Search results for: typing efficiency
3110 Turbulence Modeling of Source and Sink Flows
Authors: Israt Jahan Eshita
Abstract:
Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.Keywords: hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow, wall y+
Procedia PDF Downloads 5383109 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: building system, time series, diagnosis, outliers, delay, data gap
Procedia PDF Downloads 2453108 Development and Implementation of An "Electric Island" Monitoring Infrastructure for Promoting Energy Efficiency in Schools
Authors: Vladislav Grigorovitch, Marina Grigorovitch, David Pearlmutter, Erez Gal
Abstract:
The concept of “electric island” is involved with achieving the balance between the self-power generation ability of each educational institution and energy consumption demand. Photo-Voltaic (PV) solar system installed on the roofs of educational buildings is a common way to absorb the available solar energy and generate electricity for self-consumption and even for returning to the grid. The main objective of this research is to develop and implement an “electric island” monitoring infrastructure for promoting energy efficiency in educational buildings. A microscale monitoring methodology will be developed to provide a platform to estimate energy consumption performance classified by rooms and subspaces rather than the more common macroscale monitoring of the whole building. The monitoring platform will be established on the experimental sites, enabling an estimation and further analysis of the variety of environmental and physical conditions. For each building, separate measurement configurations will be applied taking into account the specific requirements, restrictions, location and infrastructure issues. The direct results of the measurements will be analyzed to provide deeper understanding of the impact of environmental conditions and sustainability construction standards, not only on the energy demand of public building, but also on the energy consumption habits of the children that study in those schools and the educational and administrative staff that is responsible for providing the thermal comfort conditions and healthy studying atmosphere for the children. A monitoring methodology being developed in this research is providing online access to real-time data of Interferential Therapy (IFTs) from any mobile phone or computer by simply browsing the dedicated website, providing powerful tools for policy makers for better decision making while developing PV production infrastructure to achieve “electric islands” in educational buildings. A detailed measurement configuration was technically designed based on the specific conditions and restriction of each of the pilot buildings. A monitoring and analysis methodology includes a large variety of environmental parameters inside and outside the schools to investigate the impact of environmental conditions both on the energy performance of the school and educational abilities of the children. Indoor measurements are mandatory to acquire the energy consumption data, temperature, humidity, carbon dioxide and other air quality conditions in different parts of the building. In addition to that, we aim to study the awareness of the users to the energy consideration and thus the impact on their energy consumption habits. The monitoring of outdoor conditions is vital for proper design of the off-grid energy supply system and validation of its sufficient capacity. The suggested outcomes of this research include: 1. both experimental sites are designed to have PV production and storage capabilities; 2. Developing an online information feedback platform. The platform will provide consumer dedicated information to academic researchers, municipality officials and educational staff and students; 3. Designing an environmental work path for educational staff regarding optimal conditions and efficient hours for operating air conditioning, natural ventilation, closing of blinds, etc.Keywords: sustainability, electric island, IOT, smart building
Procedia PDF Downloads 1793107 Status of Bio-Graphene Extraction from Biomass: A Review
Authors: Simon Peter Wafula, Ziporah Nakabazzi Kitooke
Abstract:
Graphene is a carbon allotrope made of a two-dimensional shape. This material has got a number of materials researchers’ interest due to its properties that are special compared to ordinary material. Graphene is thought to enhance a number of material properties in the manufacturing, energy, and construction industries. Many studies consider graphene to be a wonder material, just like plastic in the 21st century. This shows how much should be invested in graphene research. This review highlights the status of graphene extracted from various biomass sources together with their appropriate extraction techniques, including the pretreatment methods for a better product. The functional groups and structure of graphene extracted using several common methods of synthesis are in this paper as well. The review explores methods like chemical vapor deposition (CVD), hydrothermal, chemical exfoliation method, liquid exfoliation, and Hummers. Comparative analysis of the various extraction techniques gives an insight into each of their advantages, challenges, and potential scalability. The review also highlights the pretreatment process for biomass before carbonation for better quality of bio-graphene. The various graphene modes, as well as their applications, are in this study. Recommendations for future research for improving the efficiency and sustainability of bio-graphene are highlighted.Keywords: exfoliation, nanomaterials, biochar, large-scale, two-dimension
Procedia PDF Downloads 493106 Cost-Optimized Extra-Lateral Transshipments
Authors: Dilupa Nakandala, Henry Lau
Abstract:
Ever increasing demand for cost efficiency and customer satisfaction through reliable delivery have been a mandate for logistics practitioners to continually improve inventory management processes. With the cost optimization objectives, this study considers an extended scenario where sourcing from the same echelon of the supply chain, known as lateral transshipment which is instantaneous but more expensive than purchasing from regular suppliers, is considered by warehouses not only to re-actively fulfill the urgent outstanding retailer demand that could not be fulfilled by stock on hand but also for preventively reduce back-order cost. Such extra lateral trans-shipments as preventive responses are intended to meet the expected demand during the supplier lead time in a periodic review ordering policy setting. We develop decision rules to assist logistics practitioners to make cost optimized selection between back-ordering and combined reactive and proactive lateral transshipment options. A method for determining the optimal quantity of extra lateral transshipment is developed considering the trade-off between purchasing, holding and backorder cost components.Keywords: lateral transshipment, warehouse inventory management, cost optimization, preventive transshipment
Procedia PDF Downloads 6163105 Enhancing Strategic Counter-Terrorism: Understanding How Familial Leadership Influences the Resilience of Terrorist and Insurgent Organizations in Asia
Authors: Andrew D. Henshaw
Abstract:
The research examines the influence of familial and kinship based leadership on the resilience of politically violent organizations. Organizations of this type frequently fight in the same conflicts though are called 'terrorist' or 'insurgent' depending on political foci of the time, and thus different approaches are used to combat them. The research considers them correlated phenomena with significant overlap and identifies strengths and vulnerabilities in resilience processes. The research employs paired case studies to examine resilience in organizations under significant external pressure, and achieves this by measuring three variables. 1: Organizational robustness in terms of leadership and governance. 2. Bounce-back response efficiency to external pressures and adaptation to endogenous and exogenous shock. 3. Perpetuity of operational and attack capability, and political legitimacy. The research makes three hypotheses. First, familial/kinship leadership groups have a significant effect on organizational resilience in terms of informal operations. Second, non-familial/kinship organizations suffer in terms of heightened security transaction costs and social economics surrounding recruitment, retention, and replacement. Third, resilience in non-familial organizations likely stems from critical external supports like state sponsorship or powerful patrons, rather than organic resilience dynamics. The case studies pair familial organizations with non-familial organizations. Set 1: The Haqqani Network (HQN) - Pair: Lashkar-e-Toiba (LeT). Set 2: Jemaah Islamiyah (JI) - Pair: The Abu Sayyaf Group (ASG). Case studies were selected based on three requirements, being: contrasting governance types, exposure to significant external pressures and, geographical similarity. The case study sets were examined over 24 months following periods of significantly heightened operational activities. This enabled empirical measurement of the variables as substantial external pressures came into force. The rationale for the research is obvious. Nearly all organizations have some nexus of familial interconnectedness. Examining familial leadership networks does not provide further understanding of how terrorism and insurgency originate, however, the central focus of the research does address how they persist. The sparse attention to this in existing literature presents an unexplored yet important area of security studies. Furthermore, social capital in familial systems is largely automatic and organic, given at birth or through kinship. It reduces security vetting cost for recruits, fighters and supporters which lowers liabilities and entry costs, while raising organizational efficiency and exit costs. Better understanding of these process is needed to exploit strengths into weaknesses. Outcomes and implications of the research have critical relevance to future operational policy development. Increased clarity of internal trust dynamics, social capital and power flows are essential to fracturing and manipulating kinship nexus. This is highly valuable to external pressure mechanisms such as counter-terrorism, counterinsurgency, and strategic intelligence methods to penetrate, manipulate, degrade or destroy the resilience of politically violent organizations.Keywords: Counterinsurgency (COIN), counter-terrorism, familial influence, insurgency, intelligence, kinship, resilience, terrorism
Procedia PDF Downloads 3133104 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life
Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar
Abstract:
In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home
Procedia PDF Downloads 1133103 Measurement of Convective Heat Transfer from a Vertical Flat Plate Using Mach-Zehnder Interferometer with Wedge Fringe Setting
Authors: Divya Haridas, C. B. Sobhan
Abstract:
Laser interferometric methods have been utilized for the measurement of natural convection heat transfer from a heated vertical flat plate, in the investigation presented here. The study mainly aims at comparing two different fringe orientations in the wedge fringe setting of Mach-Zehnder interferometer (MZI), used for the measurements. The interference fringes are set in horizontal and vertical orientations with respect to the heated surface, and two different fringe analysis methods, namely the stepping method and the method proposed by Naylor and Duarte, are used to obtain the heat transfer coefficients. The experimental system is benchmarked with theoretical results, thus validating its reliability in heat transfer measurements. The interference fringe patterns are analyzed digitally using MATLAB 7 and MOTIC Plus softwares, which ensure improved efficiency in fringe analysis, hence reducing the errors associated with conventional fringe tracing. The work also discuss the relative merits and limitations of the two methods used.Keywords: Mach-Zehnder interferometer (MZI), natural convection, Naylor method, Vertical Flat Plate
Procedia PDF Downloads 3643102 Platform-as-a-Service Sticky Policies for Privacy Classification in the Cloud
Authors: Maha Shamseddine, Amjad Nusayr, Wassim Itani
Abstract:
In this paper, we present a Platform-as-a-Service (PaaS) model for controlling the privacy enforcement mechanisms applied on user data when stored and processed in Cloud data centers. The proposed architecture consists of establishing user configurable ‘sticky’ policies on the Graphical User Interface (GUI) data-bound components during the application development phase to specify the details of privacy enforcement on the contents of these components. Various privacy classification classes on the data components are formally defined to give the user full control on the degree and scope of privacy enforcement including the type of execution containers to process the data in the Cloud. This not only enhances the privacy-awareness of the developed Cloud services, but also results in major savings in performance and energy efficiency due to the fact that the privacy mechanisms are solely applied on sensitive data units and not on all the user content. The proposed design is implemented in a real PaaS cloud computing environment on the Microsoft Azure platform.Keywords: privacy enforcement, platform-as-a-service privacy awareness, cloud computing privacy
Procedia PDF Downloads 2273101 Determination and Evaluation of the Need of Land Consolidation for Nationalization Purpose with the Survey Results
Authors: Turgut Ayten, Tayfun Çay, Demet Ayten
Abstract:
In this research, nationalization method for obtaining land on the destination of Ankara-Konya High Speed Train in Turkey; Land consolidation for nationalization purpose as an alternative solution on obtaining land; a survey prepared for land owners whose lands were nationalized and institution officials who carries out the nationalization and land consolidation was applied, were investigated and the need for land consolidation for nationalization purpose is tried to be put forth. Study area is located in the Konya city- Kadınhanı district-Kolukısa and Sarikaya neighbourhood in Turkey and land consolidation results of the selected field which is on the destination of the high-speed train route were obtained. The data obtained was shared with the landowners in the research area, their choice between the nationalization method and land consolidation for nationalization method was questioned. In addition, the organization and institution officials who are accepted to used primarily by the state for obtaining land that are needed for the investments of state, and institution officials who make land consolidation were investigated on the issues of the efficiency of the methods they used and if they tried different methods.Keywords: nationalization, land consolidation, land consolidation for nationalization
Procedia PDF Downloads 3243100 The Effect of Combustion Chamber Deposits (CCD) on Homogeneous Change Compression Ignition (HCCI)
Authors: Abdulmagid A. Khattabi, Ahmed A. Hablus, Osama Ab. M. Shafah
Abstract:
The goal of this work is to understand how the thermal influence of combustion chamber deposits can be utilized to expand the operating range of HCCI combustion. In order to do this, two main objectives must first be met; tracking deposit formation trends in an HCCI engine and determining the sensitivity of HCCI combustion to CCD. This requires testing that demonstrates the differences in combustion between a clean engine and one with deposits coating the chamber. This will involve a long-term test that tracks the effects of CCD on combustion. The test will start with a clean engine. One baseline HCCI operating point is maintained for the duration of the test during which gradual combustion chamber deposit formation will occur. Combustion parameters, including heat release rates and emissions will be tracked for the duration and compared to the case of a clean engine. This work will begin by detailing the specifics of the test procedure and measurements taken throughout the test. Then a review of the effects of the gradual formation of deposits in the engine will be given.Keywords: fuels, fuel atomization, pattern factor, alternate fuels combustion, efficiency gas turbine combustion, lean blow out, exhaust and liner wall temperature
Procedia PDF Downloads 5273099 Effect of Electrodes Spacing on Energy Consumption of Electrocoagulation Cells
Authors: Khalid S. Hashim, Andy Shaw, Rafid Al-Khaddar, Montserrat Ortoneda Pedrola
Abstract:
In spite of the acknowledged advantages of the electrocoagulation (EC) method to remove a wide range of pollutants from waters and wastewaters, its efficiency is limited by several operational parameters (such as electrolysis time, current density, electrode material, distance between electrodes, and water temperature). Hence, optimizing these key operating parameters is considered a vital step to remove a pollutant efficiently. In this context, the present study has been carried out to explore the influence of electrodes spacing on energy consumption, temperature of the water being treated, and iron removal from water. To achieve this target, iron containing synthetic water samples were electrolysed for 20 min, using a new flow column electrocoagulation reactor (FCER), at three different gaps between electrodes (5, 10, and 20 mm). These batch experiments were commenced at a constant current density of 1.5 mA/cm² and initial pH of 6. The obtained results demonstrated that increasing gap between electrodes negatively influenced the performance of the EC method. It was found that increasing the gap between electrodes from 5 to 20 mm increased the energy consumption from about 3.3 to 7.3 kW.h/m³, and water temperature from 20.2 to 22 °C, respectively. In addition, it has been found, after 20 min of electrolysing, that increasing the gap between electrodes from 5 to 20 mm increased the residual iron concentration from 0.05 to 1.01 mg/L, respectively.Keywords: electrocoagulation, water, electrodes, iron
Procedia PDF Downloads 2643098 Research on Robot Adaptive Polishing Control Technology
Authors: Yi Ming Zhang, Zhan Xi Wang, Hang Chen, Gang Wang
Abstract:
Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. It is more and more necessary to replace manual polishing with robot polishing. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a new type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model shows that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.Keywords: robot polishing, force feedback, impedance control, adaptive control
Procedia PDF Downloads 1993097 Co-Limitation of Iron Deficiency in Stem Allantoin and Amino-N Formation of Peanut Plants Intercropped with Cassava
Authors: Hong Li, Tingxian Li, Xudong Wang, Weibo Yang
Abstract:
Co-limitation of iron (Fe) deficiency in legume nitrogen fixation process is not well understood. Our objectives were to examine how peanut plants cope with Fe deficiency with the rhizobial inoculants and N-nutrient treatments. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 4.6±0.7) and deficient in Fe (9.2±2.3 mg/kg). Peanut plants were intercropped with cassava. The inoculants and N treatments were arranged in a split-plot design with three blocks. Peanut root nodulation, stem allantoin, amino acids and plant N derived from fixation (P) reduced with declining soil Fe concentrations. The treatment interactions were significant on relative ureide % and peanut yields (P<0.05). Residual fixed N from peanut plants was beneficial to cassava plants. It was concluded that co-variance of Fe deficiency could influence peanut N fixation efficiency and rhizobia and N inputs could help improving peanut tolerance to Fe deficiency stress.Keywords: amino acids, plant N derived from N fixation, root nodulation, soil Fe co-variance, stem ureide, peanuts, cassava
Procedia PDF Downloads 2943096 Improved Acoustic Source Sensing and Localization Based On Robot Locomotion
Authors: V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
This paper presents different methodology for an acoustic source sensing and localization in an unknown environment. The developed methodology includes an acoustic based sensing and localization system, a converging target localization based on the recursive direction of arrival (DOA) error minimization, and a regressive obstacle avoidance function. Our method is able to augment the existing proven localization techniques and improve results incrementally by utilizing robot locomotion and is capable of converging to a position estimate with greater accuracy using fewer measurements. The results also evinced the DOA error minimization at each iteration, improvement in time for reaching the destination and the efficiency of this target localization method as gradually converging to the real target position. Initially, the system is tested using Kinect mounted on turntable with DOA markings which serve as a ground truth and then our approach is validated using a FireBird VI (FBVI) mobile robot on which Kinect is used to obtain bearing information.Keywords: acoustic source localization, acoustic sensing, recursive direction of arrival, robot locomotion
Procedia PDF Downloads 4923095 Experimentally Validated Analytical Model for Thermal Analysis of Multi-Stage Depressed Collector
Authors: Vishant Gahlaut, A Mercy Latha, Sanjay Kumar Ghosh
Abstract:
Multi-stage depressed collectors (MDC) are used as an efficiency enhancement technique in traveling wave tubes the high-energy electron beam, after its interaction with the RF signal, gets velocity sorted and collected at various depressed electrodes of the MDC. The ultimate goal is to identify an optimum thermal management scheme (cooling mechanism) that could extract the heat efficiently from the electrodes. Careful thermal analysis, incorporating the cooling mechanism is required to ensure that the maximum temperature does not exceed the safe limits. A simple analytical model for quick prediction of the thermal has been developed. The model has been developed for the worst-case un-modulated DC condition, where all the thermal power is dissipated in the last electrode (typically, fourth electrode in the case of the four-stage depressed collector). It considers the thermal contact resistances at various braze joints accounting for the practical non-uniformities. Analytical results obtained from the model have been validated with simulated and experimental results.Keywords: multi-stage depressed collector, TWTs, thermal contact resistance, thermal management
Procedia PDF Downloads 2243094 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption
Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed
Abstract:
In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.Keywords: optimization, neural networks, real-time scheduling, low-power consumption
Procedia PDF Downloads 3713093 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability
Procedia PDF Downloads 3233092 High Performance Fibre Reinforced Alkali Activated Slag Concrete
Authors: A. Sivakumar, K. Srinivasan
Abstract:
The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.Keywords: accelerators, alkali activators, geopolymer, hot air oven curing, polypropylene fibres, slag, steam curing, steel fibres
Procedia PDF Downloads 2733091 Ceramic Membrane Filtration Technologies for Oilfield Produced Water Treatment
Authors: Mehrdad Ebrahimi, Oliver Schmitz, Axel Schmidt, Peter Czermak
Abstract:
“Produced water” (PW) is any fossil water that is brought to the surface along with crude oil or natural gas. By far, PW is the largest waste stream by volume associated with oil and gas production operations. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging PW on the environment has lately become a significant issue of environmental concerns. Therefore, there is a need for new technologies for PW treatment due to increase focus on water conservation and environmental regulation. The use of membrane processes for treatment of PW has several advantages over many of the traditional separation techniques. In oilfield produced water treatment with ceramic membranes, process efficiency is characterized by the specific permeate flux and by the oil separation performance. Apart from the membrane properties, the permeate flux during filtration of oily wastewaters is known to be strongly dependent on the constituents of the feed solution, as well as on process conditions, e.g. trans-membrane pressure (TMP) and cross-flow velocity (CFV). The research project presented in these report describes the application of different ceramic membrane filtration technologies for the efficient treatment of oil-field produced water and different model oily solutions.Keywords: ceramic membrane, membrane fouling, oil rejection, produced water treatment
Procedia PDF Downloads 1833090 Effect of Dietary Supplementation of Ashwagandha (Withania somnifera) on Performance of Commercial Layer Hens
Authors: P. Arun Subhash, B. N. Suresh, M. C. Shivakumar, N. Suma
Abstract:
An experiment was conducted to study the effect of dietary supplementation of ashwagandha (Withania somnifera) root powder on the egg production performance and egg quality in commercial layer birds. A practical type layer diet was prepared as per Bureau of Indian Standards (1992) to serve as the control, and the test diet was prepared by supplementing control diet with ashwagandha powder at 1kg/ton of feed. Each diet was assigned to twenty replicate groups of 5 laying hens each for duration of 84 days. The result revealed that cumulative egg production (%) was comparable between control and test group. The feed consumption and its conversion efficiency were similar among both the groups. The egg weight and egg characteristics viz., yolk index, yolk color, haugh unit score, albumen index, egg shape index and eggshell thickness were also remained similar between both the groups. It was concluded that supplementation of ashwagandha powder at 1kg/ton in layer diets has no beneficial effect on egg production and egg quality parameters.Keywords: ashwagandha, egg production, egg quality, layers
Procedia PDF Downloads 1473089 Degradation of Diclofenac in Water Using FeO-Based Catalytic Ozonation in a Modified Flotation Cell
Authors: Miguel A. Figueroa, José A. Lara-Ramos, Miguel A. Mueses
Abstract:
Pharmaceutical residues are a section of emerging contaminants of anthropogenic origin that are present in a myriad of waters with which human beings interact daily and are starting to affect the ecosystem directly. Conventional waste-water treatment systems are not capable of degrading these pharmaceutical effluents because their designs cannot handle the intermediate products and biological effects occurring during its treatment. That is why it is necessary to hybridize conventional waste-water systems with non-conventional processes. In the specific case of an ozonation process, its efficiency highly depends on a perfect dispersion of ozone, long times of interaction of the gas-liquid phases and the size of the ozone bubbles formed through-out the reaction system. In order to increase the efficiency of these parameters, the use of a modified flotation cell has been proposed recently as a reactive system, which is used at an industrial level to facilitate the suspension of particles and spreading gas bubbles through the reactor volume at a high rate. The objective of the present work is the development of a mathematical model that can closely predict the kinetic rates of reactions taking place in the flotation cell at an experimental scale by means of identifying proper reaction mechanisms that take into account the modified chemical and hydrodynamic factors in the FeO-catalyzed Ozonation of Diclofenac aqueous solutions in a flotation cell. The methodology is comprised of three steps: an experimental phase where a modified flotation cell reactor is used to analyze the effects of ozone concentration and loading catalyst over the degradation of Diclofenac aqueous solutions. The performance is evaluated through an index of utilized ozone, which relates the amount of ozone supplied to the system per milligram of degraded pollutant. Next, a theoretical phase where the reaction mechanisms taking place during the experiments must be identified and proposed that details the multiple direct and indirect reactions the system goes through. Finally, a kinetic model is obtained that can mathematically represent the reaction mechanisms with adjustable parameters that can be fitted to the experimental results and give the model a proper physical meaning. The expected results are a robust reaction rate law that can simulate the improved results of Diclofenac mineralization on water using the modified flotation cell reactor. By means of this methodology, the following results were obtained: A robust reaction pathways mechanism showcasing the intermediates, free-radicals and products of the reaction, Optimal values of reaction rate constants that simulated Hatta numbers lower than 3 for the system modeled, degradation percentages of 100%, TOC (Total organic carbon) removal percentage of 69.9 only requiring an optimal value of FeO catalyst of 0.3 g/L. These results showed that a flotation cell could be used as a reactor in ozonation, catalytic ozonation and photocatalytic ozonation processes, since it produces high reaction rate constants and reduces mass transfer limitations (Ha > 3) by producing microbubbles and maintaining a good catalyst distribution.Keywords: advanced oxidation technologies, iron oxide, emergent contaminants, AOTS intensification
Procedia PDF Downloads 1123088 Electrochemical Coagulation of Synthetic Textile Dye Wastewater
Authors: H. B. Rekha, Usha N. Murthy, Prashanth, Ashoka
Abstract:
Dyes are manufactured to have high chemical resistance because they are normally species, very difficult to degrade (reactive dyes). It damages flora and fauna. Furthermore, coloured components are highly hazardous. So removal of dyes becomes a challenge for both textile industry and water treatment facility. Dyeing wastewater is usually treated by conventional methods such as biological oxidation and adsorption but nowadays them becoming in-adequate because of large variability of composition of waste water. In the present investigation, mild steel electrodes of varying surface area were used for treatment of synthetic textile dye. It appears that electro-chemical coagulation could be very effective in removing coloured from wastewater; it could also be used to remove other parameters like chlorides, COD, and solids to some extent. In the present study, coloured removal up to 99% was obtained for surface area of mild steel electrode of 80 cm2 and 96% of surface area of mild steel electrode of 50 cm2. The findings from this study could be used to improve the design of electro-chemical treatment systems and modify existing systems to improve efficiency.Keywords: electrochemical coagulation, mild steel, colour, environmental engineering
Procedia PDF Downloads 3073087 5G Future Hyper-Dense Networks: An Empirical Study and Standardization Challenges
Authors: W. Hashim, H. Burok, N. Ghazaly, H. Ahmad Nasir, N. Mohamad Anas, A. F. Ismail, K. L. Yau
Abstract:
Future communication networks require devices that are able to work on a single platform but support heterogeneous operations which lead to service diversity and functional flexibility. This paper proposes two cognitive mechanisms termed cognitive hybrid function which is applied in multiple broadband user terminals in order to maintain reliable connectivity and preventing unnecessary interferences. By employing such mechanisms especially for future hyper-dense network, we can observe their performances in terms of optimized speed and power saving efficiency. Results were obtained from several empirical laboratory studies. It was found that selecting reliable network had shown a better optimized speed performance up to 37% improvement as compared without such function. In terms of power adjustment, our evaluation of this mechanism can reduce the power to 5dB while maintaining the same level of throughput at higher power performance. We also discuss the issues impacting future telecommunication standards whenever such devices get in place.Keywords: dense network, intelligent network selection, multiple networks, transmit power adjustment
Procedia PDF Downloads 3763086 Impact of Primary Care Telemedicine Consultations On Health Care Resource Utilisation: A Systematic Review
Authors: Anastasia Constantinou, Stephen Morris
Abstract:
Background: The adoption of synchronous and asynchronous telemedicine modalities for primary care consultations has exponentially increased since the COVID-19 pandemic. However, there is limited understanding of how virtual consultations influence healthcare resource utilization and other quality measures including safety, timeliness, efficiency, patient and provider satisfaction, cost-effectiveness and environmental impact. Aim: Quantify the rate of follow-up visits, emergency department visits, hospitalizations, request for investigations and prescriptions and comment on the effect on different quality measures associated with different telemedicine modalities used for primary care services and primary care referrals to secondary care Design and setting: Systematic review in primary care Methods: A systematic search was carried out across three databases (Medline, PubMed and Scopus) between August and November 2023, using terms related to telemedicine, general practice, electronic referrals, follow-up, use and efficiency and supported by citation searching. This was followed by screening according to pre-defined criteria, data extraction and critical appraisal. Narrative synthesis and metanalysis of quantitative data was used to summarize findings. Results: The search identified 2230 studies; 50 studies are included in this review. There was a prevalence of asynchronous modalities in both primary care services (68%) and referrals from primary care to secondary care (83%), and most of the study participants were females (63.3%), with mean age of 48.2. The average follow-up for virtual consultations in primary care was 28.4% (eVisits: 36.8%, secure messages 18.7%, videoconference 23.5%) with no significant difference between them or F2F consultations. There was an average annual reduction of primary care visits by 0.09/patient, an increase in telephone visits by 0.20/patient, an increase in ED encounters by 0.011/patient, an increase in hospitalizations by 0.02/patient and an increase in out of hours visits by 0.019/patient. Laboratory testing was requested on average for 10.9% of telemedicine patients, imaging or procedures for 5.6% and prescriptions for 58.7% of patients. When looking at referrals to secondary care, on average 36.7% of virtual referrals required follow-up visit, with the average rate of follow-up for electronic referrals being higher than for videoconferencing (39.2% vs 23%, p=0.167). Technical failures were reported on average for 1.4% of virtual consultations to primary care. When using carbon footprint estimates, we calculate that the use of telemedicine in primary care services can potentially provide a net decrease in carbon footprint by 0.592kgCO2/patient/year. When follow-up rates are taken into account, we estimate that virtual consultations reduce carbon footprint for primary care services by 2.3 times, and for secondary care referrals by 2.2 times. No major concerns regarding quality of care, or patient satisfaction were identified. 5/7 studies that addressed cost-effectiveness, reported increased savings. Conclusions: Telemedicine provides quality, cost-effective, and environmentally sustainable care for patients in primary care with inconclusive evidence regarding the rates of subsequent healthcare utilization. The evidence is limited by heterogeneous, small-scale studies and lack of prospective comparative studies. Further research to identify the most appropriate telemedicine modality for different patient populations, clinical presentations, service provision (e.g. used to follow-up patients instead of initial diagnosis) as well as further education for patients and providers alike on how to make best use of this service is expected to improve outcomes and influence practice.Keywords: telemedicine, healthcare utilisation, digital interventions, environmental impact, sustainable healthcare
Procedia PDF Downloads 573085 Energy Box Programme in the Netherlands
Authors: B. E. Weber, N. Vrielink, M. G. Rietbergen
Abstract:
This paper explores the long-term effects of the Energy Box trajectory on households in the private rental sector, specifically households experiencing energy poverty. The concept of energy poverty has been getting increasing attention among policymakers over the past few years. In the Netherlands, as far as we know, there are no national policies on alleviating energy poverty, which negatively impacts energy-poor households. The Energy Box can help households experiencing energy poverty by stimulating them to improve the energy efficiency of their home by changing their energy-saving behavior. Important long-term effects are that respondents indicate that they live in a more environmentally friendly way and that they save money on their energy bills. Households feel engaged with the concept of energy-saving and can see the benefits of changing their energy-saving behavior. Respondents perceived the Energy Box as a means to live more environmentally friendly, instead of it solely being a means to save money on energy bills. The findings show that most respondents signed up for the Energy Box are interested in energy-saving as a lifestyle choice instead of a financial choice, which would likely be the case for households experiencing energy poverty.Keywords: energy-saving behavior, energy poverty, poverty, private rental sector
Procedia PDF Downloads 1153084 Cadmium Adsorption by Modified Magnetic Biochar
Authors: Chompoonut Chaiyaraksa, Chanida Singbubpha, Kliaothong Angkabkingkaew, Thitikorn Boonyasawin
Abstract:
Heavy metal contamination in an environment is an important problem in Thailand that needs to be addressed urgently, particularly contaminated with water. It can spread to other environments faster. This research aims to study the adsorption of cadmium ion by unmodified biochar and sodium dodecyl sulfate modified magnetic biochar derived from Eichhornia Crassipes. The determination of the adsorbent characteristics was by Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, X-ray Diffractometer, and the pH drift method. This study also included the comparison of adsorption efficiency of both types of biochar, adsorption isotherms, and kinetics. The pH value at the point of zero charges of the unmodified biochar and modified magnetic biochar was 7.40 and 3.00, respectively. The maximum value of adsorption reached when using pH 8. The equilibrium adsorption time was 5 hours and 1 hour for unmodified biochar and modified magnetic biochar, respectively. The cadmium adsorption by both adsorbents followed Freundlich, Temkin, and Dubinin – Radushkevich isotherm model and the pseudo-second-order kinetic. The adsorption process was spontaneous at high temperatures and non-spontaneous at low temperatures. It was an endothermic process, physisorption in nature, and can occur naturally.Keywords: Eichhornia crassipes, magnetic biochar, sodium dodecyl sulfate, water treatment
Procedia PDF Downloads 1723083 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh
Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun
Abstract:
Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization
Procedia PDF Downloads 1853082 Development of Analytical Systems for Nurses in Kenya
Authors: Peris Wanjiku
Abstract:
The objective of this paper is to describe the development and implications of a national nursing workforce analytical system in Kenya. Findings: Creating a national electronic nursing workforce analytical system provides more reliable information on nurses ‘national demographics, migration patterns, and workforce capacity and efficiency. Data analysis is most useful for human resources for health (HRH) planning when workforce capacity data can be linked to worksite staffing requirements. As a result of establishing this database, the Kenya Ministry of Health has improved its capability to assess its nursing workforce and document important workforce trends, such as out-migration. Current data identify the United States as the leading recipient country of Kenyan nurses. The overwhelming majority of Kenyan nurses who decide to out-migrate are amongst Kenya’s most qualified. Conclusions: The Kenya nursing database is a first step toward facilitating evidence-based decision-making in HRH. This database is unique to developing countries in sub-Saharan Africa. Establishing an electronic workforce database requires long-term investment and sustained support by national and global stakeholders.Keywords: analytical, information, health, migration
Procedia PDF Downloads 963081 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments
Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro
Abstract:
Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.Keywords: lean manufacturing, DOE, value stream mapping, textiles
Procedia PDF Downloads 455