Search results for: application specific noc
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15075

Search results for: application specific noc

11385 Design and Implementation of Wireless Syncronized AI System for Security

Authors: Saradha Priya

Abstract:

Developing virtual human is very important to meet the challenges occurred in many applications where human find difficult or risky to perform the task. A robot is a machine that can perform a task automatically or with guidance. Robotics is generally a combination of artificial intelligence and physical machines (motors). Computational intelligence involves the programmed instructions. This project proposes a robotic vehicle that has a camera, PIR sensor and text command based movement. It is specially designed to perform surveillance and other few tasks in the most efficient way. Serial communication has been occurred between a remote Base Station, GUI Application, and PC.

Keywords: Zigbee, camera, pirsensor, wireless transmission, DC motor

Procedia PDF Downloads 354
11384 Accurate HLA Typing at High-Digit Resolution from NGS Data

Authors: Yazhi Huang, Jing Yang, Dingge Ying, Yan Zhang, Vorasuk Shotelersuk, Nattiya Hirankarn, Pak Chung Sham, Yu Lung Lau, Wanling Yang

Abstract:

Human leukocyte antigen (HLA) typing from next generation sequencing (NGS) data has the potential for applications in clinical laboratories and population genetic studies. Here we introduce a novel technique for HLA typing from NGS data based on read-mapping using a comprehensive reference panel containing all known HLA alleles and de novo assembly of the gene-specific short reads. An accurate HLA typing at high-digit resolution was achieved when it was tested on publicly available NGS data, outperforming other newly-developed tools such as HLAminer and PHLAT.

Keywords: human leukocyte antigens, next generation sequencing, whole exome sequencing, HLA typing

Procedia PDF Downloads 670
11383 The Impact of Treatment of Latent Tuberculosis on the Incidence: The Case of Algeria

Authors: Schehrazad Selmane

Abstract:

We present a deterministic model which describes the dynamics of tuberculosis in Algerian population where the vaccination program with BCG is in place since 1969 and where the WHO recommendations regarding the DOTS (directly observed treatment, short course) strategy are in application. The impact of an intervention program, targeting recently infected people among all close contacts of active cases and their treatment to prevent endogenous reactivation, on the incidence of tuberculosis, is investigated. We showed that a widespread treatment of latently infected individuals for some years is recommended to shift from higher to lower equilibrium state and thereafter relaxation is recommended.

Keywords: deterministic model, reproduction number, stability, tuberculosis

Procedia PDF Downloads 332
11382 Yield and Physiological Evaluation of Coffee (Coffea arabica L.) in Response to Biochar Applications

Authors: Alefsi D. Sanchez-Reinoso, Leonardo Lombardini, Hermann Restrepo

Abstract:

Colombian coffee is recognized worldwide for its mild flavor and aroma. Its cultivation generates a large amount of waste, such as fresh pulp, which leads to environmental, health, and economic problems. Obtaining biochar (BC) by pyrolysis of coffee pulp and its incorporation to the soil can be a complement to the crop mineral nutrition. The objective was to evaluate the effect of the application of BC obtained from coffee pulp on the physiology and agronomic performance of the Castillo variety coffee crop (Coffea arabica L.). The research was developed in field condition experiment, using a three-year-old commercial coffee crop, carried out in Tolima. Four doses of BC (0, 4, 8 and 16 t ha-1) and four levels of chemical fertilization (CF) (0%, 33%, 66% and 100% of the nutritional requirements) were evaluated. Three groups of variables were recorded during the experiment: i) physiological parameters such as Gas exchange, the maximum quantum yield of PSII (Fv/Fm), biomass, and water status were measured; ii) physical and chemical characteristics of the soil in a commercial coffee crop, and iii) physiochemical and sensorial parameters of roasted beans and coffee beverages. The results indicated that a positive effect was found in plants with 8 t ha-1 BC and fertilization levels of 66 and 100%. Also, a positive effect was observed in coffee trees treated with 8 t ha-1 BC and 100%. In addition, the application of 16 t ha-1 BC increased the soil pHand microbial respiration; reduced the apparent density and state of aggregation of the soil compared to 0 t ha-1 BC. Applications of 8 and 16 t ha-1 BC and 66%-100% chemical fertilization registered greater sensitivity to the aromatic compounds of roasted coffee beans in the electronic nose. Amendments of BC between 8 and 16 t ha-1 and CF between 66% and 100% increased the content of total soluble solids (TSS), reduced the pH, and increased the titratable acidity in beverages of roasted coffee beans. In conclusion, 8 t ha-1 BC of the coffee pulp can be an alternative to supplement the nutrition of coffee seedlings and trees. Applications between 8 and 16 t ha-1 BC support coffee soil management strategies and help the use of solid waste. BC as a complement to chemical fertilization showed a positive effect on the aromatic profile obtained for roasted coffee beans and cup quality attributes.

Keywords: crop yield, cup quality, mineral nutrition, pyrolysis, soil amendment

Procedia PDF Downloads 117
11381 The Study of ZigBee Protocol Application in Wireless Networks

Authors: Ardavan Zamanpour, Somaieh Yassari

Abstract:

ZigBee protocol network was developed in industries and MIT laboratory in 1997. ZigBee is a wireless networking technology by alliance ZigBee which is designed to low board and low data rate applications. It is a Protocol which connects between electrical devises with very low energy and cost. The first version of IEEE 802.15.4 which was formed ZigBee was based on 2.4GHZ MHZ 912MHZ 868 frequency band. The name of system is often reminded random directions that bees (BEES) traversing during pollination of products. Such as alloy of the ways in which information packets are traversed within the mesh network. This paper aims to study the performance and effectiveness of this protocol in wireless networks.

Keywords: ZigBee, protocol, wireless, networks

Procedia PDF Downloads 372
11380 Resin Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, resin, textiles, wrinkle

Procedia PDF Downloads 261
11379 Cryptocurrency-Based Mobile Payments with Near-Field Communication-Enabled Devices

Authors: Marko Niinimaki

Abstract:

Cryptocurrencies are getting increasingly popular, but very few of them can be conveniently used in daily mobile phone purchases. To solve this problem, we demonstrate how to build a functional prototype of a mobile cryptocurrency-based e-commerce application the communicates with Near-Field Communication (NFC) tags. Using the system, users are able to purchase physical items with an NFC tag that contains an e-commerce URL. The payment is done simply by touching the tag with a mobile device and accepting the payment. Our method is constructive: we describe the design and technologies used in the implementation and evaluate the security and performance of the solution. Our main finding is that the analysis and measurements show that our solution is feasible for e-commerce.

Keywords: cryptocurrency, e-commerce, NFC, mobile devices

Procedia PDF Downloads 191
11378 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip

Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari

Abstract:

The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.

Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation

Procedia PDF Downloads 145
11377 Developing a Smart Card Using Internet of Things-Uni-C

Authors: Enji E. Alzamzami, Kholod A. Almwallad, Rahaf J. Alwafi, Roaa H. Alansari, Shatha S. Alshehri, Aeshah A. Alsiyami

Abstract:

This paper demonstrates a system that helps solve the congestion problem at the entrance gates and limits the spread of viruses among people in crowded environments, such as COVID-19, using the IoT (Internet of Things). This system may assist in organizing the campus entry process efficiently by developing a smart card application supported by NFC (Near Field Communication) technology through which users' information could be sent to a reader to share it with the server and allow the server to perform its tasks and send a confirmation response for the request either by acceptance or rejection.

Keywords: COVID-19, IoT, NFC technology, smart card

Procedia PDF Downloads 141
11376 A Rural Journey of Integrating Interprofessional Education to Foster Trust

Authors: Julia Wimmers Klick

Abstract:

Interprofessional Education (IPE) is widely recognized as a valuable approach in healthcare education, despite the challenges it presents. This study explores IP surface anatomy lab sessions, with a focus on fostering trust and collaboration among healthcare students. The research is conducted within the context of rural healthcare settings in British Columbia (BC), where a medical school and a physical therapy (PT) program operate under the Faculty of Medicine at the University of British Columbia (UBC). While IPE sessions addressing soft skills have been implemented, the integration of hard skills, such as Anatomy, remains limited. To address this gap, a pilot feasibility study was conducted with a positive outcome, a follow-up study involved these IPE sessions aimed at exploring the influence of bonding and trust between medical and PT students. Data were collected through focus groups comprising participating students and faculty members, and a structured SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis was conducted. The IPE sessions, 3 in total, consisted of a 2.5-hour lab on surface anatomy, where PT students took on the teaching role, and medical students were newly exposed to surface anatomy. The focus of the study was on the relationship-building process and trust development between the two student groups, rather than assessing the acquisition of surface anatomy skills. Results indicated that the surface anatomy lab served as a suitable tool for the application and learning of soft skills. Faculty members observed positive outcomes, including productive interaction between students, reversed hierarchy with PT students teaching medical students, practicing active listening skills, and using a mutual language of anatomy. Notably, there was no grade assessment or external pressure to perform. The students also reported an overall positive experience; however, the specific impact on the development of soft skill competencies could not be definitively determined. Participants expressed a sense of feeling respected, welcomed, and included, all of which contributed to feeling safe. Within the small group environment, students experienced becoming a part of a community of healthcare providers that bonded over a shared interest in health professions education. They enjoyed sharing diverse experiences related to learning across their varied contexts, without fear of judgment and reprisal that were often intimidating in single professional contexts. During a joint Christmas party for both cohorts, faculty members observed students mingling, laughing, and forming bonds. This emphasized the importance of early bonding and trust development among healthcare colleagues, particularly in rural settings. In conclusion, the findings emphasize the potential of IPE sessions to enhance trust and collaboration among healthcare students, with implications for their future professional lives in rural settings. Early bonding and trust development are crucial in rural settings, where healthcare professionals often rely on each other. Future research should continue to explore the impact of content-concentrated IPE on the development of soft skill competencies.

Keywords: interprofessional education, rural healthcare settings, trust, surface anatomy

Procedia PDF Downloads 72
11375 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.

Keywords: power spectral density, 3D EEG model, brain balancing, kNN

Procedia PDF Downloads 490
11374 Optimal Energy Consumption with Semiconductor Lamps

Authors: Pejman Hosseiniun, Rose Shayeghi, Alireza Farzaneh, Abolghasem Ghasempour

Abstract:

Using LED lamps as lighting resources with new technology in designing lighting systems has been studied in this article. In this respect a history of LED emergence, its different manufacturing methods and technologies were revised, then their structure, light production line, its application and benefits in lighting industry has been evaluated. Finally, there is a comparison between these lamps and ordinary lamps to assess light parameters as well as energy consumption using DIALux software. Considering the results of analogies LED lamps have lower consumption and more lighting yield, therefore they are more economically feasible. Color variety, longer usage lap (circa 10 years) and compatibility with DC voltages are other LED lamps perquisites.

Keywords: LED, lighting efficiency, lighting intensity, luminance

Procedia PDF Downloads 599
11373 Incorporation of Safety into Design by Safety Cube

Authors: Mohammad Rajabalinejad

Abstract:

Safety is often seen as a requirement or a performance indicator through the design process, and this does not always result in optimally safe products or systems. This paper suggests integrating the best safety practices with the design process to enrich the exploration experience for designers and add extra values for customers. For this purpose, the commonly practiced safety standards and design methods have been reviewed and their common blocks have been merged forming Safety Cube. Safety Cube combines common blocks for design, hazard identification, risk assessment and risk reduction through an integral approach. An example application presents the use of Safety Cube for design of machinery.

Keywords: safety, safety cube, product, system, machinery, design

Procedia PDF Downloads 252
11372 Understanding the Role of Concussions as a Risk Factor for Multiple Sclerosis

Authors: Alvin Han, Reema Shafi, Alishba Afaq, Jennifer Gommerman, Valeria Ramaglia, Shannon E. Dunn

Abstract:

Adolescents engaged in contact-sports can suffer from recurrent brain concussions with no loss of consciousness and no need for hospitalization, yet they face the possibility of long-term neurocognitive problems. Recent studies suggest that head concussive injuries during adolescence can also predispose individuals to multiple sclerosis (MS). The underlying mechanisms of how brain concussions predispose to MS is not understood. Here, we hypothesize that: (1) recurrent brain concussions prime microglial cells, the tissue resident myeloid cells of the brain, setting them up for exacerbated responses when exposed to additional challenges later in life; and (2) brain concussions lead to the sensitization of myelin-specific T cells in the peripheral lymphoid organs. Towards addressing these hypotheses, we implemented a mouse model of closed head injury that uses a weight-drop device. First, we calibrated the model in male 12 week-old mice and established that a weight drop from a 3 cm height induced mild neurological symptoms (mean neurological score of 1.6+0.4 at 1 hour post-injury) from which the mice fully recovered by 72 hours post-trauma. Then, we performed immunohistochemistry on the brain of concussed mice at 72 hours post-trauma. Despite mice having recovered from all neurological symptoms, immunostaining for leukocytes (CD45) and IBA-1 revealed no peripheral immune infiltration, but an increase in the intensity of IBA1+ staining compared to uninjured controls, suggesting that resident microglia had acquired a more active phenotype. This microglia activation was most apparent in the white matter tracts in the brain and in the olfactory bulb. Immunostaining for the microglia-specific homeostatic marker TMEM119, showed a reduction in TMEM119+ area in the brain of concussed mice compared to uninjured controls, confirming a loss of this homeostatic signal by microglia after injury. Future studies will test whether single or repetitive concussive injury can worsen or accelerate autoimmunity in male and female mice. Understanding these mechanisms will guide the development of timed and targeted therapies to prevent MS from getting started in people at risk.

Keywords: concussion, microglia, microglial priming, multiple sclerosis

Procedia PDF Downloads 108
11371 Evaluating Greenhouse Gas Emissions in Corn Cropping System: A Life Cycle Perspective

Authors: Zunaira Asif, E. Robichaud

Abstract:

The agricultural sector in Canada is a major source of greenhouse gas (GHG) emissions, playing a substantial role in the nation's overall emissions profile. Mitigating these emissions and promoting sustainable agricultural practices requires a comprehensive understanding of the life cycle of agricultural products. This research employs a matrix inverse method to develop a GIS-based life cycle assessment (LCA) model for a corn cropping system. The model integrates spatial data, such as soil properties, climate conditions, and land use/land cover maps, to capture spatial variations in GHG emissions and identify areas for targeted interventions with maximum impact. Field-level data, including crop rotation, tillage practices, fertilizer application rates, pesticide usage, irrigation practices, crop yields, and machinery operations (e.g., fuel consumption, maintenance, and operational hours), are incorporated to provide a detailed analysis. The model evaluates both direct and indirect GHG emissions, including those associated with fertilizer production, machinery usage, and soil carbon dynamics, delivering a comprehensive assessment of the environmental impacts of corn production. The data is validated by comparing it with monitoring data gathered through in-situ static chambers and by testing the collected samples in the laboratory using gas chromatography. Preliminary findings highlight nitrous oxide (N2O) as a major contributor to GHG emissions, largely due to nitrogen-based fertilizers and energy consumption from agricultural operations. Soil type also significantly influences GHG emission fluxes. Mitigation strategies, such as optimizing fertilizer application, adopting low-emission technologies, and implementing 4R nutrient stewardship principles, have shown promise in reducing emissions. By promoting these practices, this research offers actionable insights for farmers, policymakers, and industry stakeholders to support sustainable corn production.

Keywords: agriculture, GIS, greenhouse gases, life cycle tool

Procedia PDF Downloads 10
11370 Predominance of Teaching Models Used by Math Teachers in Secondary Education

Authors: Verónica Diaz Quezada

Abstract:

This research examines the teaching models used by secondary math teachers when teaching logarithmic, quadratic and exponential functions. For this, descriptive case studies have been carried out on 5 secondary teachers. These teachers have been chosen from 3 scientific-humanistic and technical schools, in Chile. Data have been obtained through non-participant class observation and the application of a questionnaire and a rubric to teachers. According to the results, the didactic model that prevails is the one that starts with an interactive strategy, moves to a more content-based structure, and ends with a reinforcement stage. Nonetheless, there is always influence from teachers, their methods, and the group of students.

Keywords: teaching models, math teachers, functions, secondary education

Procedia PDF Downloads 192
11369 Bayesian Reliability of Weibull Regression with Type-I Censored Data

Authors: Al Omari Moahmmed Ahmed

Abstract:

In the Bayesian, we developed an approach by using non-informative prior with covariate and obtained by using Gauss quadrature method to estimate the parameters of the covariate and reliability function of the Weibull regression distribution with Type-I censored data. The maximum likelihood seen that the estimators obtained are not available in closed forms, although they can be solved it by using Newton-Raphson methods. The comparison criteria are the MSE and the performance of these estimates are assessed using simulation considering various sample size, several specific values of shape parameter. The results show that Bayesian with non-informative prior is better than Maximum Likelihood Estimator.

Keywords: non-informative prior, Bayesian method, type-I censoring, Gauss quardature

Procedia PDF Downloads 506
11368 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 134
11367 The Effect of Ionic Liquid Anion Type on the Properties of TiO2 Particles

Authors: Marta Paszkiewicz, Justyna Łuczak, Martyna Marchelek, Adriana Zaleska-Medynska

Abstract:

In recent years, photocatalytical processes have been intensively investigated for destruction of pollutants, hydrogen evolution, disinfection of water, air and surfaces, for the construction of self-cleaning materials (tiles, glass, fibres, etc.). Titanium dioxide (TiO2) is the most popular material used in heterogeneous photocatalysis due to its excellent properties, such as high stability, chemical inertness, non-toxicity and low cost. It is well known that morphology and microstructure of TiO2 significantly influence the photocatalytic activity. This characteristics as well as other physical and structural properties of photocatalysts, i.e., specific surface area or density of crystalline defects, could be controlled by preparation route. In this regard, TiO2 particles can be obtained by sol-gel, hydrothermal, sonochemical methods, chemical vapour deposition and alternatively, by ionothermal synthesis using ionic liquids (ILs). In the TiO2 particles synthesis ILs may play a role of a solvent, soft template, reagent, agent promoting reduction of the precursor or particles stabilizer during synthesis of inorganic materials. In this work, the effect of the ILs anion type on morphology and photoactivity of TiO2 is presented. The preparation of TiO2 microparticles with spherical structure was successfully achieved by solvothermal method, using tetra-tert-butyl orthotitatane (TBOT) as the precursor. The reaction process was assisted by an ionic liquids 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium haxafluorophosphate [BMIM][PF6]. Various molar ratios of all ILs to TBOT (IL:TBOT) were chosen. For comparison, reference TiO2 was prepared using the same method without IL addition. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brenauer-Emmett-Teller surface area (BET), NCHS analysis, and FTIR spectroscopy were used to characterize the surface properties of the samples. The photocatalytic activity was investigated by means of phenol photodegradation in the aqueous phase as a model pollutant, as well as formation of hydroxyl radicals based on detection of fluorescent product of coumarine hydroxylation. The analysis results showed that the TiO2 microspheres had spherical structure with the diameters ranging from 1 to 6 µm. The TEM micrographs gave a bright observation of the samples in which the particles were comprised of inter-aggregated crystals. It could be also observed that the IL-assisted TiO2 microspheres are not hollow, which provides additional information about possible formation mechanism. Application of the ILs results in rise of the photocatalytic activity as well as BET surface area of TiO2 as compared to pure TiO2. The results of the formation of 7-hydroxycoumarin indicated that the increased amount of ·OH produced at the surface of excited TiO2 for samples TiO2_ILs well correlated with more efficient degradation of phenol. NCHS analysis showed that ionic liquids remained on the TiO2 surface confirming structure directing role of that compounds.

Keywords: heterogeneous photocatalysis, IL-assisted synthesis, ionic liquids, TiO2

Procedia PDF Downloads 270
11366 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia

Abstract:

Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.

Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior

Procedia PDF Downloads 217
11365 Methodologies for Management of Sustainable Tourism: A Case Study in Jalapão/to/Brazil

Authors: Mary L. G. S. Senna, Veruska C. Dutra, Afonso R. Aquino

Abstract:

The study is in application and analysis of two tourism management tools that can contribute to making public managers decision: the Barometer of Tourism Sustainability (BTS) and the Ecological Footprint (EF). The results have shown that BTS allows you to have an integrated view of the tourism system, awakening to the need for planning of appropriate actions so that it can achieve the positive scale proposed (potentially sustainable). Already the methodology of ecological tourism footprint is an important tool to measure potential impacts generated by tourism to tourist reality.

Keywords: barometer of tourism sustainability, ecological footprint of tourism, Jalapão/Brazil, sustainable tourism

Procedia PDF Downloads 509
11364 Thulium Laser Design and Experimental Verification for NIR and MIR Nonlinear Applications in Specialty Optical Fibers

Authors: Matej Komanec, Tomas Nemecek, Dmytro Suslov, Petr Chvojka, Stanislav Zvanovec

Abstract:

Nonlinear phenomena in the near- and mid-infrared region are attracting scientific attention mainly due to the supercontinuum generation possibilities and subsequent utilizations for ultra-wideband applications like e.g. absorption spectroscopy or optical coherence tomography. Thulium-based fiber lasers provide access to high-power ultrashort pump pulses in the vicinity of 2000 nm, which can be easily exploited for various nonlinear applications. The paper presents a simulation and experimental study of a pulsed thulium laser based for near-infrared (NIR) and mid-infrared (MIR) nonlinear applications in specialty optical fibers. In the first part of the paper the thulium laser is discussed. The thulium laser is based on a gain-switched seed-laser and a series of amplification stages for obtaining output peak powers in the order of kilowatts for pulses shorter than 200 ps in full-width at half-maximum. The pulsed thulium laser is first studied in a simulation software, focusing on seed-laser properties. Afterward, a pre-amplification thulium-based stage is discussed, with the focus of low-noise signal amplification, high signal gain and eliminating pulse distortions during pulse propagation in the gain medium. Following the pre-amplification stage a second gain stage is evaluated with incorporating a thulium-fiber of shorter length with increased rare-earth dopant ratio. Last a power-booster stage is analyzed, where the peak power of kilowatts should be achieved. Examples of analytical study are further validated by the experimental campaign. The simulation model is further corrected based on real components – parameters such as real insertion-losses, cross-talks, polarization dependencies, etc. are included. The second part of the paper evaluates the utilization of nonlinear phenomena, their specific features at the vicinity of 2000 nm, compared to e.g. 1550 nm, and presents supercontinuum modelling, based on the thulium laser pulsed output. Supercontinuum generation simulation is performed and provides reasonably accurate results, once fiber dispersion profile is precisely defined and fiber nonlinearity is known, furthermore input pulse shape and peak power must be known, which is assured thanks to the experimental measurement of the studied thulium pulsed laser. The supercontinuum simulation model is put in relation to designed and characterized specialty optical fibers, which are discussed in the third part of the paper. The focus is placed on silica and mainly on non-silica fibers (fluoride, chalcogenide, lead-silicate) in their conventional, microstructured or tapered variants. Parameters such as dispersion profile and nonlinearity of exploited fibers were characterized either with an accurate model, developed in COMSOL software or by direct experimental measurement to achieve even higher precision. The paper then combines all three studied topics and presents a possible application of such a thulium pulsed laser system working with specialty optical fibers.

Keywords: nonlinear phenomena, specialty optical fibers, supercontinuum generation, thulium laser

Procedia PDF Downloads 324
11363 The Psychological Effects of Nature on Subjective Well-Being: An Experimental Approach

Authors: Tatjana Kochetkova

Abstract:

This paper explores the pivotal role of environmental education, specifically outdoor education, in facilitating a psychological connection to nature among young adults. This research aims to contribute to building an empirical and conceptual basis of ecopsychology by providing a picture of psyche-nature interaction. It presents the results of the four-day connection-to-nature workshop. It intends to find out the effects of the awareness of nature on subjective well-being and perception of the meaning of life. This led to finding a battery-recharging effect of nature and the influence of nature at four levels of awareness: external physical perception, internal (bodily) sensation, emotions, and existential meaning. The research on the psychological bond of humans with the natural environment, the subject of ecopsychology, is still in its infancy. However, despite several courageous and fruitful attempts, there are still no direct answers to the fundamental questions about the way in which the natural environment influences humans and the specific role of nature in the human psyche. The urge to address this question was the primary reason for the current experiment. The methodology of this study was taken from the study of Patterson, and from White and Hendee. The methodology included a series of assignments on the perception of nature (the exercises are described in the attachment). Experiences were noted in a personal diary, which we used later for analysis. There are many trustworthy claims that contact with nature has positive effects on human subjective well-being and that it is of essential psychological and spiritual value. But, there is a need for more support and theoretical explanation for this phenomenon. As a contribution to filling these gaps, this qualitative study was conducted. The aim of this study is to explore the psychological effects of short-term awareness of wilderness on one’s subjective well-being and on one’s sense of the meaning of life. This specific study is based on the more general hypothesis that there are positive relationships between the experience of wilderness and the development of the self, feelings of community, and spiritual development. It restricted the study of the psychological effects of short term stay in nature to two variables (subjective well-being and the sense of meaning of life). The study aimed at (i) testing the hypothesis that there are positive effects of the awareness of wilderness on the subjective sense of well-being and meaning in life, (ii) understanding the nature of the psychological need for wilderness. Although there is a substantial amount of data on the psychological benefits of nature, we still lack a theory that explains the findings. The present research aims to contribute to such a theory. This is an experiment aimed specifically at the effects of nature on the sense of well-being and meaning in life.

Keywords: environmental education, psychological connection to nature, subjective well-being, symbolic meaning of nature, emotional reaction to nature, meaning of life

Procedia PDF Downloads 77
11362 The Role of Cryptocurrency in Cross-Border Payments: A Case Study of Bangladesh

Authors: Mohammad Abdul Matin

Abstract:

This research paper aims to investigate the use of cryptocurrency in facilitating cross-border payments, with a specific focus on the case of Bangladesh. With thousands of Bangladeshi living abroad, the demand for efficient and cost-effective remittance channels is high. This paper will examine the current challenges in cross-border payments for Bangladeshi expatriates and explore the potential benefits and barriers to the adoption of cryptocurrency as a solution. Through a combination of literature review, qualitative interviews, and data analysis, the research will provide valuable insights into the opportunities and risks associated with using cryptocurrency for cross-border payments in Bangladesh.

Keywords: cryptocurrency, cross-border payments, Bangladesh, remittance, expatriates

Procedia PDF Downloads 40
11361 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality

Procedia PDF Downloads 290
11360 A New Distribution and Application on the Lifetime Data

Authors: Gamze Ozel, Selen Cakmakyapan

Abstract:

We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.

Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood

Procedia PDF Downloads 504
11359 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data

Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton

Abstract:

The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.

Keywords: analytics, digitization, industry 4.0, manufacturing

Procedia PDF Downloads 116
11358 Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application

Authors: Juree Hong, Sanggeun Lee, Jungmok Seo, Taeyoon Lee

Abstract:

We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2.

Keywords: metal nanoparticle, galvanic displacement reaction, graphene, hydrogen sensor

Procedia PDF Downloads 430
11357 Nurse-Led Codes: Practical Application in the Emergency Department during a Global Pandemic

Authors: F. DelGaudio, H. Gill

Abstract:

Resuscitation during cardiopulmonary (CPA) arrest is dynamic, high stress, high acuity situation, which can easily lead to communication breakdown, and errors. The care of these high acuity patients has also been shown to increase physiologic stress and task saturation of providers, which can negatively impact the care being provided. These difficulties are further complicated during a global pandemic and pose a significant safety risk to bedside providers. Nurse-led codes are a relatively new concept that may be a potential solution for alleviating some of these difficulties. An experienced nurse who has completed advanced cardiac life support (ACLS), and additional training, assumed the responsibility of directing the mechanics of the appropriate ACLS algorithm. This was done in conjunction with a physician who also acted as a physician leader. The additional nurse-led code training included a multi-disciplinary in situ simulation of a CPA on a suspected COVID-19 patient. During the CPA, the nurse leader’s responsibilities include: ensuring adequate compression depth and rate, minimizing interruptions in chest compressions, the timing of rhythm/pulse checks, and appropriate medication administration. In addition, the nurse leader also functions as a last line safety check for appropriate personal protective equipment and limiting exposure of staff. The use of nurse-led codes for CPA has shown to decrease the cognitive overload and task saturation for the physician, as well as limiting the number of staff being exposed to a potentially infectious patient. The real-world application has allowed physicians to perform and oversee high-risk procedures such as intubation, line placement, and point of care ultrasound, without sacrificing the integrity of the resuscitation. Nurse-led codes have also given the physician the bandwidth to review pertinent medical history, advanced directives, determine reversible causes, and have the end of life conversations with family. While there is a paucity of research on the effectiveness of nurse-led codes, there are many potentially significant benefits. In addition to its value during a pandemic, it may also be beneficial during complex circumstances such as extracorporeal cardiopulmonary resuscitation.

Keywords: cardiopulmonary arrest, COVID-19, nurse-led code, task saturation

Procedia PDF Downloads 161
11356 Application of Infrared Thermal Imaging, Eye Tracking and Behavioral Analysis for Deception Detection

Authors: Petra Hypšová, Martin Seitl

Abstract:

One of the challenges of forensic psychology is to detect deception during a face-to-face interview. In addition to the classical approaches of monitoring the utterance and its components, detection is also sought by observing behavioral and physiological changes that occur as a result of the increased emotional and cognitive load caused by the production of distorted information. Typical are changes in facial temperature, eye movements and their fixation, pupil dilation, emotional micro-expression, heart rate and its variability. Expanding technological capabilities have opened the space to detect these psychophysiological changes and behavioral manifestations through non-contact technologies that do not interfere with face-to-face interaction. Non-contact deception detection methodology is still in development, and there is a lack of studies that combine multiple non-contact technologies to investigate their accuracy, as well as studies that show how different types of lies produced by different interviewers affect physiological and behavioral changes. The main objective of this study is to apply a specific non-contact technology for deception detection. The next objective is to investigate scenarios in which non-contact deception detection is possible. A series of psychophysiological experiments using infrared thermal imaging, eye tracking and behavioral analysis with FaceReader 9.0 software was used to achieve our goals. In the laboratory experiment, 16 adults (12 women, 4 men) between 18 and 35 years of age (SD = 4.42) were instructed to produce alternating prepared and spontaneous truths and lies. The baseline of each proband was also measured, and its results were compared to the experimental conditions. Because the personality of the examiner (particularly gender and facial appearance) to whom the subject is lying can influence physiological and behavioral changes, the experiment included four different interviewers. The interviewer was represented by a photograph of a face that met the required parameters in terms of gender and facial appearance (i.e., interviewer likability/antipathy) to follow standardized procedures. The subject provided all information to the simulated interviewer. During follow-up analyzes, facial temperature (main ROIs: forehead, cheeks, the tip of the nose, chin, and corners of the eyes), heart rate, emotional expression, intensity and fixation of eye movements and pupil dilation were observed. The results showed that the variables studied varied with respect to the production of prepared truths and lies versus the production of spontaneous truths and lies, as well as the variability of the simulated interviewer. The results also supported the assumption of variability in physiological and behavioural values during the subject's resting state, the so-called baseline, and the production of prepared and spontaneous truths and lies. A series of psychophysiological experiments provided evidence of variability in the areas of interest in the production of truths and lies to different interviewers. The combination of technologies used also led to a comprehensive assessment of the physiological and behavioral changes associated with false and true statements. The study presented here opens the space for further research in the field of lie detection with non-contact technologies.

Keywords: emotional expression decoding, eye-tracking, functional infrared thermal imaging, non-contact deception detection, psychophysiological experiment

Procedia PDF Downloads 102