Search results for: mode superposition method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20526

Search results for: mode superposition method

16866 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.

Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr

Procedia PDF Downloads 244
16865 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 436
16864 Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles

Authors: Kirit Siddhapara, Dimple Shah

Abstract:

In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.

Keywords: growth from solution, sol-gel method, nanomaterials, oxides, magnetic materials, titanium compounds

Procedia PDF Downloads 435
16863 The Influence of Wasta on Organizational Practices in Kuwait

Authors: Abrar Al-Enzi

Abstract:

Despite being frequently used everyday in the Arab World, Wasta, which is seen as a type of social capital, has received little attention from previous scholars, even in the Middle East. In simple words, Wasta basically means granting deserved or undeserved privileges to others through personal contacts. This paper suggests that Wasta is an important determinant of how some employees get recruited and turn to Wasta for privileges and favors in organizations. It is said, that Wasta accelerates career advancement and other work practices for employees, whether they deserve it or even are suitable for it or not. The overall goal of this paper is to see how Wasta influences human resource management practices by viewing the history of Wasta, the importance of using it, and how it affects employees as well as organizations in terms of recruitment and work practices. Accordingly, the question that will be addressed is: Does Wasta influence human resource management, knowledge sharing and innovation in Kuwait, which in turn affects employees’ commitment within organizations? Therefore, a mixed method sequential exploratory research design will be used to explore the research topic through initial exploratory interviews, paper-based and online surveys (Quantitative method) and semi-structured interviews (Qualitative method). The reason behind such a choice is because both qualitative and quantitative methods complement each other when combined by providing a clearer picture of the topic.

Keywords: human resource management practices, Kuwait, social capital, Wasta

Procedia PDF Downloads 211
16862 Modification of ZnMgO NPs for Improving Device Performance of Quantum Dot Light-emitting Diodes

Authors: Juyon Lee, Myoungjin Park, Jonghoon Kim, Jaekook Ha, Chanhee Lee

Abstract:

We demonstrated a new positive aging methods of QLEDs devices that can apply in large size inkjet printing display. Conventional positive aging method using photo-curable resin remains unclear mechanism of the phenomenon and also there are many limitations to apply large size panels in commercial process. Through the photo acid generator (PAG) in ETL Ink, we achieved 90% of the efficiency of the conventional method and up to 1000h life time stability (T80). This techniques could be applied to next generation of QLEDs panels and also can prove the working mechanism of positive aging in QLED related to modification of ZnMgO NPs.

Keywords: quantum dots, QLED, printing, positive aging, ZnMgO NPs

Procedia PDF Downloads 142
16861 Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter

Authors: Zhu Xinxin, Wang Hui, Yang Kai

Abstract:

Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field.

Keywords: correction method, heat flux calculation, heat insulation structure, heat transfer model, slug calorimeter

Procedia PDF Downloads 120
16860 Field Evaluation of Pile Behavior in Sandy Soil Underlain by Clay

Authors: R. Bakr, M. Elmeligy, A. Ibrahim

Abstract:

When the building loads are relatively small, challenges are often facing the foundation design especially when inappropriate soil conditions exist. These may be represented in the existence of soft soil in the upper layers of soil while sandy soil or firm cohesive soil exist in the deeper layers. In such cases, the design becomes infeasible if the piles are extended to the deeper layers, especially when there are sandy layers existing at shallower depths underlain by stiff clayey soil. In this research, models of piles terminated in sand underlain by clay soils are numerically simulated by different modelling theories. Finite element software, Plaxis 3-D Foundation was used to evaluate the pile behavior under different loading scenarios. The standard static load test according to ASTM D-1143 was simulated and compared with the real-life loading scenario. The results showed that the pile behavior obtained from the current static load test do not realistically represent that obtained from real-life loading. Attempts were carried out to capture the proper numerical loading scenario that simulates the pile behavior in real-life loading including the long-term effect. A modified method based on this research findings is proposed for the static pile loading tests. Field loading tests were carried out to validate the new method. Results obtained from both numerical and field tests by using the modified method prove that this method is more accurate in predicting the pile behavior in sand soil underlain by clay more than the current standard static load.

Keywords: numerical simulation, static load test, pile behavior, sand underlain with clay, creep

Procedia PDF Downloads 325
16859 Participants’ Perception and a Student Protest of Peking University in 2014

Authors: Ruanzhenghao Shi

Abstract:

Student movements have persisted in mainland China, especially in elite universities since the Tiananmen Prodemocracy Movement, contrary to the lack of studies on them. However, the participants' repertoire, mobilization and mode of interaction with authorities are vastly different from their predecessors in the 1980s as well as their western counterparts. In most of the cases, agents, cognizant of the high cost of action and their vulnerability to the authorities, consciously curtailed certain repertoire and themes of resistance. Thus these movements, without appreciable organized force, were self-interested, fragmentally mobilized, lowly integrated and limited within the campus. This study documents the 2014 protest against Yanching Academy program at Peking University, a top-tier Chinese university that played the leading role in the 1989 protest. The 2014 case is different from abovementioned trend of submissive resistance in the last twenty years, insofar as it is a value-oriented and emotion-driven collective action with the resurgence of some repertoire. The participants perceived the university's contemporary ineffectiveness and clumsiness in control and administration, higher Party authorities' indifference to less-political themes, and an increasing number of potential advocates, including students, intellectuals and social media. It shows that resisters' perception of their relative strength to their opponents - in this case, the university and its system for controlling students - under specific circumstances, not merely political opportunities or institutional changes, stimulates the participants and thus contributes to the mobilization and organization of a collective action, even under severe social control.

Keywords: collective action, China, university students, resistance

Procedia PDF Downloads 154
16858 A Measuring Industrial Resiliency by Using Data Envelopment Analysis Approach

Authors: Ida Bagus Made Putra Jandhana, Teuku Yuri M. Zagloel, Rahmat Nurchayo

Abstract:

Having several crises that affect industrial sector performance in the past decades, decision makers should utilize measurement application that enables them to measure industrial resiliency more precisely. It provides not only a framework for the development of resilience measurement application, but also several theories for the concept building blocks, such as performance measurement management, and resilience engineering in real world environment. This research is a continuation of previously published paper on performance measurement in the industrial sector. Finally, this paper contributes an alternative performance measurement method in industrial sector based on resilience concept. Moreover, this research demonstrates how applicable the concept of resilience engineering is and its method of measurement.

Keywords: industrial, measurement, resilience, sector

Procedia PDF Downloads 281
16857 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index

Authors: Funda Kul, İsmail Gür

Abstract:

Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.

Keywords: mortality, forecasting, lee-carter model, normal inverse gaussian distribution

Procedia PDF Downloads 363
16856 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image

Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak

Abstract:

Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.

Keywords: immature palm count, oil palm, precision agriculture, remote sensing

Procedia PDF Downloads 78
16855 Thickness Effect on Concrete Fracture Toughness K1c

Authors: Benzerara Mohammed, Redjel Bachir, Kebaili Bachir

Abstract:

The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness, is measured by a breaking value of the factor of intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatics geometries different (10*10*84) cm³ and (5*20*120) cm³ &(12*20*120) cm³ containing from the side notches various depths simulating of the cracks was set up. The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the centre of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometrie specimen (5*20*120) cm³, therefore to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete.

Keywords: elementary representative volume, concrete, fissure, toughness

Procedia PDF Downloads 227
16854 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters

Authors: S. Ghasemi, K. Khorasani

Abstract:

In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.

Keywords: component, formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault

Procedia PDF Downloads 437
16853 Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)

Authors: N. Massoum, B. Bouazza

Abstract:

In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device, simulation software

Procedia PDF Downloads 515
16852 Synthesis, Characterization and Gas Sensing Applications of Perovskite CaZrO3 Nanoparticles

Authors: B. M. Patil

Abstract:

Calcium Zirconate (CaZrO3) has high protonic conductivities at elevated temperature in water or hydrogen atmosphere. Undoped calcium zirconate acts as a p-type semiconductor in air. In this paper, we reported synthesis of CaZrO3 nanoparticles via modified molecular precursor method. The precursor calcium zirconium oxalate (CZO) was synthesized by exchange reaction between freshly generated aqueous solution of sodium zirconyl oxalate and calcium acetate at room temperature. The controlled pyrolysis of CZO in air at 700°C for one hour resulted in the formation nanocrystalline CaZrO3 powder. CaZrO3 obtained by the present method was characterized by Simultaneous thermogravimetry and differential thermogravimetry (TG-DTA), X-ray diffraction (XRD), infra-red spectroscopy and transmission electron microscopy (TEM). The pellets of synthesized CaZrO3 fabricated, sintered at 1000°C for 5 hr and tested as sensors for NO2 and NH3 gases.

Keywords: CaZrO3, CZO, NO2, NH3

Procedia PDF Downloads 170
16851 Simulation of Elastic Bodies through Discrete Element Method, Coupled with a Nested Overlapping Grid Fluid Flow Solver

Authors: Paolo Sassi, Jorge Freiria, Gabriel Usera

Abstract:

In this work, a finite volume fluid flow solver is coupled with a discrete element method module for the simulation of the dynamics of free and elastic bodies in interaction with the fluid and between themselves. The open source fluid flow solver, caffa3d.MBRi, includes the capability to work with nested overlapping grids in order to easily refine the grid in the region where the bodies are moving. To do so, it is necessary to implement a recognition function able to identify the specific mesh block in which the device is moving in. The set of overlapping finer grids might be displaced along with the set of bodies being simulated. The interaction between the bodies and the fluid is computed through a two-way coupling. The velocity field of the fluid is first interpolated to determine the drag force on each object. After solving the objects displacements, subject to the elastic bonding among them, the force is applied back onto the fluid through a Gaussian smoothing considering the cells near the position of each object. The fishnet is represented as lumped masses connected by elastic lines. The internal forces are derived from the elasticity of these lines, and the external forces are due to drag, gravity, buoyancy and the load acting on each element of the system. When solving the ordinary differential equations system, that represents the motion of the elastic and flexible bodies, it was found that the Runge Kutta solver of fourth order is the best tool in terms of performance, but requires a finer grid than the fluid solver to make the system converge, which demands greater computing power. The coupled solver is demonstrated by simulating the interaction between the fluid, an elastic fishnet and a set of free bodies being captured by the net as they are dragged by the fluid. The deformation of the net, as well as the wake produced in the fluid stream are well captured by the method, without requiring the fluid solver mesh to adapt for the evolving geometry. Application of the same strategy to the simulation of elastic structures subject to the action of wind is also possible with the method presented, and one such application is currently under development.

Keywords: computational fluid dynamics, discrete element method, fishnets, nested overlapping grids

Procedia PDF Downloads 418
16850 Seepage Modelling of Jatigede Dam Towards Cisampih Village Based on Analysis Soil Characteristic Using Method Soil Reaction to Water, West Java Indonesia

Authors: Diemas Purnama Muhammad Firman Pratama, Denny Maulana Malik

Abstract:

Development of Jatigede Dam that was the mega project in Indonesia, since 1963. Area of around Jatigede Dam is complex, it has structural geology active fault, and as possible can occur landslide. This research focus on soil test. The purpose of this research to know soil quality Jatigede Dam which caused by water seepage of Jatigede Dam, then can be made seepage modelling around Jatigede Dam including Cisampih Village. Method of this research is SRW (Soil Reaction to Water). There are three samples are taken nearby Jatigede Dam. Four paramaters to determine water seepage such as : V ( velocity of soil to release water), Dl (Ability of soil to release water), Ds (Ability of soil to absorb water), Dt (Ability of soil to hold water). meanwhile, another proscess of interaction beetween water and soil are produced angle, which is made of water flow and vertikal line. Called name SIAT. SIAT has two type is na1 and na2. Each samples has a value from the first sample is 280,333(degree), the second 270 (degree) and the third 270 (degree). The difference na1 is, water interaction towards Dt value angle, while na2 is water interaction towards Dl and Ds value angle. Result of calculating SRW method, first till third sample has a value 7, 11,5 and 9. Based on data, interpreted in around teritory of Jatigede Dam, will get easier impact from water seepage because, condition soil reaction too bad so, it can not hold water.

Keywords: Jatigede Dam, Cisampih village, water seepage, soil quality

Procedia PDF Downloads 378
16849 Design and Optimization for a Compliant Gripper with Force Regulation Mechanism

Authors: Nhat Linh Ho, Thanh-Phong Dao, Shyh-Chour Huang, Hieu Giang Le

Abstract:

This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array L9 is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems.

Keywords: flexure hinge, compliant mechanism, compliant gripper, force regulation mechanism, Taguchi method, response surface methodology, design of experiment

Procedia PDF Downloads 333
16848 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms

Authors: Mohammad Besharatloo

Abstract:

Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.

Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree

Procedia PDF Downloads 95
16847 Application of the Extended Kantorovich Method to Size-Dependent Vibrational Analysis of Fully Clamped Rectangular Micro-Plates

Authors: Amir R. Askari, Masoud Tahani

Abstract:

The objective of the present paper is to investigate the effect of size on the vibrational behavior of fully clamped rectangular micro-plates based on the modified couple stress theory (MCST). To this end, a size-dependent Kirchhoff plate model is considered and the equation of motion which accounts for the effect of residual and couple stress components is derived using the Hamilton's principle. The eigenvalue problem associated with the free vibrations of fully clamped micro-plates is extracted and solved analytically using the extended Kantorovich method (EKM). The present findings are compared and validated by available results in the literature and an excellent agreement between them is observed. A parametric study is also conducted to show the significant effects of couple stress components on natural frequencies of fully clamped micro-plates. It is found that the ratio of MCST natural frequencies to those obtained by the classical theory (CT) only depends on the Poisson's ratio of the plate and is totally independent of plate's aspect ratio for cases with no residual stresses.

Keywords: vibrational analysis, modified couple stress theory, fully clamped rectangular micro-plates, extended Kantorovich method.

Procedia PDF Downloads 390
16846 Numerical Analysis of Shear Crack Propagation in a Concrete Beam without Transverse Reinforcement

Authors: G. A. Rombach, A. Faron

Abstract:

Crack formation and growth in reinforced concrete members are, in many cases, the cause of the collapse of technical structures. Such serious failures impair structural behavior and can also damage property and persons. An intensive investigation of the crack propagation is indispensable. Numerical methods are being developed to analyze crack growth in an element and to detect fracture failure at an early stage. For reinforced concrete components, however, further research and action are required in the analysis of shear cracks. This paper presents numerical simulations and continuum mechanical modeling of bending shear crack propagation in a three-dimensional reinforced concrete beam without transverse reinforcement. The analysis will provide a further understanding of crack growth and redistribution of inner forces in concrete members. As a numerical method to map discrete cracks, the extended finite element method (XFEM) is applied. The crack propagation is compared with the smeared crack approach using concrete damage plasticity. For validation, the crack patterns of real experiments are compared with the results of the different finite element models. The evaluation is based on single span beams under bending. With the analysis, it is possible to predict the fracture behavior of concrete members.

Keywords: concrete damage plasticity, crack propagation, extended finite element method, fracture mechanics

Procedia PDF Downloads 121
16845 Simultaneous Analysis of 25 Trace Elements in Micro Volume of Human Serum by Inductively Coupled Plasma–Mass Spectrometry

Authors: Azmawati Mohammed Nawi, Siok-Fong Chin, Shamsul Azhar Shah, Rahman Jamal

Abstract:

In recent years, trace elements have gained importance as biomarkers in many chronic diseases. Unfortunately, the requirement for sample volume increases according to the extent of investigation for diagnosis or elucidating the mechanism of the disease. Here, we describe the method development and validation for simultaneous determination of 25 trace elements (lithium (Li), beryllium (Be), magnesium (Mg), aluminium (Al), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), arsenic (As), selenium (Se), rubidium (Rb), strontium (Sr), silver (Ag), cadmium (Cd), caesium (Cs), barium (Ba), mercury (Hg), thallium (Tl), lead (Pb), uranium (U)) using just 20 µL of human serum. Serum samples were digested with nitric acid and hydrochloric acid (ratio 1:1, v/v) and analysed using inductively coupled plasma–mass spectrometry (ICP-MS). Seronorm®, a human-derived serum control material was used as quality control samples. The intra-day and inter-day precisions were consistently < 15% for all elements. The validated method was later applied to 30 human serum samples to evaluate its suitability. In conclusion, we have successfully developed and validated a precise and accurate analytical method for determining 25 trace elements requiring very low volume of human serum.

Keywords: acid digestion, ICP-MS, trace element, serum

Procedia PDF Downloads 187
16844 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan

Abstract:

The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Keywords: optical soliton, soliton interaction, soliton switching, WDM

Procedia PDF Downloads 511
16843 Functional Expression and Characterization of a Novel Indigenous Endo-Beta 1,4- Glucanase from Apis mellifera

Authors: Amtul Jamil Sami

Abstract:

Apis mellifera is an insect of immense economic importance lives on rich carbohydrate diet including cellulose, nectar, honey and pollen. The carbohydrate metabolism in A mellifera has not been understood fully, as there are no data available, on the functional expression of cellulase gene. The cellulose hydrolyzing enzyme is required for the digestion of pollen cellulose wall, to release the important nutrients (amino acids, minerals, vitamins etc.) from the pollen. A dissection of Apis genome had revealed that there is one gene present for the expression of endo-beta-1,4-glucanase, for cellulose hydrolysis. In the presented work, functional expression of endo-beta-1,4 glucanase gene is reported. Total soluble proteins of the honey bee were isolated and were tested cellulose hydrolyzing enzyme activity, using carboxy-methyl cellulose, as a substrate. A mellifera proteins were able to hydrolyze carboxy-methyl cellulose, confirming its endo- type mode of action. Endo beta-1,4 glucanase enzyme was only present in the gut tissues, no activity was detected in the salivary glands. The pH optima of the enzyme were in the acidic pH range of 4-5-5-0, indicating its metabolic role in the acidic stomach of A mellifera. The reported enzyme is unique, as endo-beta- 1,4 glucanase was able to generate non reducing sugar, as an end product. The results presented, are supportive to the information that the honey bee is capable of producing its novel endo-beta-1,4 glucanase. Further it could be helpful, in understanding, the carbohydrate metabolism in A mellifera.

Keywords: honey bees, Endo-beta 1, 4- glucanase, Apis mellifera, functional expression

Procedia PDF Downloads 406
16842 Antioxidant Potential of Methanolic Extracts of Four Indian Aromatic Plants

Authors: Harleen Kaur, Richa

Abstract:

Plants produce a large variety of secondary metabolites. Phenolics are the compounds that contain hydroxyl functional group on an aromatic ring. These are chemically heterogeneous compounds. Some are soluble only in organic solvents, some are water soluble and others are large insoluble polymers. Flavonoids are one of the largest classes of plant phenolics. The carbon skeleton of a flavonoid contains 15 carbons arranged in two aromatic rings connected by a three carbon ridge. Both phenolics and flavonoids are good natural antioxidants. Four Indian aromatic plants were selected for the study i.e, Achillea species, Jasminum primulinum, Leucas cephalotes and Leonotis nepetaefolia. All the plant species were collected from Chail region of Himachal Pradesh, India. The identifying features and anatomical studies were done of the part containing the essential oils. Phenolic cotent was estimated by Folin Ciocalteu’s method and flavonoids content by aluminium chloride method. Antioxidant property was checked by using DPPH method. Maximum antioxidant potential was found in Achillea species, followed by Leonotis nepetaefolia, Jaminum primulinum and Leucas cephalotes. Phenolics and flavonoids are important compounds that serve as defences against herbivores and pathogens. Others function in attracting pollinators and absorbing harmful radiations.

Keywords: antioxidants, DPPH, flavonoids, phenolics

Procedia PDF Downloads 350
16841 Effect of Co Substitution on Structural, Magnetocaloric, Magnetic, and Electrical Properties of Sm0.6Sr0.4CoxMn1-xO3 Synthesized by Sol-gel Method

Authors: A. A. Azab

Abstract:

In this work, Sm0.6Sr0.4CoxMn1-xO3 (x=0, 0.1, 0.2 and 0.3) was synthesized by sol-gel method for magnetocaloric effect (MCE) applications. XRD analysis confirmed formation of the required orthorhombic phase of perovskite, and there is crystallographic phase transition as a result of substitution. Maxwell-Wagner interfacial polarisation and Koops phenomenological theory were used to investigate and analyze the temperature and frequency dependency of the dielectric permittivity. The phase transition from the ferromagnetic to the paramagnetic state was demonstrated to be second order. Based on the isothermal magnetization curves obtained at various temperatures, the magnetic entropy change was calculated. A magnetocaloric effect (MCE) over a wide temperature range was studied by determining DSM and the relative cooling power (RCP).

Keywords: magnetocaloric effect, pperovskite, magnetic phase transition, dielectric permittivity

Procedia PDF Downloads 70
16840 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact by Using Particle Method

Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh

Abstract:

The slamming impact problem has a very important engineering background. For seaplane landing, recycling for the satellite re-entry capsule, and the impact load of the bow in the adverse sea conditions, the slamming problem always plays the important role. Due to its strong nonlinear effect, however, it seems to be not easy to obtain the accurate simulation results. Combined with the strong interaction between the fluid field and the elastic structure, the difficulty for the simulation leads to a new level for challenging. This paper presents a fully Lagrangian coupled solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with two different materials such as aluminum and steel on water entry. The present simulation results are compared with analytical solution derived using the hydrodynamic Wagner model and linear theory by Wan.

Keywords: fluid-structure interaction, moving particle semi-implicit (MPS) method, elastic structure, incompressible flow, wedge slamming impact

Procedia PDF Downloads 607
16839 Nazca: A Context-Based Matching Method for Searching Heterogeneous Structures

Authors: Karine B. de Oliveira, Carina F. Dorneles

Abstract:

The structure level matching is the problem of combining elements of a structure, which can be represented as entities, classes, XML elements, web forms, and so on. This is a challenge due to large number of distinct representations of semantically similar structures. This paper describes a structure-based matching method applied to search for different representations in data sources, considering the similarity between elements of two structures and the data source context. Using real data sources, we have conducted an experimental study comparing our approach with our baseline implementation and with another important schema matching approach. We demonstrate that our proposal reaches higher precision than the baseline.

Keywords: context, data source, index, matching, search, similarity, structure

Procedia PDF Downloads 365
16838 Discrimination of Modes of Double- and Single-Negative Grounded Slab

Authors: R. Borghol, T. Aguili

Abstract:

In this paper, we investigate theoretically the waves propagation in a lossless double-negative grounded slab (DNG). This study is performed by the Transverse Resonance Method (TRM). The proper or improper nature of real and complex modes is observed. They are highly dependent on metamaterial parameters, i.e. ɛr-negative, µr-negative, or both. Numerical results provided that only the proper complex modes (i.e., leaky modes) exist in DNG slab, and only the improper complex modes exist in single-negative grounded slab.

Keywords: double negative grounded slab, real and complex modes, single negative grounded slab, transverse resonance method

Procedia PDF Downloads 277
16837 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 181