Search results for: austenitization temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6884

Search results for: austenitization temperature

3254 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses

Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig

Abstract:

Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.

Keywords: phosphate glass, erbium, luminescence, glass system

Procedia PDF Downloads 495
3253 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient

Authors: Anjanna Matta, P. A. L. Narayana

Abstract:

An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleight number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.

Keywords: linear stability analysis, heat source, porous medium, mass flow

Procedia PDF Downloads 708
3252 Graft Copolymerization of Cellulose Acetate with Nitro-N-Amino Phenyl Maleimides

Authors: Azza. A. Al-Ghamdi, Abir. A. Abdel-Naby

Abstract:

The construction of Nitro -N-amino phenyl maleimide branches onto Cellulose acetate (CA) substrate by free radical graft copolymerization using benzoyl peroxide as initiator led to formation of highly thermal stable copolymers as shown from the results of gravimetric analysis (TGA). CA-g-2,4-dinitro amino phenyl maleimide exhibited higher thermal stability than the CA-g-4-nitro amino phenyl maleimide as shown from the initial decomposition temperature (To). This is due to the ability of nitro group to form hydrogen bonding with hydroxyl group of the glucopyranose ring which increases the crystallinity of polymeric matrix. The crystalline shapes representing the graft part are clearly distinct in the Emission scanning electron microscope (ESEM) morphology of the copolymer. A suggested reaction mechanism for the grafting process was also discussed.

Keywords: Cellulose acetate, Crystallinity, Graft copolymerization, Thermal properties

Procedia PDF Downloads 149
3251 Recombination Center Levels in Gold and Platinum Doped N-Type Silicon

Authors: Nam Chol Yu, Kyong Il Chu

Abstract:

Using DLTS measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25eV(A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54eV(B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon.

Keywords: recombination center level, lifetime, carrier lifetime control, gold, platinum, silicon

Procedia PDF Downloads 138
3250 Effect of Compaction Method on the Mechanical and Anisotropic Properties of Asphalt Mixtures

Authors: Mai Sirhan, Arieh Sidess

Abstract:

Asphaltic mixture is a heterogeneous material composed of three main components: aggregates; bitumen and air voids. The professional experience and scientific literature categorize asphaltic mixture as a viscoelastic material, whose behavior is determined by temperature and loading rate. Properties characterization of the asphaltic mixture used under the service conditions is done by compacting and testing cylindric asphalt samples in the laboratory. These samples must resemble in a high degree internal structure of the mixture achieved in service, and the mechanical characteristics of the compacted asphalt layer in the pavement. The laboratory samples are usually compacted in temperatures between 140 and 160 degrees Celsius. In this temperature range, the asphalt has a low degree of strength. The laboratory samples are compacted using the dynamic or vibrational compaction methods. In the compaction process, the aggregates tend to align themselves in certain directions that lead to anisotropic behavior of the asphaltic mixture. This issue has been studied in the Strategic Highway Research Program (SHRP) research, that recommended using the gyratory compactor based on the assumption that this method is the best in mimicking the compaction in the service. In Israel, the Netivei Israel company is considering adopting the Gyratory Method as a replacement for the Marshall method used today. Therefore, the compatibility of the Gyratory Method for the use with Israeli asphaltic mixtures should be investigated. In this research, we aimed to examine the impact of the compaction method used on the mechanical characteristics of the asphaltic mixtures and to evaluate the degree of anisotropy in relation to the compaction method. In order to carry out this research, samples have been compacted in the vibratory and gyratory compactors. These samples were cylindrically cored both vertically (compaction wise) and horizontally (perpendicular to compaction direction). These models were tested under dynamic modulus and permanent deformation tests. The comparable results of the tests proved that: (1) specimens compacted by the vibratory compactor had higher dynamic modulus values than the specimens compacted by the gyratory compactor (2) both vibratory and gyratory compacted specimens had anisotropic behavior, especially in high temperatures. Also, the degree of anisotropy is higher in specimens compacted by the gyratory method. (3) Specimens compacted by the vibratory method that were cored vertically had the highest resistance to rutting. On the other hand, specimens compacted by the vibratory method that were cored horizontally had the lowest resistance to rutting. Additionally (4) these differences between the different types of specimens rise mainly due to the different internal arrangement of aggregates resulting from the compaction method. (5) Based on the initial prediction of the performance of the flexible pavement containing an asphalt layer having characteristics based on the results achieved in this research. It can be concluded that there is a significant impact of the compaction method and the degree of anisotropy on the strains that develop in the pavement, and the resistance of the pavement to fatigue and rutting defects.

Keywords: anisotropy, asphalt compaction, dynamic modulus, gyratory compactor, mechanical properties, permanent deformation, vibratory compactor

Procedia PDF Downloads 107
3249 Performance of an Absorption Refrigerator Using a Solar Thermal Collector

Authors: Abir Hmida, Nihel Chekir, Ammar Ben Brahim

Abstract:

In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m3 is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m² of solar collectors are necessary to accomplish the work of the solar cold room.

Keywords: absorption, ammonia, cold room, solar collector, vacuum tube

Procedia PDF Downloads 154
3248 Exploration on Extraction of Coalbed Seam in Water Sensitive Reservoir by Combustion of Coal Seams

Authors: Liu Yinga, Bai Xingjiab

Abstract:

The conventional way to exploit coalbed methane is to drop reservoirs pressure through drainage, which means that reducing pressure through water drainage for coalbed methane desorption. However, it has many limitations. In this paper, the recovery by conventional way is low, in order to exploit water-sensitive reservoir, combustion of coal seam is proposed to increase recovery ratio, and then theoretical feasibility is elaborated through four aspects: temperature, pressure, superficial area, competitive adsorption, then given an example of water sensitive reservoir, results can be obtained that recovery is effectively improved through combustion of coal seam. At the same time, the suitability and efficiency of combustion of coal seam determine that it can be widely applied.

Keywords: coalbed methane, drainage decompression, water-sensitive, combustion of coal seams, competitive adsorption

Procedia PDF Downloads 250
3247 Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery

Authors: Meet Bhatia

Abstract:

Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs.

Keywords: hydrogen peroxide, well stimulation, heavy oil recovery, steam injection

Procedia PDF Downloads 323
3246 Life Cycle Assessment Applied to Supermarket Refrigeration System: Effects of Location and Choice of Architecture

Authors: Yasmine Salehy, Yann Leroy, Francois Cluzel, Hong-Minh Hoang, Laurence Fournaison, Anthony Delahaye, Bernard Yannou

Abstract:

Taking into consideration all the life cycle of a product is now an important step in the eco-design of a product or a technology. Life cycle assessment (LCA) is a standard tool to evaluate the environmental impacts of a system or a process. Despite the improvement in refrigerant regulation through protocols, the environmental damage of refrigeration systems remains important and needs to be improved. In this paper, the environmental impacts of refrigeration systems in a typical supermarket are compared using the LCA methodology under different conditions. The system is used to provide cold at two levels of temperature: medium and low temperature during a life period of 15 years. The most commonly used architectures of supermarket cold production systems are investigated: centralized direct expansion systems and indirect systems using a secondary loop to transport the cold. The variation of power needed during seasonal changes and during the daily opening/closure periods of the supermarket are considered. R134a as the primary refrigerant fluid and two types of secondary fluids are considered. The composition of each system and the leakage rate of the refrigerant through its life cycle are taken from the literature and industrial data. Twelve scenarios are examined. They are based on the variation of three parameters, 1. location: France (Paris), Spain (Toledo) and Sweden (Stockholm), 2. different sources of electric consumption: photovoltaic panels and low voltage electric network and 3. architecture: direct and indirect refrigeration systems. OpenLCA, SimaPro softwares, and different impact assessment methods were compared; CML method is used to evaluate the midpoint environmental indicators. This study highlights the significant contribution of electric consumption in environmental damages compared to the impacts of refrigerant leakage. The secondary loop allows lowering the refrigerant amount in the primary loop which results in a decrease in the climate change indicators compared to the centralized direct systems. However, an exhaustive cost evaluation (CAPEX and OPEX) of both systems shows more important costs related to the indirect systems. A significant difference between the countries has been noticed, mostly due to the difference in electric production. In Spain, using photovoltaic panels helps to reduce efficiently the environmental impacts and the related costs. This scenario is the best alternative compared to the other scenarios. Sweden is a country with less environmental impacts. For both France and Sweden, the use of photovoltaic panels does not bring a significant difference, due to a less sunlight exposition than in Spain. Alternative solutions exist to reduce the impact of refrigerating systems, and a brief introduction is presented.

Keywords: eco-design, industrial engineering, LCA, refrigeration system

Procedia PDF Downloads 165
3245 Magneto-Optical Properties in Transparent Region of Implanted Garnet Films

Authors: Lali Kalanadzde

Abstract:

We investigated magneto-optical Kerr effect in transparent region of implanted ferrite-garnet films for the (YBiCa)3(FeGe)5O12. The implantation process was carried out at room temperature by Ne+ ions with energy of 100 KeV and with various doses (0.5-2.5) 1014 ion/cm2. We discovered that slight deviation of the plane of external alternating magnetic field from plane of sample leads to appearance intensive magneto-optical maximum in transparent region of garnet films ħω=0.5-2.0 eV. In the proceeding, we have also found that the deviation of polarization plane from P- component of incident light leads to the appearance of the similar magneto-optical effects in this region. The research of magnetization processes in transparent region of garnet films showed that the formation of magneto-optical effects in region ħω=0.5-2.3 eV has a rather complex character.

Keywords: ferrite-garnet films, ion implantation, magneto-optical, thin films

Procedia PDF Downloads 292
3244 Rapid Green Synthesis and Characterization of Silver Nanoparticles Using Eclipta prostrata Leaf Extract

Authors: Siva Prasad Peddi

Abstract:

Silver nanoparticles were successfully synthesized from silver nitrate through a rapid green synthesis method using Eclipta prostrata leaf extract as a reducing cum stabilizing agent. The experimental procedure was readily conducted at room temperature and pressure, and could be easily scaled up. The silver nanoparticles thus obtained were characterized using UV-Visible Spectroscopy (UV-VIS) which yielded an absorption peak at 416 nm. The biomolecules responsible for capping of the bio-reduced silver nanoparticles synthesized using plant extract were successfully identified through FTIR analysis. It was evinced through Scanning Electron Microscope (SEM), and X-ray diffraction (XRD) analysis that the silver nanoparticles were crystalline in nature and spherical in shape. The average size of the particles obtained using Scherrer’s formula was 27.4 nm. The adopted technique for silver nanoparticle synthesis is suitable for large-scale production.

Keywords: silver nanoparticles, green synthesis, characterization, Eclipta prostrata

Procedia PDF Downloads 453
3243 Thermo-Mechanical Processing Scheme to Obtain Micro-Duplex Structure Favoring Superplasticity in an As-Cast and Homogenized Medium Alloyed Nickel Base Superalloy

Authors: K. Sahithya, I. Balasundar, Pritapant, T. Raghua

Abstract:

Ni-based superalloy with a nominal composition Ni-14% Cr-11% Co-5.8% Mo-2.4% Ti-2.4% Nb-2.8% Al-0.26 % Fe-0.032% Si-0.069% C (all in wt %) is used as turbine discs in a variety of aero engines. Like any other superalloy, the primary processing of the as-cast superalloy poses a major challenge due to its complex alloy chemistry. The challenge was circumvented by characterizing the different phases present in the material, optimizing the homogenization treatment, identifying a suitable thermomechanical processing window using dynamic materials modeling. The as-cast material was subjected to homogenization at 1200°C for a soaking period of 8 hours and quenched using different media. Water quenching (WQ) after homogenization resulted in very fine spherical γꞌ precipitates of sizes 30-50 nm, whereas furnace cooling (FC) after homogenization resulted in bimodal distribution of precipitates (primary gamma prime of size 300nm and secondary gamma prime of size 5-10 nm). MC type primary carbides that are stable till the melting point of the material were found in both WQ and FC samples. Deformation behaviour of both the materials below (1000-1100°C) and above gamma prime solvus (1100-1175°C) was evaluated by subjecting the material to series of compression tests at different constant true strain rates (0.0001/sec-1/sec). An in-detail examination of the precipitate dislocation interaction mechanisms carried out using TEM revealed precipitate shearing and Orowan looping as the mechanisms governing deformation in WQ and FC, respectively. Incoherent/semi coherent gamma prime precipitates in the case of FC material facilitates better workability of the material, whereas the coherent precipitates in WQ material contributed to higher resistance to deformation of the material. Both the materials exhibited discontinuous dynamic recrystallization (DDRX) above gamma prime solvus temperature. The recrystallization kinetics was slower in the case of WQ material. Very fine grain boundary carbides ( ≤ 300 nm) retarded the recrystallisation kinetics in WQ. Coarse carbides (1-5 µm) facilitate particle stimulated nucleation in FC material. The FC material was cogged (primary hot working) 1120˚C, 0.03/sec resulting in significant grain refinement, i.e., from 3000 μm to 100 μm. The primary processed material was subjected to intensive thermomechanical deformation subsequently by reducing the temperature by 50˚C in each processing step with intermittent heterogenization treatment at selected temperatures aimed at simultaneous coarsening of the gamma prime precipitates and refinement of the gamma matrix grains. The heterogeneous annealing treatment carried out, resulted in gamma grains of 10 μm and gamma prime precipitates of 1-2 μm. Further thermo mechanical processing of the material was carried out at 1025˚C to increase the homogeneity of the obtained micro-duplex structure.

Keywords: superalloys, dynamic material modeling, nickel alloys, dynamic recrystallization, superplasticity

Procedia PDF Downloads 110
3242 Structural and Optoelectronic Properties of Monovalent Cation Doping PbS Thin Films

Authors: Melissa Chavez Portillo, Hector Juarez Santiesteban, Mauricio Pacio Castillo, Oscar Portillo Moreno

Abstract:

Nanocrystalline Li-doped PbS thin films have been deposited by chemical bath deposition technique. The goal of this work is to study the modification of the optoelectronic and structural properties of Lithium incorporation. The increase of Li doping in PbS thin films leads to an increase of band gap in the range of 1.4-2.3, consequently, quantum size effect becomes pronounced in the Li-doped PbS films, which lead to a significant enhancement in the optical band gap. Doping shows influence in the film growth and results in a reduction of crystallite size from 30 to 14 nm. The refractive index was calculated and a relationship with dielectric constant was investigated. The dc conductivities of Li-doped and undoped samples were measured in the temperature range 290-340K, the conductivity increase with increase of Lithium content in the PbS films.

Keywords: doping, quantum confinement, optical band gap, PbS

Procedia PDF Downloads 371
3241 Computation of Thermal Stress Intensity Factor for Bonded Composite Repairs in Aircraft Structures

Authors: Fayçal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra

Abstract:

In this study the Finite element method is used to analyse the effect of the thermal residual stresses resulting from adhesive curing on the performances of the bonded composite repair in aircraft structures. The stress intensity factor at the crack tip is chosen as fracture criterion in order to estimate the repair performances. The obtained results show that the presence of the thermal residual stresses reduces considerably the repair performances and consequently decreases the fatigue life of cracked structures. The effects of the curing temperature, the adhesive properties and the adhesive thickness on the Stress Intensity Factor (SIF) variation with thermal stresses are also analysed.

Keywords: bonded composite repair, residual stress, adhesion, stress transfer, finite element analysis

Procedia PDF Downloads 402
3240 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 374
3239 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy

Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz

Abstract:

Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.

Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach

Procedia PDF Downloads 137
3238 An Approach for Modeling CMOS Gates

Authors: Spyridon Nikolaidis

Abstract:

A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.

Keywords: CMOS gate modeling, inverter modeling, transistor current mode, timing model

Procedia PDF Downloads 410
3237 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 46
3236 Calculus of Turbojet Performances for Ideal Case

Authors: S. Bennoud, S. Hocine, H. Slme

Abstract:

Developments in turbine cooling technology play an important role in increasing the thermal efficiency and the power output of recent gas turbines, in particular the turbojets. Advanced turbojets operate at high temperatures to improve thermal efficiency and power output. These temperatures are far above the permissible metal temperatures. Therefore, there is a critical need to cool the blades in order to give theirs a maximum life period for safe operation. The focused objective of this work is to calculate the turbojet performances, as well as the calculation of turbine blades cooling. The developed application able the calculation of turbojet performances to different altitudes in order to find a point of optimal use making possible to maintain the turbine blades at an acceptable maximum temperature and to limit the local variations in temperatures in order to guarantee their integrity during all the lifespan of the engine.

Keywords: brayton cycle, turbine blades cooling, turbojet cycle, turbojet performances

Procedia PDF Downloads 208
3235 Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping

Authors: Jung-Feng Lin, Wei-Tang Chen, Chung-King Hsu, Chun-Pin Lin, Feng-Huei Lin

Abstract:

One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility.

Keywords: calcium phosphate cement, calcium sulphate hemihydrate, pulp capping, fast setting time

Procedia PDF Downloads 371
3234 Transesterification of Jojoba Oil Wax Using Microwave Technique

Authors: Moataz Elsawy, Hala F. Naguib, Hilda A. Aziz, Eid A. Ismail, Labiba I. Hussein, Maher Z. Elsabee

Abstract:

Jojoba oil-wax is extracted from the seeds of the jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi-desert areas in Egypt and in some parts of the world. The main uses of jojoba oil wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the jojoba oil wax to biodiesel by transesterification with ethanol and a series of aliphatic alcohols using a more economic and energy saving method in a domestic microwave. The effect of time and power of the microwave on the extent of the transesterification using ethanol and other aliphatic alcohols has been studied. The separation of the alkyl esters from the fatty alcohols rich fraction has been done in a single crystallization step at low temperature (−18°C) from low boiling point petroleum ether. Gas chromatography has been used to follow up the transesterification process. All products have been characterized by spectral analysis.

Keywords: jojoba oil, transesterification, microwave, gas chromatography jojoba esters, jojoba alcohol

Procedia PDF Downloads 447
3233 Modeling Thermionic Emission from Carbon Nanotubes with Modified Richardson-Dushman Equation

Authors: Olukunle C. Olawole, Dilip Kumar De

Abstract:

We have modified Richardson-Dushman equation considering thermal expansion of lattice and change of chemical potential with temperature in material. The corresponding modified Richardson-Dushman (MRDE) equation fits quite well the experimental data of thermoelectronic current density (J) vs T from carbon nanotubes. It provides a unique technique for accurate determination of W0 Fermi energy, EF0 at 0 K and linear thermal expansion coefficient of carbon nano-tube in good agreement with experiment. From the value of EF0 we obtain the charge carrier density in excellent agreement with experiment. We describe application of the equations for the evaluation of performance of concentrated solar thermionic energy converter (STEC) with emitter made of carbon nanotube for future applications.

Keywords: carbon nanotube, modified Richardson-Dushman equation, fermi energy at 0 K, charge carrier density

Procedia PDF Downloads 361
3232 Studies of Reduction Metal Impurity in Residual Melt by Czochralski Method

Authors: Jaemin Kim, Ilsun Pang, Yongrae Cho, Kwanghun Kim, Sungsun Baik

Abstract:

Manufacturing cost reduction is becoming more important due to excessive oversupply of Single crystalline ingot in recent solar market. Many companies are carrying out extensive research to grow more than one Single crystalline ingot in one batch to reduce manufacturing cost. However what most companies are finding difficult in this process is the effect on ingot due to increasing levels of impurities. Every ingot leaves a certain amount of melt after it is fully grown. This is the impurity that lowers the ingot quality. This impurity increase in the batch after second, third and more are grown subsequently in one batch. In order to solve this problem, the experiment to remove the residual melt in high temperature of hot zone was performed and succeeded. Theoretical average metal concentration of second ingot by new method was calculated and compared to it by conventional method.

Keywords: single crystal, solar cell, metal impurity, Ingot

Procedia PDF Downloads 373
3231 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito

Abstract:

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador

Procedia PDF Downloads 228
3230 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 158
3229 Detection the Ice Formation Processes Using Multiple High Order Ultrasonic Guided Wave Modes

Authors: Regina Rekuviene, Vykintas Samaitis, Liudas Mažeika, Audrius Jankauskas, Virginija Jankauskaitė, Laura Gegeckienė, Abdolali Sadaghiani, Shaghayegh Saeidiharzand

Abstract:

Icing brings significant damage to aviation and renewable energy installations. Air-conditioning, refrigeration, wind turbine blades, airplane and helicopter blades often suffer from icing phenomena, which cause severe energy losses and impair aerodynamic performance. The icing process is a complex phenomenon with many different causes and types. Icing mechanisms, distributions, and patterns are still relevant to research topics. The adhesion strength between ice and surfaces differs in different icing environments. This makes the task of anti-icing very challenging. The techniques for various icing environments must satisfy different demands and requirements (e.g., efficient, lightweight, low power consumption, low maintenance and manufacturing costs, reliable operation). It is noticeable that most methods are oriented toward a particular sector and adapting them to or suggesting them for other areas is quite problematic. These methods often use various technologies and have different specifications, sometimes with no clear indication of their efficiency. There are two major groups of anti-icing methods: passive and active. Active techniques have high efficiency but, at the same time, quite high energy consumption and require intervention in the structure’s design. It’s noticeable that vast majority of these methods require specific knowledge and personnel skills. The main effect of passive methods (ice-phobic, superhydrophobic surfaces) is to delay ice formation and growth or reduce the adhesion strength between the ice and the surface. These methods are time-consuming and depend on forecasting. They can be applied on small surfaces only for specific targets, and most are non-biodegradable (except for anti-freezing proteins). There is some quite promising information on ultrasonic ice mitigation methods that employ UGW (Ultrasonic Guided Wave). These methods are have the characteristics of low energy consumption, low cost, lightweight, and easy replacement and maintenance. However, fundamental knowledge of ultrasonic de-icing methodology is still limited. The objective of this work was to identify the ice formation processes and its progress by employing ultrasonic guided wave technique. Throughout this research, the universal set-up for acoustic measurement of ice formation in a real condition (temperature range from +240 C to -230 C) was developed. Ultrasonic measurements were performed by using high frequency 5 MHz transducers in a pitch-catch configuration. The selection of wave modes suitable for detection of ice formation phenomenon on copper metal surface was performed. Interaction between the selected wave modes and ice formation processes was investigated. It was found that selected wave modes are sensitive to temperature changes. It was demonstrated that proposed ultrasonic technique could be successfully used for the detection of ice layer formation on a metal surface.

Keywords: ice formation processes, ultrasonic GW, detection of ice formation, ultrasonic testing

Procedia PDF Downloads 46
3228 Effect of Coupling Agent on the Properties of Durian Skin Fibre Reinforced Polypropylene Composite

Authors: Hazleen Anuar, Nur Aimi Mohd Nasir

Abstract:

Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.

Keywords: durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis

Procedia PDF Downloads 452
3227 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel

Authors: Torchane Lazhar

Abstract:

In this work, our task consists in optimizing the nitriding treatment at low-temperature of the steel 32CrMoV13 by the way of the mixtures of ammonia gas, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chrome-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge have been applied by the mastery of the growth of the combination layer on the diffusion layer in the case of the industrial steel 32CrMoV13.

Keywords: diffusion of nitrogen, gaseous nitriding, layer growth kinetic, steel

Procedia PDF Downloads 396
3226 Scope of Samarium Content on Microstructural and Structural Properties of Potassium-Sodium Niobate (KNN) Based Ceramics

Authors: Geraldine Giraldo

Abstract:

In the research of advanced materials, ceramics based on KNN are an important topic, especially for multifunctional applications. In this work, the physical, structural, and microstructural properties of the (KNN-CaLi-xSm) system were analyzed by varying the concentration of samarium, which was prepared using the conventional solid-state reaction method by mixing oxides. It was found that the increase in Sm+3 concentration led to higher porosity in the sample and, consequently, a decrease in density, which is attributed to the structural vacancies at the A-sites of the perovskite-type structure of the ceramic system. In the structural analysis, a coexistence of Tetragonal (T) and Orthorhombic (O) phases were observed at different rare-earth ion contents, with a higher content of the T phase at xSm=0.010. Furthermore, the structural changes in the calcined powders at different temperatures were studied using the results of DTA-TG, which allowed for the analysis of the system's composition. It was found that the lowest total decomposition temperature occurred when xSm=0.010 at 770°C.

Keywords: perovskite, piezoelectric, multifunctional, Structure, ceramic

Procedia PDF Downloads 50
3225 A Retrospective Cohort Study on an Outbreak of Gastroenteritis Linked to a Buffet Lunch Served during a Conference in Accra

Authors: Benjamin Osei Tutu, Sharon Annison

Abstract:

On 21st November, 2016, an outbreak of foodborne illness occurred after a buffet lunch served during a stakeholders’ consultation meeting held in Accra. An investigation was conducted to characterise the affected people, determine the etiologic food, the source of contamination and the etiologic agent and to implement appropriate public health measures to prevent future occurrences. A retrospective cohort study was conducted via telephone interviews, using a structured questionnaire developed from the buffet menu. A case was defined as any person suffering from symptoms of foodborne illness e.g. diarrhoea and/or abdominal cramps after eating food served during the stakeholder consultation meeting in Accra on 21st November, 2016. The exposure status of all the members of the cohort was assessed by taking the food history of each respondent during the telephone interview. The data obtained was analysed using Epi Info 7. An environmental risk assessment was conducted to ascertain the source of the food contamination. Risks of foodborne infection from the foods eaten were determined using attack rates and odds ratios. Data was obtained from 54 people who consumed food served during the stakeholders’ meeting. Out of this population, 44 people reported with symptoms of food poisoning representing 81.45% (overall attack rate). The peak incubation period was seven hours with a minimum and maximum incubation periods of four and 17 hours, respectively. The commonly reported symptoms were diarrhoea (97.73%, 43/44), vomiting (84.09%, 37/44) and abdominal cramps (75.00%, 33/44). From the incubation period, duration of illness and the symptoms, toxin-mediated food poisoning was suspected. The environmental risk assessment of the implicated catering facility indicated a lack of time/temperature control, inadequate knowledge on food safety among workers and sanitation issues. Limited number of food samples was received for microbiological analysis. Multivariate analysis indicated that illness was significantly associated with the consumption of the snacks served (OR 14.78, P < 0.001). No stool and blood or samples of etiologic food were available for organism isolation; however, the suspected etiologic agent was Staphylococcus aureus or Clostridium perfringens. The outbreak could probably be due to the consumption of unwholesome snack (tuna sandwich or chicken. The contamination and/or growth of the etiologic agent in the snack may be due to the breakdown in cleanliness, time/temperature control and good food handling practices. Training of food handlers in basic food hygiene and safety is recommended.

Keywords: Accra, buffet, conference, C. perfringens, cohort study, food poisoning, gastroenteritis, office workers, Staphylococcus aureus

Procedia PDF Downloads 212