Increase Physics Students' STEM Self-Efficacy: Results of a Quasi-Experimental Study

Authors: Stephanie J. Sedberry, William J. Gerace, Ian D. Beatty, Michael J. Kane

Abstract:

Increasing the number of US university students who attain degrees in STEM and enter the STEM workforce is a national priority. Demographic groups vary in their rates of participation in STEM, and the US produces just 10% of the world’s science and engineering degrees (2014 figures). To address these gaps, we have developed and tested a practical, 30-minute, single-session classroom-based intervention to improve students’ self-efficacy and academic performance in University STEM courses. Self-efficacy is a psychosocial construct that strongly correlates with academic success. Self-efficacy is a construct that is internal and relates to the social, emotional, and psychological aspects of student motivation and performance. A compelling body of research demonstrates that university students’ self-efficacy beliefs are strongly related to their selection of STEM as a major, aspirations for STEM-related careers, and persistence in science. The development of an intervention to increase students’ self-efficacy is motivated by research showing that short, social-psychological interventions in education can lead to large gains in student achievement. Our intervention addresses STEM self-efficacy via two strong, but previously separate, lines of research into attitudinal/affect variables that influence student success. The first is ‘attributional retraining,’ in which students learn to attribute their successes and failures to internal rather than external factors. The second is ‘mindset’ about fixed vs. growable intelligence, in which students learn that the brain remains plastic throughout life and that they can, with conscious effort and attention to thinking skills and strategies, become smarter. Extant interventions for both of these constructs have significantly increased academic performance in the classroom. We developed a 34-item questionnaire (Likert scale) to measure STEM Self-efficacy, Perceived Academic Control, and Growth Mindset in a University STEM context, and validated it with exploratory factor analysis, Rasch analysis, and multi-trait multi-method comparison to coded interviews. Four iterations of our 42-week research protocol were conducted across two academic years (2017-2018) at three different Universities in North Carolina, USA (UNC-G, NC A&T SU, and NCSU) with varied student demographics. We utilized a quasi-experimental prospective multiple-group time series research design with both experimental and control groups, and we are employing linear modeling to estimate the impact of the intervention on Self-Efficacy,wth-Mindset, Perceived Academic Control, and final course grades (performance measure). Preliminary results indicate statistically significant effects of treatment vs. control on Self-Efficacy, Growth-Mindset, Perceived Academic Control. Analyses are ongoing and final results pending. This intervention may have the potential to increase student success in the STEM classroom—and ownership of that success—to continue in a STEM career. Additionally, we have learned a great deal about the complex components and dynamics of self-efficacy, their link to performance, and the ways they can be impacted to improve students’ academic performance.

Keywords: academic performance, affect variables, growth mindset, intervention, perceived academic control, psycho-social variables, self-efficacy, STEM, university classrooms

Procedia PDF Downloads 130
3913 Growth and Bone Health in Children following Liver Transplantation

Authors: Faris Alkhalil, Rana Bitar, Amer Azaz, Hisham Natour, Noora Almeraikhi, Mohamad Miqdady

Abstract:

Background: Children with liver transplantation are achieving very good survival and so there is now a need to concentrate on achieving good health in these patients and preventing disease. Immunosuppressive medications have side effects that need to be monitored and if possible avoided. Glucocorticoids and calcineurin inhibitors are detrimental to bone and mineral homeostasis in addition steroids can also affect linear growth. Steroid sparing regimes in renal transplant children has shown to improve children’s height. Aim: We aim to review the growth and bone health of children post liver transplant by measuring bone mineral density (BMD) using dual energy X-ray absorptiometry (DEXA) scan and assessing if there is a clear link between poor growth and impaired bone health and use of long term steroids. Subjects and Methods: This is a single centre retrospective Cohort study, we reviewed the medical notes of children (0-16 years) who underwent a liver transplantation between November 2000 to November 2016 and currently being followed at our centre. Results: 39 patients were identified (25 males and 14 females), the median transplant age was 2 years (range 9 months - 16 years), and the median follow up was 6 years. Four patients received a combined transplant, 2 kidney and liver transplant and 2 received a liver and small bowel transplant. The indications for transplant included, Biliary Atresia (31%), Acute Liver failure (18%), Progressive Familial Intrahepatic Cholestasis (15%), transplantable metabolic disease (10%), TPN related liver disease (8%), Primary Hyperoxaluria (5%), Hepatocellular carcinoma (3%) and other causes (10%). 36 patients (95%) were on a calcineurin inhibitor (34 patients were on Tacrolimus and 2 on Cyclosporin). The other three patients were on Sirolimus. Low dose long-term steroids was used in 21% of the patients. A considerable proportion of the patients had poor growth. 15% were below the 3rd centile for weight for age and 21% were below the 3rd centile for height for age. Most of our patients with poor growth were not on long term steroids. 49% of patients had a DEXA scan post transplantation. 21% of these children had low bone mineral density, one patient had met osteoporosis criteria with a vertebral fracture. Most of our patients with impaired bone health were not on long term steroids. 20% of the patients who did not undergo a DEXA scan developed long bone fractures and 50% of them were on long term steroid use which may suggest impaired bone health in these patients. Summary and Conclusion: The incidence of impaired bone health, although studied in limited number of patients; was high. Early recognition and treatment should be instituted to avoid fractures and improve bone health. Many of the patients were below the 3rd centile for weight and height however there was no clear relationship between steroid use and impaired bone health, reduced weight and reduced linear height.

Keywords: bone, growth, pediatric, liver, transplantation

Procedia PDF Downloads 280
3912 The Healing Effect of Unrestricted Somatic Stem Cells Loaded in Collagen-Modified Nanofibrous PHBV Scaffold on Full-Thickness Skin Defects

Authors: Hadi Rad

Abstract:

Unrestricted somatic stem cells (USSCs) loaded in nanofibrous PHBV scaffold can be used for skin regeneration when grafted into full-thickness skin defects of rats. Nanofibrous PHBV scaffolds were designed using electrospinning method and then, modified with the immobilized collagen via the plasma method. Afterward, the scaffolds were evaluated using scanning electron microscopy, physical and mechanical assays. In this study; nanofibrous PHBV scaffolds loaded with and without USSCs were grafted into the skin defects. The wounds were subsequently investigated at 21 days after grafting. Results of mechanical and physical analyses showed good resilience and compliance to movement as a skin graft. In animal models; all study groups excluding the control group exhibited the most pronounced effect on wound closure, with the statistically significant improvement in wound healing being seen on post-operative Day 21. Histological and immunostaining examinations of healed wounds from all groups, especially the groups treated with stem cells, showed a thin epidermis plus recovered skin appendages in the dermal layer. Thus, the graft of collagen-coated nanofibrous PHBV scaffold loaded with USSC showed better results during the healing process of skin defects in rat model.

Keywords: collagen, nanofibrous PHBV scaffold, unrestricted somatic stem cells, wound healing.

Procedia PDF Downloads 363
3911 Sider Bee Honey: Antitumor Effect in Some Experimental Tumor Cell Lines

Authors: Aliaa M. Issa, Mahmoud N. ElRouby, Sahar A. S. Ahmad, Mahmoud M. El-Merzabani

Abstract:

Sider honey is a type of honey produced by bees feeding on the nectar of Sider tree, Ziziphus spina-christi (L) Desf . Honey is an effective agent for preventing, inhibiting and treating the growth of human and animal cancer cell lines in vitro and in vivo. The aim of the present study was to evaluate the impact of different dilutions from crude Sider honey and different duration times of exposure on the growth of six tumor cell lines (human cervical cancer cell line, HeLa; human hepatocellular carcinoma cell line, HepG-2; human larynx carcinoma cell line, Hep-2; brain tumor cell line, U251) as well as one animal cancerous cell line (Ehrlich ascites carcinoma cells line, EAC) and one normal cell line, Homo sapiens, human, (WISH) CCL-25. Different concentrations and treatment durations with Sider honey were tested on the growth of several cancer cell lines types. Histopathological changes in the tumor masses, animal survival, apoptosis and necrosis of the used cancer cell lines (using flow cytometry) were evaluated. Sider honey was administers either to the tumor mass itself by intratumoral injection or via drinking water. One-way ANOVA test was used for the analysis of (the means + standard error) of the optical density obtained from the Elisa reader and flow cytometry. The study revealed that different concentrations of Sider honey affected the growth patterns of all the studied cancer cell lines as well as their histopathological changes, and it depended on the cell line nature and the concentration of honey used. It is obvious that the relative animal survival percentage (bearing Ehrlich ascites carcinoma, EAC cells) was proportionally increased with the increase in the used honey concentrations. The study of apoptosis and necrosis using the flow cytometry technique emphasized the viability results. In conclusion, Sider honey was effective as antitumor agent, in the used concentrations.

Keywords: antitumor, honey, sider, tumor cell lines

Procedia PDF Downloads 540
3910 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 344
3909 Study of Pseudomonas as Biofertiliser in Salt-Affected Soils of the Northwestern Algeria: Solubilisation of Calcium Phosphate and Growth Promoting of Broad Bean (Vcia faba)

Authors: A. Djoudi, R. Djibaou, H. A. Reguieg Yssaad

Abstract:

Our study focuses on the study of a bacteria belonging to Pseudomonas solubilizing tricalcium phosphate. They were isolated from rhizosphere of a variety of broad bean grown in salt-affected soils (electrical conductivity between 4 and 8 mmhos/cm) of the irrigated perimeter of Mina in northwestern Algeria. Isolates which have advantageous results in the calcium phosphate solubilization index test were subjected to identification using API20 then used to re-inoculate the same soil in pots experimentation to assess the effects of inoculation on the growth of the broad bean (Vicia faba). Based on the results obtained from the in-vitro tests, two isolates P5 and P8 showed a significant effect on the solubilization of tricalcium phosphate with an index I estimated at 314% and 283% sequentially. According to the results of in-vivo tests, the inoculation of the soil with P5 and P8 were significantly and positively influencing the growth in biometric parameters of the broad bean. Inoculation with strain P5 has promoted the growth of the broad bean in stem height, stem fresh weight and stem dry weight of 108.59%, 115.28%, 104.33%, respectively. Inoculation with strain P8 has fostered the growth of the broad bean stem fresh weight of 112.47%. The effect of Pseudomonas on the development of Vicia faba is considered as an interesting process by which PGPR can increase biological production and crop protection.

Keywords: Pseudomonas, Vicia faba, promoting of plant growth, solubilization tricalcium phosphate

Procedia PDF Downloads 331
3908 Assessment of Solar Hydrogen Production in Energetic Hybrid PV-PEMFC System

Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui

Abstract:

This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.

Keywords: electrolyzer, hydrogen, hydrogen fueled cell, photovoltaic

Procedia PDF Downloads 493
3907 MRCP as a Pre-Operative Tool for Predicting Variant Biliary Anatomy in Living Related Liver Donors

Authors: Awais Ahmed, Atif Rana, Haseeb Zia, Maham Jahangir, Rashed Nazir, Faisal Dar

Abstract:

Purpose: Biliary complications represent the most common cause of morbidity in living related liver donor transplantation and detailed preoperative evaluation of biliary anatomic variants is crucial for safe patient selection and improved surgical outcomes. Purpose of this study is to determine the accuracy of preoperative MRCP in predicting biliary variations when compared to intraoperative cholangiography in living related liver donors. Materials and Methods: From 44 potential donors, 40 consecutive living related liver donors (13 females and 28 males) underwent donor hepatectomy at our centre from April 2012 to August 2013. MRCP and IOC of all patients were retrospectively reviewed separately by two radiologists and a transplant surgeon.MRCP was performed on 1.5 Tesla MR magnets using breath-hold heavily T2 weighted radial slab technique. One patient was excluded due to suboptimal MRCP. The accuracy of MRCP for variant biliary anatomy was calculated. Results: MRCP accurately predicted the biliary anatomy in 38 of 39 cases (97 %). Standard biliary anatomy was predicted by MRCP in 25 (64 %) donors (100% sensitivity). Variant biliary anatomy was noted in 14 (36 %) IOCs of which MRCP predicted precise anatomy of 13 variants (93 % sensitivity). The two most common variations were drainage of the RPSD into the LHD (50%) and the triple confluence of the RASD, RPSD and LHD (21%). Conclusion: MRCP is a sensitive imaging tool for precise pre-operative mapping of biliary variations which is critical to surgical decision making in living related liver transplantation.

Keywords: intraoperative cholangiogram, liver transplantation, living related donors, magnetic resonance cholangio-pancreaticogram (MRCP)

Procedia PDF Downloads 401
3906 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes

Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi

Abstract:

Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.

Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation

Procedia PDF Downloads 150