Search results for: absorber plates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 654

Search results for: absorber plates

654 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 355
653 Polarization Insensitive Absorber with Increased Bandwidth Using Multilayer Metamaterial

Authors: Srilaxmi Gangula, MahaLakshmi Vinukonda, Neeraj Rao

Abstract:

A wide band polarization insensitive metamaterial absorber with bandwidth enhancement in X and C band is proposed. The structure proposed here consists of a periodic unit cell of resonator arrangements in double layer. The proposed structure shows near unity absorption at frequencies of 6.21 GHz and 10.372 GHz spreading over a bandwidth of 1 GHz and 6.21 GHz respectively in X and C bands. The proposed metamaterial absorber is designed so as to increase the bandwidth. The proposed structure is also independent for TE and TM polarization. Because of its simple implementation, near unity absorption and wide bandwidth this dual band polarization insensitive metamaterial absorber can be used for EMI/EMC applications.

Keywords: absorber, C-band, metamaterial, multilayer, X-band

Procedia PDF Downloads 109
652 Multi-Band, Polarization Insensitive, Wide Angle Receptive Metamaterial Absorber for Microwave Applications

Authors: Lincy Stephen, N. Yogesh, G. Vasantharajan, V. Subramanian

Abstract:

This paper presents the design and simulation of a five band metamaterial absorber at microwave frequencies. The absorber unit cell consists of squares and strips arranged as the top layer and a metallic ground plane as the bottom layer on a dielectric substrate. Simulation results show five near perfect absorption bands at 3.15 GHz, 7.15 GHz, 11.12 GHz, 13.87 GHz, and 16.85 GHz with absorption magnitudes 99.68%, 99.05%, 96.98%, 98.36% and 99.44% respectively. Further, the proposed absorber exhibits polarization insensitivity and wide angle receptivity. The surface current analysis is presented to explain the mechanism of absorption in the structure. With these preferable features, the proposed absorber can be excellent choice for potential applications such as electromagnetic interference (EMI) shielding, radar cross section reduction.

Keywords: electromagnetic absorber, metamaterial, multi- band, polarization insensitive, wide angle receptive

Procedia PDF Downloads 303
651 Influence of Shock Absorber Condition on the Vertical Dynamic Load Applied on the Pavement by a Truck’s Front Suspension

Authors: Pablo Kubo, Cassio Paiva, Adelino Ferreira

Abstract:

The main objective of this research study is to present the results of the influence of shock absorber condition, from a truck front suspension, on the vertical dynamic load applied on the pavement. For the measurements, it has been used a durability test track located in Brazil. The shock absorber conditions were new, used and failed with a constant load of 6 tons on the front suspension, the maximum allowed load for front axle according to Brazilian legislation. By applying relative damage concept, it is possible to conclude that the variation on the shock absorber conditions will significantly affect the load applied on the pavement. Although, it is recommended to repeat the same methodology in order to analyze the influence on the variation of the quarter car model variants.

Keywords: damage, shock absorber, vertical dynamic load, absorber

Procedia PDF Downloads 456
650 Vibration Analysis of Power Lines with Moving Dampers

Authors: Mohammad Bukhari, Oumar Barry

Abstract:

In order to reduce the Aeolian vibration of overhead transmission lines, the Stockbridge damper is usually attached. The efficiency of Stockbridge damper depends on its location on the conductor and its resonant frequencies. When the Stockbridge damper is located on a vibration node, it becomes inefficient. Hence, the static damper should be subrogated by a dynamic one. In the present study, a proposed dynamic absorber for transmission lines is studied. Hamilton’s principle is used to derive the governing equations, then the system of ordinary differential equations is solved numerically. Parametric studies are conducted to determine how certain parameters affect the performance of the absorber. The results demonstrate that replacing the static absorber by a dynamic one enhance the absorber performance for wider range of frequencies. The results also indicate that the maximum displacement decreases as the absorber speed and the forcing frequency increase. However, this reduction in maximum displacement is accompanying with increasing in the steady state vibration displacement. It is also indicated that the energy dissipation in moving absorber covers higher range of frequencies.

Keywords: absorber performance, Aeolian vibration, Hamilton’s principle, stockbridge damper

Procedia PDF Downloads 236
649 Behavior of Laminated Plates under Mechanical Loading

Authors: Mahmoudi Noureddine

Abstract:

In this study the use of two variable refined plate theories of laminated composite plates to static response of laminated plates. The plate theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. The validity of the present theory is demonstrated by comparison with solutions available in the literature and finite element method. The result is presented for the static response of simply supported rectangular plates under uniform sinusoidal mechanical loadings.

Keywords: bending, composite, laminate, plates, fem

Procedia PDF Downloads 372
648 Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate.

Keywords: corrugated absorber, double flow, exergy efficiency, solar air heater

Procedia PDF Downloads 343
647 Analysis of the Effect of GSR on the Performance of Double Flow Corrugated Absorber Solar Air Heater

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This study investigates the effect of Global Solar Radiation (GSR) on the performance of double flow corrugated absorber solar air heater. A mathematical model of a double flow solar air heater, in which air is flowing simultaneously over and under the absorbing plate is presented and solved by developing a computer program in C++ language. The performance evaluation is studied in terms of air temperature rise, energy, effective and exergy efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that double flow effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results show that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.

Keywords: corrugated absorber, double flow, flat plate, solar air heater

Procedia PDF Downloads 314
646 Buckling Analysis of Laminated Composite Plates with Central Holes

Authors: Pratyasha Patnaik, A. V. Asha

Abstract:

Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling load

Keywords: buckling, composite plates, cut-out, stress

Procedia PDF Downloads 302
645 Approaches to Vibration Analysis of Thick Plates Subjected to Different Supports, Loadings and Boundary Conditions: A Literature Review

Authors: Fazl E. Ahad, Shi Dongyan, Anees Ur Rehman

Abstract:

Plates are one of the most important structural components used in many industries like aerospace, marine and various other engineering fields and thus motivate designers and engineers to study the vibrational characteristics of these structures. This paper is a review of existing literature on vibration analysis of plates. Focus has been kept on prominent studies related to isotropic plates based on Mindlin plate theory; however few citations on orthotropic plates and higher order shear deformation theories have also been included. All citations are in English language. This review is aimed to provide contemporarily relevant survey of papers on vibrational characteristics of thick plates and will be useful for scientists, designers and researchers to locate important and relevant literature/research quickly.

Keywords: mindlin plates, vibrations, arbitrary boundary conditions, mode shapes, natural frequency

Procedia PDF Downloads 285
644 The Effect of Global Solar Radiation on the Thermal and Thermohydraulic Performance of Double Flow Corrugated Absorber Solar Air Heater

Authors: Suresh Prasad Sharma, Som Nath Saha

Abstract:

This paper deals with the effect of Global Solar Radiation (GSR) on the performance of double flow solar air heater having corrugated plate as an absorber. An analytical model of a double flow solar air heater has been presented, and a computer program in C++ language has been developed to calculate the outlet air temperature, heat gain, pressure drop for estimating the thermal and thermohydraulic efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that the double flow arrangement effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results indicate that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.

Keywords: corrugated absorber, double flow, flat plate, solar air heater

Procedia PDF Downloads 249
643 Natural Convection between Two Parallel Wavy Plates

Authors: Si Abdallah Mayouf

Abstract:

In this work, the effects of the wavy surface on free convection heat transfer boundary layer flow between two parallel wavy plates have been studied numerically. The two plates are considered at a constant temperature. The equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm. The important parameters in this problem are the amplitude of the wavy surfaces and the distance between the two wavy plates. Results are presented as velocity profiles, temperature profiles and local Nusselt number according to the important parameters.

Keywords: free convection, wavy surface, parallel plates, fluid dynamics

Procedia PDF Downloads 274
642 Performance Evaluation of Lithium Bromide Absorption Chiller

Authors: Z. Neffah, L. Merabti, N. Hatraf

Abstract:

Absorption refrigeration technology has been used for cooling purposes over a hundred years. Today, the technology developments have made of the absorption refrigeration an economic and effective alternative to the vapour compression cooling cycle. A parametric study was conducted over the entire admissible ranges of the generator and absorber temperatures. On the other hand, simultaneously raising absorber temperatures was seen to result in deterioration of coefficient of performance. The influence of generator, absorber temperatures, as well as solution concentration on the different performance indicators was also calculated and examined.

Keywords: absorption system, Aqueous solution, chiller, water-lithium bromide

Procedia PDF Downloads 276
641 Analysis of Plates with Varying Rigidities Using Finite Element Method

Authors: Karan Modi, Rajesh Kumar, Jyoti Katiyar, Shreya Thusoo

Abstract:

This paper presents Finite Element Method (FEM) for analyzing the internal responses generated in thin rectangular plates with various edge conditions and rigidity conditions. Comparison has been made between the FEM (ANSYS software) results for displacement, stresses and moments generated with and without the consideration of hole in plate and different aspect ratios. In the end comparison for responses in plain and composite square plates has been studied.

Keywords: ANSYS, finite element method, plates, static analysis

Procedia PDF Downloads 419
640 Effect of Methylammonium Lead Iodide Layer Thickness on Performance of Perovskite Solar Cell

Authors: Chadel Meriem, Bensmaine Souhila, Chadel Asma, Bouchikhi Chaima

Abstract:

The Methylammonium Lead Iodide CH3NH3PbI3 is used in solar cell as an absorber layer since 2009. The efficiencies of these technologies have increased from 3.8% in 2009 to 29.15% in 2019. So, these technologies Methylammonium Lead Iodide is promising for the development of high-performance photovoltaic applications. Due to the high cost of the experimental of the solar cells, researchers have turned to other methods like numerical simulation. In this work, we evaluate and simulate the performance of a CH₃NH₃PbI₃ lead-based perovskite solar cell when the amount of materials of absorber layer is reduced. We show that the reducing of thickness the absorber layer influent on performance of the solar cell. For this study, the one-dimensional simulation program, SCAPS-1D, is used to investigate and analyze the performance of the perovskite solar cell. After optimization, maximum conversion efficiency was achieved with 300 nm in absorber layer.

Keywords: methylammonium lead Iodide, perovskite solar cell, caracteristic J-V, effeciency

Procedia PDF Downloads 33
639 Vibration Absorption Strategy for Multi-Frequency Excitation

Authors: Der Chyan Lin

Abstract:

Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments.

Keywords: Bessel function, bandwidth, frequency modulated excitation, vibration absorber

Procedia PDF Downloads 122
638 Failure Mechanism of Slip-Critical Connections on Curved Surface

Authors: Bae Doobyong, Yoo Jaejun, Park Ilgyu, Choi Seowon, Oh Chang Kook

Abstract:

Variation of slip coefficient in slip-critical connections of curved plates. This paper presents the results of analytical investigations of slip coefficients in slip-critical bolted connections of curved plates. It may depend on the contact stress distribution at interface and the flexibility of spliced plate. Non-linear FEM analyses have been made to simulate the behavior of bolted connections of curved plates with various radiuses of curvature and thicknesses.

Keywords: slip coefficient, curved plates, slip-critical bolted connection, radius of curvature

Procedia PDF Downloads 483
637 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

Keywords: electro-rheological fluid, semi-active vibration control, shock absorber, type 2 fuzzy control

Procedia PDF Downloads 408
636 An Analytical Method for Bending Rectangular Plates with All Edges Clamped Supported

Authors: Yang Zhong, Heng Liu

Abstract:

The decoupling method and the modified Naiver method are combined for accurate bending analysis of rectangular thick plates with all edges clamped supported. The basic governing equations for Mindlin plates are first decoupled into independent partial differential equations which can be solved separately. Using modified Navier method, the analytic solution of rectangular thick plate with all edges clamped supported is then derived. The solution method used in this paper leave out the complicated derivation for calculating coefficients and obtain the solution to problems directly. Numerical comparisons show the correctness and accuracy of the results at last.

Keywords: Mindlin plates, decoupling method, modified Navier method, bending rectangular plates

Procedia PDF Downloads 560
635 Reflection Performance of Truncated Pyramidal and Truncated Wedge Microwave Absorber Using Sugarcane Bagasse (SCB)

Authors: Liyana Zahid, Mohd Fareq Abd Malek, Ee Meng Cheng, Wei Wen Liu, Yeng Seng Lee, Muhammad Nadeem Iqbal, Fwen Hoon Wee

Abstract:

One of the parameters that affect the performance of microwave absorbers is the shape of the absorbers. This paper shows the performance (reflection loss) of truncated pyramidal and truncated wedge microwave absorbers in the range frequency between 8.2 to 12.4 GHz (X-Band) in simulation. The material used is sugarcane bagasse (SCB) which is one of the new materials that used to fabricate the microwave absorber. The complex permittivity was measured using Agilent dielectric probe technique. The designs were simulated using CST Microwave Studio Software. The reflection losses between these two shapes were compared.

Keywords: microwave absorber, reflection loss, sugarcane bagasse (SCB), X-Band

Procedia PDF Downloads 314
634 Optimizing Detection Methods for THz Bio-imaging Applications

Authors: C. Bolakis, I. S. Karanasiou, D. Grbovic, G. Karunasiri, N. Uzunoglu

Abstract:

A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved.

Keywords: bio-imaging, fine-tuned absorber, fingerprint, microbolometer

Procedia PDF Downloads 317
633 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: buckling, low yield point steel, plates, steel plate shear walls, yielding

Procedia PDF Downloads 370
632 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.

Keywords: corrugated absorber, double flow, solar air heater, thermos-hydraulic efficiency

Procedia PDF Downloads 283
631 A Closed-Form Solution and Comparison for a One-Dimensional Orthorhombic Quasicrystal and Crystal Plate

Authors: Arpit Bhardwaj, Koushik Roy

Abstract:

The work includes derivation of the exact-closed form solution for simply supported quasicrystal and crystal plates by using propagator matrix method under surface loading and free vibration. As a numerical example a quasicrystal and a crystal plate are considered, and after investigation, the variation of displacement and stress fields along the thickness of these two plates are presented. Further, it includes analyzing the displacement and stress fields for two plates having two different stacking arrangement, i.e., QuasiCrystal/Crystal/QuasiCrystal and Crystal/QuasiCrystal/Crystal and comparing their results. This will not only tell us the change in the behavior of displacement and stress fields in two different materials but also how these get changed after trying their different combinations. For the free vibration case, Crystal and Quasicrystal plates along with their different stacking arrangements are considered, and displacements are plotted in all directions for different Mode Shapes.

Keywords: free vibration, multilayered plates, surface loading, quasicrystals

Procedia PDF Downloads 115
630 Dynamics of Understanding Earthquake Precursors-A Review

Authors: Sarada Nivedita Bhuyan

Abstract:

Earthquake is the sudden, rapid movement of the earth’s crust and is the natural means of releasing stress. Tectonic plates play a major role for earthquakes as tectonic plates are the crust of the planet. The boundary lines of tectonic plates are usually known as fault lines. To understand an earthquake before its occurrence, different types of earthquake precursors are studied by different researchers. Surface temperature, strange cloud cover, earth’s electric field, geomagnetic phenomena, ground water level, active faults, ionospheric anomalies, tectonic movements are taken as parameters for earthquake study by different researchers. In this paper we tried to gather complete and helpful information of earthquake precursors which have been studied until now.

Keywords: earthquake precursors, earthquake, tectonic plates, fault

Procedia PDF Downloads 347
629 Solar Still Absorber Plate Modification and Exergy Analysis

Authors: Dudul Das, Pankaj Kalita, Sangeeta Borah

Abstract:

Freshwater availability in the world is as low as 1% of total water available and in many geographical locations dissolved fluoride and arsenic are serious problem. In India availability of freshwater will be stressed by 2025, so the availability saline water from sea is a hope for the people of Indian sub-continent, but saline water is not drinkable it need to be processed, which again require a huge amount of energy. So the most easy and handy option in such situation for all those problems is solar still, this investigation presents various scopes for improvement of its efficiency. Experiments showed that by increasing the absorber plate area through better design can increase the distillate output by two fold and by using jute wicks in the modified absorber plate increases the output up to three times that of conventional solar still available in the Department of Energy, Tezpur University. The experiment is carried out at constant water depth of 8.5 cm and glass cover inclination of 27o facing South. The exergy analysis carried out clearly resulted that with the use of jute wick and baffle plated basin the efficiency achieved more than the simple baffle plated basin. The Instantaneous exergy without jute wick ranges from 2.5% to 4.5% while using jute it ranges from 1.5% to 5.15%.

Keywords: fluoride, absorber plate, jute wick, instantaneous exergy

Procedia PDF Downloads 430
628 Buckling Behavior of FGM Plates Using a Simplified Shear Deformation Theory

Authors: Mokhtar Bouazza

Abstract:

In this paper, the simplified theory will be used to predict the thermoelastic buckling behavior of rectangular functionally graded plates. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The simplified theory is used to obtain the buckling of the plate under different types of thermal loads. The thermal loads are assumed to be uniform, linear, and non-linear distribution through the thickness. Additional numerical results are presented for FGM plates that show the effects of various parameters on thermal buckling response.

Keywords: buckling, functionally graded, plate, simplified higher-order deformation theory, thermal loading

Procedia PDF Downloads 346
627 A Model-Based Approach for Energy Performance Assessment of a Spherical Stationary Reflector/Tracking Absorber Solar Concentrator

Authors: Rosa Christodoulaki, Irene Koronaki, Panagiotis Tsekouras

Abstract:

The aim of this study is to analyze the energy performance of a spherical Stationary Reflector / Tracking Absorber (SRTA) solar concentrator. This type of collector consists of a segment of a spherical mirror placed in a stationary position facing the sun and a cylindrical absorber that tracks the sun by a simple pivoting motion about the center of curvature of the reflector. The energy analysis is performed through the development of a dynamic simulation model in TRNSYS software that calculates the annual heat production and the efficiency of the SRTA solar concentrator. The effect of solar concentrator design features and characteristics, such the reflector material, the reflector diameter, the receiver type, the solar radiation level and the concentration ratio, are discussed in details. Moreover, the energy performance curve of the SRTA solar concentrator, for various temperature differences between the mean fluid temperature and the ambient temperature and radiation intensities is drawn. The results are shown in diagrams, visualizing the effect of solar, optical and thermal parameters to the overall performance of the SRTA solar concentrator throughout the year. The analysis indicates that the SRTA solar concentrator can operate efficiently under a wide range of operating conditions.

Keywords: concentrating solar collector, energy analysis , stationary reflector, tracking absorber

Procedia PDF Downloads 174
626 Laser Welding Technique Effect for Proton Exchange Membrane Fuel Cell Application

Authors: Chih-Chia Lin, Ching-Ying Huang, Cheng-Hong Liu, Wen-Lin Wang

Abstract:

A complete fuel cell stack comprises several single cells with end plates, bipolar plates, gaskets and membrane electrode assembly (MEA) components. Electrons generated from cells are conducted through bipolar plates. The amount of cells' components increases as the stack voltage increases, complicating the fuel cell assembly process and mass production. Stack assembly error influence cell performance. PEM fuel cell stack importing laser welding technique could eliminate transverse deformation between bipolar plates to promote stress uniformity of cell components as bipolar plates and MEA. Simultaneously, bipolar plates were melted together using laser welding to decrease interface resistance. A series of experiments as through-plan and in-plan resistance measurement test was conducted to observe the laser welding effect. The result showed that the through-plane resistance with laser welding was a drop of 97.5-97.6% when the contact pressure was about 1MPa to 3 MPa, and the in-plane resistance was not significantly different for laser welding.

Keywords: PEM fuel cell, laser welding, through-plan, in-plan, resistance

Procedia PDF Downloads 470
625 Device Modelling and Analysis of Eco-friendly Inverted Solar Cell Structure Using Valency Ordered Inorganic Double Perovskite Material

Authors: Sindhu S Nair, Atul Thakur, Preeti Thakur, Trukhanov Alex

Abstract:

Perovskite-based absorbing materials that are organic, inorganic, or hybrid have gained interest as an appealing candidate for the development of solar cell devices. Lead-based perovskites are among the most promising materials, but their application is plagued with toxicity and stability concerns. Most of the perovskite solar cell consists of conventional (n-i-p) structure with organic or inorganic charge transport materials. The commercial application of such device is limited due to higher J-V hysteresis and the need for high temperature during fabrication. This numerical analysis primarily directs to investigate the performance of various inorganic lead-free valency ordered double perovskite absorber materials and to develop an inverted perovskite solar cell device structure. Simulation efforts using SCAPS-1D was carried out with various organic and inorganic charge transport materials with absorber layer materials, and their performance has been evaluated for various factors of thickness, absorber thickness, absorber defect density, and interface defect density to achieve the optimized structure.

Keywords: perovskite materials, solar cell, inverted solar cell, inorganic perovskite solar cell materials, cell efficiency

Procedia PDF Downloads 45