Search results for: electrochemical coagulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 865

Search results for: electrochemical coagulation

865 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium

Authors: Kartikaningsih Danis, Yao-Hui Huang

Abstract:

Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.

Keywords: boron removal, chemical coagulation, aluminum, electro-coagulation

Procedia PDF Downloads 368
864 Electrochemical Coagulation of Synthetic Textile Dye Wastewater

Authors: H. B. Rekha, Usha N. Murthy, Prashanth, Ashoka

Abstract:

Dyes are manufactured to have high chemical resistance because they are normally species, very difficult to degrade (reactive dyes). It damages flora and fauna. Furthermore, coloured components are highly hazardous. So removal of dyes becomes a challenge for both textile industry and water treatment facility. Dyeing wastewater is usually treated by conventional methods such as biological oxidation and adsorption but nowadays them becoming in-adequate because of large variability of composition of waste water. In the present investigation, mild steel electrodes of varying surface area were used for treatment of synthetic textile dye. It appears that electro-chemical coagulation could be very effective in removing coloured from wastewater; it could also be used to remove other parameters like chlorides, COD, and solids to some extent. In the present study, coloured removal up to 99% was obtained for surface area of mild steel electrode of 80 cm2 and 96% of surface area of mild steel electrode of 50 cm2. The findings from this study could be used to improve the design of electro-chemical treatment systems and modify existing systems to improve efficiency.

Keywords: electrochemical coagulation, mild steel, colour, environmental engineering

Procedia PDF Downloads 279
863 The Effectiveness of Pretreatment Methods on COD and Ammonia Removal from Landfill Leachate

Authors: M. Poveda, S. Lozecznik, J. Oleszkiewicz, Q. Yuan

Abstract:

The goal of this experiment is to evaluate the effectiveness of different leachate pre-treatment options in terms of COD and ammonia removal. This research focused on the evaluation of physical-chemical methods for pre-treatment of leachate that would be effective and rapid in order to satisfy the requirements of the sewer discharge by-laws. The four pre-treatment options evaluated were: air stripping, chemical coagulation, electro-coagulation and advanced oxidation with sodium ferrate. Chemical coagulation reported the best COD removal rate at 43%, compared to 18 % for both air stripping and electro-coagulation, and 20 % for oxidation with sodium ferrate. On the other hand, air stripping was far superior to the other treatment options in terms of ammonia removal with 86 %. Oxidation with sodium ferrate reached only 16 %, while chemical coagulation and electro-coagulation removed less than 10 %. When combined, air stripping and chemical coagulation removed up to 50 % COD and 85 % ammonia.

Keywords: leachate pretreatment, air stripping, chemical coagulation, electro-coagulation, oxidation

Procedia PDF Downloads 796
862 Dairy Wastewater Treatment by Electrochemical and Catalytic Method

Authors: Basanti Ekka, Talis Juhna

Abstract:

Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.

Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide

Procedia PDF Downloads 102
861 Lamb Wave-Based Blood Coagulation Measurement System Using Citrated Plasma

Authors: Hyunjoo Choi, Jeonghun Nam, Chae Seung Lim

Abstract:

Acoustomicrofluidics has gained much attention due to the advantages, such as noninvasiveness and easy integration with other miniaturized systems, for clinical and biological applications. However, a limitation of acoustomicrofluidics is the complicated and costly fabrication process of electrodes. In this study, we propose a low-cost and lithography-free device using Lamb wave for blood analysis. Using a Lamb wave, calcium ion-removed blood plasma and coagulation reagents can be rapidly mixed for blood coagulation test. Due to the coagulation process, the viscosity of the sample increases and the viscosity change can be monitored by internal acoustic streaming of microparticles suspended in the sample droplet. When the acoustic streaming of particles stops by the viscosity increase is defined as the coagulation time. With the addition of calcium ion at 0-25 mM, the coagulation time was measured and compared with the conventional index for blood coagulation analysis, prothrombin time, which showed highly correlated with the correlation coefficient as 0.94. Therefore, our simple and cost-effective Lamb wave-based blood analysis device has the powerful potential to be utilized in clinical settings.

Keywords: acoustomicrofluidics, blood analysis, coagulation, lamb wave

Procedia PDF Downloads 311
860 Optimal Temperature and Time for Lactic Coagulation of Milk Containing Antibiotic: Evaluation of Yogurt Fermentation Parameters

Authors: Arezoo Ghadi, Adonis Pishdadian, Ehsan Zahedi, Vahideh Rashedi, Mozhgan Mohammadi

Abstract:

The presence of antibiotics in milk is one of the problems of dairy production units, especially yogurt and cheese, which leads to a decrease in lactic coagulation. Here, to assess the incubation conditions for the fermentation of milk containing antibiotics, concentrations of 50, 75, 100, and 200 ppb of tetracycline were added to each liter of milk. Inoculation process with starter culture performed at three temperatures of 35°C, 45°C, and 50°C. Afterward, pH, acidity, oxidation-reduction potential, and lactic coagulation of yogurt were evaluated. The results showed the existence of antibiotics in milk affects the quality and physicochemical properties of yogurt. However, antibiotic concentration and change in incubation temperature play a crucial role in the lactic coagulation of yogurt, such that the best lactic coagulation was observed at 50°C and a concentration of 50ppb. Hence, for tetracycline concentrations less than 75ppb, a process temperature of 50°C and incubation time of ~10 h recommend for fermentation of milk containing antibiotics.

Keywords: antibiotics residues, yogurt, fermentation parameters, incubation temperature

Procedia PDF Downloads 64
859 Preparation and Performance Evaluation of Green Chlorine-Free Coagulants

Authors: Huihui Zhang, Zhongzhi Zhang

Abstract:

Coagulation/flocculation is regarded a simple and effective wastewater treatment technology. Chlorine-containing coagulants may release chloride ions into the wastewater, causing corrosion. A green chlorine-free coagulant of polyaluminum ferric silicate (PSAF) was prepared by the copolymerization method to treat oily refractory wastewaters. Results showed that the highest removal efficiency of turbidity and chemical oxygen demand (COD) achieved 97.4% and 93.0% at a dosage of 700 mg/L, respectively. After PSAF coagulation, the chloride ion concentration was also almost the same as that in the raw wastewater. Thus, the chlorine-free coagulant is highly efficient and does not introduce additional chloride ions into the wastewater, avoiding corrosion.

Keywords: coagulation, chloride-free coagulant, oily refractory wastewater, coagulation performance

Procedia PDF Downloads 176
858 Modeling of Coagulation Process for the Removal of Carbofuran in Aqueous Solution

Authors: Roli Saini, Pradeep Kumar

Abstract:

A coagulation/flocculation process was adopted for the reduction of carbamate insecticide (carbofuran) from aqueous solution. Ferric chloride (FeCl3) was used as a coagulant to treat the carbofuran. To exploit the reduction efficiency of pesticide concentration and COD, the jar-test experiments were carried out and process was optimized through response surface methodology (RSM). The effects of two independent factors; i.e., FeCl3 dosage and pH on the reduction efficiency were estimated by using central composite design (CCD). The initial COD of the 30 mg/L concentrated solution was found to be 510 mg/L. Results exposed that the maximum reduction occurred at an optimal condition of FeCl3 = 80 mg/L, and pH = 5.0, from which the reduction of concentration and COD 75.13% and 65.34%, respectively. The present study also predicted that the obtained regression equations could be helpful as the theoretical basis for the coagulation process of pesticide wastewater.

Keywords: carbofuran, coagulation, optimization, response surface methodology

Procedia PDF Downloads 287
857 Electrochemical Regeneration of GIC Adsorbent in a Continuous Electrochemical Reactor

Authors: S. N. Hussain, H. M. A. Asghar, H. Sattar, E. P. L. Roberts

Abstract:

Arvia™ introduced a novel technology consisting of adsorption followed by electrochemical regeneration with a graphite intercalation compound adsorbent that takes place in a single unit. The adsorbed species may lead to the formation of intermediate by-products products due to incomplete mineralization during electrochemical regeneration. Therefore, the investigation of breakdown products due to incomplete oxidation is of great concern regarding the commercial applications of this process. In the present paper, the formation of the chlorinated breakdown products during continuous process of adsorption and electrochemical regeneration based on a graphite intercalation compound adsorbent has been investigated.

Keywords: GIC, adsorption, electrochemical regeneration, chlorphenols

Procedia PDF Downloads 271
856 Encapsulated Rennin Enzyme in Nano and Micro Tubular Cellulose/Starch Gel Composite for Milk Coagulation

Authors: Eleftheria Barouni, Theano Petsi, Argyro Bekatorou, Dionysos Kolliopoulos, Dimitrios Vasileiou, Panayiotis Panas, Maria Kanellaki, Athanasios A. Koutinas

Abstract:

The aim of the present work was the production and use of a composite filter (TC/starch), containing rennin enzyme, in continuous system and in successive fermentation batches (SFB) for milk coagulation in order to compare the operational stability of both systems and cheese production cost. Tubular cellulose (TC) was produced after removal of lignin from lignocellulosic biomass using several procedures, e.g. alkaline treatment [1] and starch gel was added for the reduction of TC tubes dimensions to micro- and nano- range[2]. Four immobilized biocatalysts were prepared using different ways of the enzyme entrapment. 1) TC/ rennin (rennin entrapped in the tubes of TC), 2) TC/SG-rennin (rennin entrapped in the tubes of the composite), 3) TC-SG/rennin (rennin entrapped into the layer of starch gel) and 4) TC/rennin- SG/rennin (rennin is entrapped both in the tubes of the TC and into the layer of starch gel). Firstly these immobilized biocatalysts were examined in ten SFB regarding the coagulation time and their activity All the above immobilized biocatalysts remained active and the coagulation time was ranged from 90 to 480, 120-480, 330-510, and 270-540 min for (1), (2), (3), and (4) respectively. The quality of the cheese was examined through the determination of volatile compounds by SPME GC/MS analysis. These results encouraged us to study a continuous coagulation system of milk. Even though the (1) immobilized biocatalyst gave lower coagulation time, we used the (2) immobilized biocatalyst in the continuous system. The results were promising.

Keywords: tubular cellulose, starch gel, composite biocatalyst, Rennin, milk coagulation

Procedia PDF Downloads 287
855 Treatment of Tannery Effluents by the Process of Coagulation

Authors: Gentiana Shegani

Abstract:

Coagulation is a process that sanitizes leather effluents. It aims to reduce pollutants such as Chemical Oxygen Demand (COD), chloride, sulphate, chromium, suspended solids, and other dissolved solids. The current study aimed to evaluate coagulation efficiency of tannery wastewater by analysing the change in organic matter, odor, colour, ammonium ions, nutrients, chloride, H2S, sulphate, suspended solids, total dissolved solids, faecal pollution, and chromium hexavalent before and after treatment. Effluent samples were treated with coagulants Ca(OH)2 and FeSO4 .7H2O. The best advantages of this treatment included the removal of: COD (81.60%); ammonia ions (98.34%); nitrate ions (92%); chromium hexavalent (75.00%); phosphate (70.00%); chloride (69.20%); and H₂S (50%). Results also indicated a high level of efficiency in the reduction of fecal pollution indicators. Unfortunately, only a modest reduction of sulphate (19.00%) and TSS (13.00%) and an increase in TDS (15.60%) was observed.

Keywords: coagulation, effluent, tannery, treatment

Procedia PDF Downloads 314
854 Effect of Thermal Energy on Inorganic Coagulation for the Treatment of Industrial Wastewater

Authors: Abhishek Singh, Rajlakshmi Barman, Tanmay Shah

Abstract:

Coagulation is considered to be one of the predominant water treatment processes which improve the cost effectiveness of wastewater. The sole purpose of this experiment on thermal coagulation is to increase the efficiency and the rate of reaction. The process uses renewable sources of energy which comprises of improved and minimized time method in order to eradicate the water scarcity of the regions which are on the brink of depletion. This paper includes the various effects of temperature on the standard coagulation treatment of wastewater and their effect on water quality. In addition, the coagulation is done with the mix of bottom/fly-ash that will act as an adsorbent and removes most of the minor and macro particles by means of adsorption which not only helps to reduce the environmental burden of fly ash but also enhance economic benefit. Also, the method of sand filtration is amalgamated in the process. The sand filter is an environmentally-friendly wastewater treatment method, which is relatively simple and inexpensive. The existing parameters were satisfied with the experimental results obtained in this study and were found satisfactory. The initial turbidity of the wastewater is 162 NTU. The initial temperature of the wastewater is 27 C. The temperature variation of the entire process is 50 C-80 C. The concentration of alum in wastewater is 60mg/L-320mg/L. The turbidity range is 8.31-28.1 NTU after treatment. pH variation is 7.73-8.29. The effective time taken is 10 minutes for thermal mixing and sedimentation. The results indicate that the presence of thermal energy affects the coagulation treatment process. The influence of thermal energy on turbidity is assessed along with renewable energy sources and increase of the rate of reaction of the treatment process.

Keywords: adsorbent, sand filter, temperature, thermal coagulation

Procedia PDF Downloads 296
853 The Magnitude and Associated Factors of Coagulation Abnormalities Among Liver Disease Patients at the University of Gondar Comprehensive Specialized Hospital Northwest, Ethiopia

Authors: Melkamu A., Woldu B., Sitotaw C., Seyoum M., Aynalem M.

Abstract:

Background: Liver disease is any condition that affects the liver cells and their function. It is directly linked to coagulation disorders since most coagulation factors are produced by the liver. Therefore, this study aimed to assess the magnitude and associated factors of coagulation abnormalities among liver disease patients. Methods: A cross-sectional study was conducted from August to October 2022 among 307 consecutively selected study participants at the University of Gondar Comprehensive Specialized Hospital. Sociodemographic and clinical data were collected using a structured questionnaire and data extraction sheet, respectively. About 2.7 mL of venous blood was collected and analyzed by the Genrui CA51 coagulation analyzer. Data was entered into Epi-data and exported to STATA version 14 software for analysis. The finding was described in terms of frequencies and proportions. Factors associated with coagulation abnormalities were analyzed by bivariable and multivariable logistic regression. Result: In this study, a total of 307 study participants were included. Of them, the magnitude of prolonged Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT) were 68.08% and 63.51%, respectively. The presence of anemia (AOR = 2.97, 95% CI: 1.26, 7.03), a lack of a vegetable feeding habit (AOR = 2.98, 95% CI: 1.42, 6.24), no history of blood transfusion (AOR = 3.72, 95% CI: 1.78, 7.78), and lack of physical exercise (AOR = 3.23, 95% CI: 1.60, 6.52) were significantly associated with prolonged PT. While the presence of anaemia (AOR = 3.02; 95% CI: 1.34, 6.76), lack of vegetable feeding habit (AOR = 2.64; 95% CI: 1.34, 5.20), no history of blood transfusion (AOR = 2.28; 95% CI: 1.09, 4.79), and a lack of physical exercise (AOR = 2.35; 95% CI: 1.16, 4.78) were significantly associated with abnormal APTT. Conclusion: Patients with liver disease had substantial coagulation problems. Being anemic, having a transfusion history, lack of physical activity, and lack of vegetables showed significant association with coagulopathy. Therefore, early detection and management of coagulation abnormalities in liver disease patients are critical.

Keywords: coagulation, liver disease, PT, Aptt

Procedia PDF Downloads 22
852 Treatment of Rice Industry Waste Water by Flotation-Flocculation Method

Authors: J. K. Kapoor, Shagufta Jabin, H. S. Bhatia

Abstract:

Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment.

Keywords: coagulation, flocculation, air flotation technique, polyelectrolyte, turbidity

Procedia PDF Downloads 445
851 Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation

Authors: Alexander P. Smirnov, Sergey A. Matveev, Dmitry A. Zheltkov, Eugene E. Tyrtyshnikov

Abstract:

We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution.

Keywords: tensor train decomposition, multicomponent Smoluchowski equation, runge-kutta scheme, convolution

Procedia PDF Downloads 385
850 Establishing Reference Intervals for Routine Coagulation Tests

Authors: Santina Sahibon, Sivasooriar Sivaneson, Martin Giddy, Nelson Nheu, Siti Sazeelah, Choo Kok Ming, Thuhairah Abdul Rahman, Fatmawati Binti Kamal

Abstract:

Introduction: Establishing population-based reference intervals (RI) are essential when evaluating laboratory test results and for method verification. Our laboratory initiated an exercise to establish RI for routine coagulation profile as part of the method verification procedure and to determine any differences in RI between three analyzers planned to be used in the laboratory. Methodology: 145 blood samples were collected and analysed for activated partial thromboplastin time (aPTT), prothrombin time (PT), international normalized ratio (INR), and fibrinogen] using three coagulation analysers which were CA104, CA660, and CS-2500 (Sysmex, USA). RI was established at 2.5th and 97.5th percentiles. Results: The RI for aPTT between C104, C660 and CS-2500 are (RI: 20.5-30.2 sec), (RI: 21.5-29.2 sec) and (RI: 22.7-30.3 sec) respectively. The RI for PT were (RI: 7.5-10.3 sec), (RI: 9.2- 11.1 sec) and (RI: 9.8-11.9 sec) for C104, CA660 and CS-2500 respectively. INR had an RI of (RI: 0.87- 1.16), (RI: 0.89-1.10) and (0.90-1.11) respectively on CA104, C660 and CS-2500. Fibrinogen RI was (RI: 2.04-4.62 g/L) and (2.05-4.76 g/L) on the CA660 and CS-2500, respectively. Conclusion: The RI was similar across the analytical platforms for aPTT, INR, and fibrinogen. However, CA104 showed lower RI compared to the other two analysers for PT. This highlights the potential variability in results between instruments that need to be addressed when verifying RI.

Keywords: coagulation, reference interval, APTT, PT, INR, fibrinogen

Procedia PDF Downloads 152
849 A Combinatorial Approach of Treatment for Landfill Leachate

Authors: Anusha Atmakuri, R. D. Tyagi, Patrick Drogui

Abstract:

Landfilling is the most familiar and easy way to dispose solid waste. Landfill is generally received via wastes from municipal near to a landfill. The waste collected is from commercial, industrial, and residential areas and many more. Landfill leachate (LFL) is formed when rainwater passes through the waste placed in landfills and consists of several dissolved organic materials, for instance, aquatic humic substances (AHS), volatile fatty acids (VFAs), heavy metals, inorganic macro components, and xenobiotic organic matters, highly toxic to the environment. These components of LFL put a load on it, hence it necessitates the treatment of LFL prior to its discharge into the environment. Various methods have been used to treat LFL over the years, such as physical, chemical, biological, physicochemical, electrical, and advanced oxidation methods. This study focuses on the combination of biological and electrochemical methods- extracellular polymeric substances and electrocoagulation(EC). The coupling of electro-coagulation process with extracellular polymeric substances (EPS) (as flocculant) as pre and\or post treatment strategy provides efficient and economical process for the decontamination of landfill leachate contaminated with suspended matter, metals (e.g., Fe, Mn) and ammonical nitrogen. Electro-coagulation and EPS mediated coagulation approach could be an economically viable for the treatment of landfill leachate, along with possessing several other advantages over several other methods. This study utilised waste substrates such as activated sludge, crude glycerol and waste cooking oil for the production of EPS using fermentation technology. A comparison of different scenarios for the treatment of landfill leachate is presented- such as using EPS alone as bioflocculant, EPS and EC with EPS being the 1st stage, and EPS and EC with EC being the 1st stage. The work establishes the use of crude EPS as a bioflocculant for the treatment of landfill leachate and wastewater from a site near a landfill, along with EC being successful in removal of some major pollutants such as COD, turbidity, total suspended solids. A combination of these two methods is to be explored more for the complete removal of all pollutants from landfill leachate.

Keywords: landfill leachate, extracellular polymeric substances, electrocoagulation, bioflocculant.

Procedia PDF Downloads 47
848 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide

Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh

Abstract:

Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.

Keywords: electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures

Procedia PDF Downloads 479
847 The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength

Authors: H. Ahmad Raji, R. Ziaie Moayed, M. A. Nozari

Abstract:

Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settings

Keywords: electrochemical condition, ionic strength, viscosity, xhanthan gum

Procedia PDF Downloads 142
846 Coagulation-Flocculation of Palm Oil Mill Effluent from Pertubuhan Peladang Negeri Johor, Malaysia

Authors: A. H. Jagaba, Musa Babayo, Ab Aziz Abdul Latiff, Sule Abubakar, I. M. Lawal, Isa Zubairu, M. A. Nasara

Abstract:

Wastewater containing heavy metals is of extreme importance globally because of its potential threat to both the aquatic ecosystem and the soil environment. Heavy metal is hazardous even at low concentration and thereby causing various forms of diseases. One method which has been tested and found to be effective for heavy metals removal is coagulation-flocculation. For the coagulation process of POME obtained from Pertubuhan Peladang Negeri Johor (PPNJ), Oil Palm Mill Company located in Kahang area of Kluang, Johor Darul Takzim, Malaysia, diffèrent coagulants would be used to absorb and then separate the metals from wastewater. The determination of heavy metals concentration in POME was carried out using an inductively coupled plasma (ICP) and an Atomic Absorption Spectrometer (AAS). Results of the study showed that alum coagulant was successful in effectively reducing Cu, Cd, and Mn from 0.840 mg/l, 0.00509 mg/l and 8.191 mg/l to as low as 0.107 mg/l, 0.000270 mg/l and 0.612 mg/l respectively. All were obtained at a dose of 1000 mg/l. 1000 mg/l dose of ferric chloride reduced Pb concentration from 0.0248 mg/l to 0.00151 mg/l. Chitosan was best at reducing Fe and Zn from 62.91 mg/l and 3.616 mg/l to 6.003 mg/l and 0.595 mg/l all at a dose of 400 mg/l.

Keywords: palm oil mill effluent, coagulation, heavy metals, Pertubuhan Peladang Negeri Johor, Malaysia

Procedia PDF Downloads 194
845 Influence of Surface Preparation Effects on the Electrochemical Behavior of 2098-T351 Al–Cu–Li Alloy

Authors: Rejane Maria P. da Silva, Mariana X. Milagre, João Victor de S. Araujo, Leandro A. de Oliveira, Renato A. Antunes, Isolda Costa

Abstract:

The Al-Cu-Li alloys are advanced materials for aerospace application because of their interesting mechanical properties and low density when compared with conventional Al-alloys. However, Al-Cu-Li alloys are susceptible to localized corrosion. The near-surface deformed layer (NSDL) induced by the rolling process during the production of the alloy and its removal by polishing can influence on the corrosion susceptibility of these alloys. In this work, the influence of surface preparation effects on the electrochemical activity of AA2098-T351 (Al–Cu–Li alloy) was investigated using a correlation between surface chemistry, microstructure, and electrochemical activity. Two conditions were investigated, polished and as-received surfaces of the alloy. The morphology of the two types of surfaces was investigated using confocal laser scanning microscopy (CLSM) and optical microscopy. The surface chemistry was analyzed by X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). Global electrochemical techniques (potentiodynamic polarization and EIS technique) and a local electrochemical technique (Localized Electrochemical Impedance Spectroscopy-LEIS) were used to examine the electrochemical activity of the surfaces. The results obtained in this study showed that in the as-received surface, the near-surface deformed layer (NSDL), which is composed of Mg-rich bands, influenced the electrochemical behavior of the alloy. The results showed higher electrochemical activity to the polished surface condition compared to the as-received one.

Keywords: Al-Cu-Li alloys, surface preparation effects, electrochemical techniques, localized corrosion

Procedia PDF Downloads 113
844 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.

Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD

Procedia PDF Downloads 73
843 On the Mathematical Modelling of Aggregative Stability of Disperse Systems

Authors: Arnold M. Brener, Lesbek Tashimov, Ablakim S. Muratov

Abstract:

The paper deals with the special model for coagulation kernels which represents new control parameters in the Smoluchowski equation for binary aggregation. On the base of the model the new approach to evaluating aggregative stability of disperse systems has been submitted. With the help of this approach the simple estimates for aggregative stability of various types of hydrophilic nano-suspensions have been obtained.

Keywords: aggregative stability, coagulation kernels, disperse systems, mathematical model

Procedia PDF Downloads 285
842 Evaluation of Coagulation State in Patients with End Stage Renal Disease (ESRD) by Thromboelastogram (TEG)

Authors: Mohammad Javad Esmaeili

Abstract:

Background: Coagulopathy is one of the complications with end stage renal disease with high prevalence in the world. Thromboelastogram is adynamic test for evaluation of coagulopathy and we have compared our patient's coagulation profiles with the results of TEG. Material and methods: In this study 50 patients with ESRD who were on regular hemodialysis for at least 6 months was selected with simple sampling and their coagulation profile was done with blood sampling and also TEG was done for every patient. Data were analyzed with SPSS and P<0.05 consider significant. Results: Protein s, Protein c and Antithrombin III deficiency was detected in 32%, 16% and 20% of patients and activated protein c resistance was abnormal in 2% of patients. In TEG, R time in 49% and K in 22/5% of patients was lower than normal and a-angle in 26% and maximum amplitude in 36% of patients was upper than normal (Hypercoagulable state). PS with R and ATIII with K have correlation. Conclusion: R time and K in TEG can be a suitable screening test in patients with suspicious to PS and ATIII deficiency.

Keywords: thromboelastography, chronic kidney disease, Coagulating disorder, hemodialysis

Procedia PDF Downloads 39
841 Sudden Death and Chronic Disseminated Intravascular Coagulation (DIC): Two Case Reports

Authors: Saker Lilia, Youcef Mellouki, Lakhdar Sellami, Yacine Zerairia, Abdelhaid Zetili, Fatma Guahria, Fateh Kaious, Nesrine Belkhodja, Abdelhamid Mira

Abstract:

Background: Sudden death is regarded as a suspicious demise necessitating autopsy, as stipulated by legal authorities. Chronic disseminated intravascular coagulation (DIC) is an acquired clinical and biological syndrome characterized by a severe and fatal prognosis, stemming from systemic, uncontrolled, diffuse coagulation activation. Irrespective of their origins, DIC is associated with a diverse spectrum of manifestations, encompassing minor biological coagulation alterations to profoundly severe conditions wherein hemorrhagic complications may take precedence. Simultaneously, microthrombi contribute to the development of multi-organ failures. Objective This study seeks to evaluate the role of autopsy in determining the causes of death. Materials and Methods: We present two instances of sudden death involving females who underwent autopsy at the Forensic Medicine Department of the University Hospital of Annaba, Algeria. These autopsies were performed at the request of the prosecutor, aiming to determine the causes of death and illuminate the exact circumstances surrounding it. Methods Utilized: Analysis of the initial information report; Findings from postmortem examinations; Histological assessments and toxicological analyses. Results: The presence of DIC was noted, affecting nearly all veins with distinct etiologies. Conclusion: For the establishment of a meaningful diagnosis: • Thorough understanding of the subject matter is imperative; • Precise alignment with medicolegal data is essential.

Keywords: chronic disseminated intravascular coagulation, sudden death, autopsy, causes of death

Procedia PDF Downloads 41
840 Possibility of Prediction of Death in SARS-Cov-2 Patients Using Coagulogram Analysis

Authors: Omonov Jahongir Mahmatkulovic

Abstract:

Purpose: To study the significance of D-dimer (DD), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen coagulation parameters (Fg) in predicting the course, severity and prognosis of COVID-19. Source and method of research: From September 15, 2021, to November 5, 2021, 93 patients aged 25 to 60 with suspected COVID-19, who are under inpatient treatment at the multidisciplinary clinic of the Tashkent Medical Academy, were retrospectively examined. DD, PT, APTT, and Fg were studied in dynamics and studied changes. Results: Coagulation disorders occurred in the early stages of COVID-19 infection with an increase in DD in 54 (58%) patients and an increase in Fg in 93 (100%) patients. DD and Fg levels are associated with the clinical classification. Of the 33 patients who died, 21 had an increase in DD in the first laboratory study, 27 had an increase in DD in the second and third laboratory studies, and 15 had an increase in PT in the third test. The results of the ROC analysis of mortality showed that the AUC DD was three times 0.721, 0.801, and 0.844, respectively; PT was 0.703, 0.845, and 0.972. (P<0:01). Conclusion”: Coagulation dysfunction is more common in patients with severe and critical conditions. DD and PT can be used as important predictors of mortality from COVID-19.

Keywords: Covid19, DD, PT, Coagulogram analysis, APTT

Procedia PDF Downloads 78
839 Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors

Authors: Naima Boudieb, Mohamed Loucif Seaid, Imad Rati, Imane Benammane

Abstract:

The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications.

Keywords: energy storage, supercapacitors, SIE, VC, PANI, poly(3, 4-ethylenedioxythiophene, PEDOT, polystyrene sulfonate

Procedia PDF Downloads 22
838 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment

Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan

Abstract:

MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.

Keywords: bio-electrochemical, nanowires, novel, wastewater

Procedia PDF Downloads 350
837 1-Butyl-2,3-Dimethylimidazolium Bis (Trifluoromethanesulfonyl) Imide and Titanium Oxide Based Voltammetric Sensor for the Quantification of Flunarizine Dihydrochloride in Solubilized Media

Authors: Rajeev Jain, Nimisha Jadon, Kshiti Singh

Abstract:

Titanium oxide nanoparticles and 1-butyl-2,3-dimethylimidazolium bis (trifluoromethane- sulfonyl) imide modified glassy carbon electrode (TiO2/IL/GCE) has been fabricated for electrochemical sensing of flunarizine dihydrochloride (FRH). The electrochemical properties and morphology of the prepared nanocomposite were studied by electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The response of the electrochemical sensor was found to be proportional to the concentrations of FRH in the range from 0.5 µg mL-1 to 16 µg mL-1. The detection limit obtained was 0.03 µg mL-1. The proposed method was also applied to the determination of FRH in pharmaceutical formulation and human serum with good recoveries.

Keywords: flunarizine dihydrochloride, ionic liquid, nanoparticles, voltammetry, human serum

Procedia PDF Downloads 294
836 Cheese Production at Low Temperatures Using Probiotic L. casei ATCC 393 and Rennin Enzyme Entrapped in Tubular Cellulose

Authors: Eleftheria Barouni, Antonia Terpou, Maria Kanellaki, Argyro Bekatorou, Athanasios A.Koutinas

Abstract:

The aim of the present work was to evaluate the production of cheese using a composite filter of tubular cellulose (TC) with [a] entrapped rennin enzyme and [b] immobilized L.casei and entrapped enzyme. Tubular cellulose from sawdust was prepared after lignin removal with 1% NaOH. The biocatalysts were thermally dried at 38oC and used for milk coagulation. The effect of temperature (5,20,37 oC) of the first dried biocatalyst on the pH kinetics of milk coagulation was examined. The optimum temperature (37oC) of the first biocatalyst was used for milk coagulation with the second biocatalyst prepared by entrapment of both rennin enzyme and probiotic lactic acid bacteria in order to introduce a sour taste in cheeses. This co-biocatalyst was used for milk coagulation. Samples were studied as regards its effect on lactic acid formation and its correlation with taste test results in cheeses. For both biocatalysts samples were analyzed for total acidity and lactic acid formation by HPLC. The quality of the produced cheeses was examined through the determination of volatile compounds by SPME GC/MS analysis. Preliminary taste tests and microbiological analysis were performed and encourage us for further research regarding scale up.

Keywords: tubular cellulose, Lactobacillus casei, rennin enzyme, cheese production

Procedia PDF Downloads 328