Search results for: support vector data description
30041 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 15430040 Social Support in the Tradition for Pregnant Mother Care In East Nusa Tenggara
Authors: Sri Widati, Ira Nurmala
Abstract:
The Se’i Tradition was considered to contribute highly to the high maternal mortality rate in South Amanuban, East Nusa Tenggara. This tradition is still preserved due to the social support that has influenced the decision to carry out the Se’i to pregnant women and post-partum women. The purpose of this study is to analyze this social support towards the Se’i Tradition on pregnant women in East Nusa Tenggara. This research was an explorative study with in-depth interviews, observations, and focus group discussions (FGD) in collecting the data. This study showed that emotional support towards Se’i was commonly given by families, specifically by the mother-in laws. Instrumental support was shown by the husbands and the traditional midwives who helped delivered the babies. Informational support was found on the pregnant women and their mother-in laws. Appraisal support was given by all the neighbors and relatives of the pregnant women by telling how comfortable it was to go through this tradition which eventually affected those women to carry it out themselves. The Se’i Tradition is still carried out and mostly supported by the relatives of the pregnant women. The first recommendation of this study is to suggest people to only follow the suggestions from the local health staff to give birth in the local health centers and not to do the tradition anymore. The second recommendation is to urge the government to give support in the form of transportation facilities for pregnant women to reach the local health staff.Keywords: the Se’i tradition, social support, pregnant women, maternal mortality, post-partum women
Procedia PDF Downloads 53030039 Migration and Provision of Support to Left-Behind Parents in Rural Cambodia
Authors: Benjamas Penboon, Zachary Zimmer, Aree Jampaklay
Abstract:
Cambodia is a country where labor migration has been consistently high. Coupled with advancing labor opportunities in urban areas, a function partly of globalization, this is resulting in massive migration out of rural areas. This is particularly true in Cambodia where there are high migration and a very large proportion of adult children living some distant from their parents. This paper explores characteristics associated with migrant providing support to parents in rural Cambodia. With reference to perspectives of family altruism and solidarity, this analysis particularly focusses on how a series of variables representing family integration and residential location associates with intergenerational monetary and instrumental support from migrants. The study hypothesizes that migrants are more likely to provide support when parents are in need, and there are no alternative means of support. Data come from The Rural Household Survey (N=3,713), part of the 2011 Cambodian Rural Urban Migration Project (CRUMP). Multilevel multinomial models indicate international migrants are likely to give money, while internal migrants are likely to provide both money and instrumental support, especially when migrants have no sibling and their parent in poor health status. In addition, employed migrants are two times providing monetary compared to those unemployed. Findings elucidate the decision to which and why support occurs more often when no other source of support exists and also depends on the ability to provide of migrants themselves.Keywords: migration, left-behind parent, intergenerational relations, support, rural, Cambodia
Procedia PDF Downloads 16430038 Analysis of Different Space Vector Pulse Width Modulation Techniques for a Five-Phase Inverter
Authors: K. A. Chinmaya, M. Udaya Bhaskar
Abstract:
Multiphase motor drives are now a day considered for numerous applications due to the advantages that they offer when compared to their three-phase counterparts. Proper modeling of inverters and motors are important in devising an appropriate control algorithm. This paper develops a complete modeling of a five-phase inverter and five-phase space vector modulation schemes which can be used for five-phase motor drives. A novel modified algorithm is introduced which enables the sinusoidal output voltages up to certain voltage value. The waveforms of phase to neutral voltage are compared with the different modulation techniques and also different modulation indexes in terms of Low-order Harmonic (LH) voltage of 3rd and 7th present. A detailed performance evolution of existing and newly modified schemes is done in terms of Total Harmonic Distortion (THD).Keywords: multi-phase drives, space vector modulation, voltage source inverter, low order harmonic voltages, total harmonic distortion
Procedia PDF Downloads 40430037 Examining Resilience, Social Supports, and Self-Esteem as Predictors of the Quality of Life of ODAPUS (Orang Dengan Lupus)
Authors: Yulmaida Amir, Fahrul Rozi, Insany C. Kamil, Fanny Aryani
Abstract:
ODAPUS (Orang dengan Lupus) is an Indonesian term for people with Lupus, a chronic autoimmune disease in which immune system of the body becomes hyperactive and attacks normal tissue. The number of ODAPUS indicate an increase in Indonesia, thereby helping to improve their quality of life to be important to help their recovery. This study aims to examine the effect of resilience, self-esteem, and social support on the quality of life of women who had been diagnosed as having Lupus. Data were collected from 64 ODAPUS in Indonesia, using the World Health Organization Quality of Life (WHOQOL), Resilience Scale from Wagnil and Young (1993), self-esteem scale (developed from Coopersmith’s theory), and Social Support Questioner from Northouse (1988). Regression data analysis showed that resilience, social support, and self-esteem predict the quality of life of the ODAPUS simultaneously. If the variable was analysed individually, self-esteem did not significantly contribute to the quality of life. Resilience contributed most significantly to the quality of life, followed by social support. Of five sources of social supports included in the research, support from family members (parents and brother/sisters) has the most significant contribution to the quality of life, followed by support from spouse, and from friends. Interestingly, social support from medical personnel (medical doctors and nurses) had not a significant contribution to the quality of life of ODAPUS. As a conclusion, this research showed that the ability of ODAPUS to cope with difficulty in life, and support from family members, spouse, and friends were the significant predictors for their quality of life.Keywords: quality of life, resilience, self-esteem, social supports
Procedia PDF Downloads 16830036 Effects of Training on Self-Efficacy, Competence, and Target Complaints of Dementia Family Support Program Facilitators
Authors: Myonghwa Park, Eun Jeong Choi
Abstract:
Persons with dementia living at home have complex caregiving demands, which can be significant sources of stress for the family caregivers. Thus, the dementia family support program facilitators struggle to provide various health and social services, facing diverse challenges. The purpose of this study was to research the effects of training program for the dementia family support program facilitators on self-efficacy, competence, and target complaints concerning operating their program. We created a training program with systematic contents, which was composed of 10 sessions and we provided the program for the facilitators. The participants were 32 people at 28 community dementia support centers who manage dementia family support programs and they completed quantitative and qualitative self-report questionnaire before and after participating in the training program. For analyzing the data, descriptive statistics were used and with a paired t-test, pretest and posttest scores of self-efficacy, competence, and target complaints were analyzed. We used Statistical Package for the Social Sciences (SPSS) statistics (Version 21) to analyze the data. The average age of the participants was 39.6 years old and the 84.4% of participants were nurses. There were statistically meaningful increases in facilitators’ self-efficacy scores (t = -4.45, p < .001) and competence scores (t = -2.133, p = 0.041) after participating in training program and operating their own dementia family support program. Also, the facilitators’ difficulties in conducting their dementia family support program were decreased which was assessed with target complaints. Especially, the facilitators’ lack of dementia expertise and experience was decreased statistically significantly (t = 3.520, p = 0.002). Findings provided evidence of the benefits of the training program for facilitators to enhance managing dementia family support program by improving the facilitators’ self-efficacy and competence and decreasing their difficulties regarding operating their program.Keywords: competence, dementia, facilitator, family, self-efficacy, training
Procedia PDF Downloads 21230035 Two Quasiparticle Rotor Model for Deformed Nuclei
Authors: Alpana Goel, Kawalpreet Kalra
Abstract:
The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.Keywords: deformed nuclei, signature effects, signature inversion, signature reversal
Procedia PDF Downloads 15830034 The Relationship between Selfesteem, Social Support, and Mental Health among High School Students in Iran
Authors: Mohsen Shahbakhti
Abstract:
The aim of this study was to examine the relationship between self-esteem, social support and mental health in a sample of government high school students in Eshtehard city in Alborz Province in Iran. Three hundred and eleven students (boys) were included in this study. All participants completed the General Health Questionnaire (GHQ 12), Multidimensional Scale of Perceived Social Support (MSPSS -12), and Self-Esteem Scale (SS-10). The results revealed that self-esteem was positively associated with social support. Self-esteem and social support negatively associated with psychological distress. Self-esteem and social support to influence on mental health.Keywords: self-esteem, social support, mental health, high school students
Procedia PDF Downloads 48430033 Major Factors That Enhance Economic Growth in South Africa: A Re-Examination Using a Vector Error Correction Mechanism
Authors: Temitope L. A. Leshoro
Abstract:
This study explored several variables that enhance economic growth in South Africa, based on different growth theories while using the vector error correction model (VECM) technique. The impacts and contributions of each of these variables on GDP in South Africa were investigated. The motivation for this study was as a result of the weak economic growth that the country has been experiencing lately, as well as the continuous increase in unemployment rate and deteriorating health care system. Annual data spanning over the period 1974 to 2013 was employed. The results showed that the major determinants of GDP are trade openness, government spending, and health indicator; as these variables are not only economically significant but also statistically significant in explaining the changes in GDP in South Africa. Policy recommendations for economic growth enhancement are suggested based on the findings of this study.Keywords: economic growth, GDP, investment, health indicator, VECM
Procedia PDF Downloads 27630032 The Effect of Feature Selection on Pattern Classification
Authors: Chih-Fong Tsai, Ya-Han Hu
Abstract:
The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.Keywords: data mining, feature selection, pattern classification, dimensionality reduction
Procedia PDF Downloads 66930031 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 10730030 Concept for Planning Sustainable Factories
Authors: T. Mersmann, P. Nyhuis
Abstract:
In the current economic climate, for many businesses it is generally no longer sufficient to pursue exclusively economic interests. Instead, integrating ecological and social goals into the corporate targets is becoming ever more important. However, the holistic integration of these new goals is missing from current factory planning approaches. This article describes the conceptual framework for a planning methodology for sustainable factories. To this end, the description of the key areas for action is followed by a description of the principal components for the systematization of sustainability for factories and their stakeholders. Finally, a conceptual framework is presented which integrates the components formulated into an established factory planning procedure.Keywords: factory planning, stakeholder, systematization, sustainability
Procedia PDF Downloads 45230029 Cross-Sectional Analysis of Partner Support and Contraceptive Use in Adolescent Females
Authors: Ketan Tamirisa, Kathleen P. Tebb
Abstract:
In the U.S., annually, there are over 1 million pregnancies in teenagers and most (85%) are unintended. The need for proactive prevention measures is imperative to support adolescents with their pregnancy prevention and family planning goals. To date, there is limited research examining the extent to which support from a sexual partner(s) influences contraceptive use. To address this gap, this study assessed the relationship between sexually active adolescents, sex-assigned birth as female, and their perceived support from their sexual partner(s) about their contraceptive use in the last three months. Baseline data from sexually active adolescent females, between 13-19 years who were not currently using a long-acting contraceptive device, were recruited from 32 school-based health centers (SBHCs) in seven states in the U.S. as part of a larger study to evaluate Health-E You/ Salud iTuTM, a web-based contraceptive decision support tool. Fisher’s exact test assessed the cross-sectional association between perceived sexual partner support of contraceptive use in the past three months (felt no support, felt little support, and felt a lot of support), and current use of non-barrier contraception. A total of 91 sexually active adolescent females were eligible and completed the baseline survey. The mean age was 16.7 and nearly half (49.3%) were Hispanic/Latina. Most (85.9%) indicated it was very important to avoid becoming pregnant. A total of 60 participants (65.9%) reported use of non-barrier contraception. Of these, most used birth control pills (n=26), followed by Depo-Provera injection (n=12), patch (n=1), and ring (n=1). Most of the participants (80.2%) indicated that they perceived a lot of support from their partners and 19.8% reported no or little support. Among those reporting a lot of support, 69.9% (51/73) reported current use of non-barrier contraception compared to 50% (9/18) who felt no/little support and reported contraceptive use. This difference approached but did not reach statistical significance (p=0.096). Results from this preliminary data indicate that many adolescents who are coming in for care at SBHCs are at risk of unintended pregnancy. Many participants also reported a lot of support from their sexual partner(s) to use contraception. While the associations only approached significance, this is likely due to the small sample size. This and future research can better understand this association to inform interventions aimed at sexual partners to strengthen education and social support, increase healthcare accessibility, and ultimately reduce rates of unintended pregnancy.Keywords: adolescents, contraception, pregnancy, SBHCs, sexual partners
Procedia PDF Downloads 4430028 Predictive Maintenance of Electrical Induction Motors Using Machine Learning
Authors: Muhammad Bilal, Adil Ahmed
Abstract:
This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures
Procedia PDF Downloads 11730027 Use of Social Support for Fathers with Developmental Disabilities in Japan
Authors: Shiori Ishida, Hiromi Okuno, Hisato Igarashi, Akemi Yamazaki, Hiroko Takahashi
Abstract:
The purpose of this study was to clarify the differences and similarities regarding the social support of fathers and mothers towards considering increased assistance for the paternity of children with developmental disabilities. Written questionnaires were completed by fathers (n=85) and mothers (n=101) of children using rehabilitation facilities between infancy and 5 years of age. The survey contained multiple-choice questions on four categories: information support (6 items), emotional support (7 items), evaluation support (3 items), and daily living support (3 items). Regarding information support, fathers answered ‘spouse’ as the provider in over 50% of cases for all 6 items, which was significantly different compared with mothers (all p < 0.001). For emotional support, fathers were significantly more likely to get support from the workplace (p < 0.001) and from spouse (p < 0.001). The ‘evaluation support’ did not have significant differences for fathers in all the items, but the most frequent support providers were ‘spouses’. ‘Daily living support’ was significantly different from fathers in the workplace (p < 0.000) in terms of make allowances for work and duties. Thus, it appeared that fathers had fewer social support sources as compared with mothers and limited non-spouse support. The understanding of developmental disabilities, acquisition of methods of rehabilitation, and sources of support might have been inadequately addressed among fathers, which could be a hindrance to the involvement of fathers in the rearing of children with developmental disabilities. On the other hand, we also observed that some fathers were involved in the care of developmentally troubled children while providing mental support for their spouse, cooperating with housework, and adjusting their work life. However, the results on the external and social backgrounds of fathers indicated a necessity for greater empowerment and peer support to improve the paternal care of children with developmental disabilities in the family survey.Keywords: children with developmental disabilities, family support, father, social support
Procedia PDF Downloads 13230026 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 14230025 Neural Nets Based Approach for 2-Cells Power Converter Control
Authors: Kamel Laidi, Khelifa Benmansour, Ouahid Bouchhida
Abstract:
Neural networks-based approach for 2-cells serial converter has been developed and implemented. The approach is based on a behavioural description of the different operating modes of the converter. Each operating mode represents a well-defined configuration, and for which is matched an operating zone satisfying given invariance conditions, depending on the capacitors' voltages and the load current of the converter. For each mode, a control vector whose components are the control signals to be applied to the converter switches has been associated. Therefore, the problem is reduced to a classification task of the different operating modes of the converter. The artificial neural nets-based approach, which constitutes a powerful tool for this kind of task, has been adopted and implemented. The application to a 2-cells chopper has allowed ensuring efficient and robust control of the load current and a high capacitors voltages balancing.Keywords: neural nets, control, multicellular converters, 2-cells chopper
Procedia PDF Downloads 83430024 Features for Measuring Credibility on Facebook Information
Authors: Kanda Runapongsa Saikaew, Chaluemwut Noyunsan
Abstract:
Nowadays social media information, such as news, links, images, or VDOs, is shared extensively. However, the effectiveness of disseminating information through social media lacks in quality: less fact checking, more biases, and several rumors. Many researchers have investigated about credibility on Twitter, but there is no the research report about credibility information on Facebook. This paper proposes features for measuring credibility on Facebook information. We developed the system for credibility on Facebook. First, we have developed FB credibility evaluator for measuring credibility of each post by manual human’s labelling. We then collected the training data for creating a model using Support Vector Machine (SVM). Secondly, we developed a chrome extension of FB credibility for Facebook users to evaluate the credibility of each post. Based on the usage analysis of our FB credibility chrome extension, about 81% of users’ responses agree with suggested credibility automatically computed by the proposed system.Keywords: facebook, social media, credibility measurement, internet
Procedia PDF Downloads 35630023 Concrete Cracking Simulation Using Vector Form Intrinsic Finite Element Method
Authors: R. Z. Wang, B. C. Lin, C. H. Huang
Abstract:
This study proposes a new method to simulate the crack propagation under mode-I loading using Vector Form Intrinsic Finite Element (VFIFE) method. A new idea which is expected to combine both VFIFE and J-integral is proposed to calculate the stress density factor as the crack critical in elastic crack. The procedure of implement the cohesive crack propagation in VFIFE based on the fictitious crack model is also proposed. In VFIFIE, the structure deformation is described by numbers of particles instead of elements. The strain energy density and the derivatives of the displacement vector of every particle is introduced to calculate the J-integral as the integral path is discrete by particles. The particle on the crack tip separated into two particles once the stress on the crack tip satisfied with the crack critical and then the crack tip propagates to the next particle. The internal force and the cohesive force is applied to the particles.Keywords: VFIFE, crack propagation, fictitious crack model, crack critical
Procedia PDF Downloads 33530022 Power Control of a Doubly-Fed Induction Generator Used in Wind Turbine by RST Controller
Authors: A. Boualouch, A. Frigui, T. Nasser, A. Essadki, A.Boukhriss
Abstract:
This work deals with the vector control of the active and reactive powers of a Double-Fed Induction generator DFIG used as a wind generator by the polynomial RST controller. The control of the statoric power transfer between the machine and the grid is achieved by acting on the rotor parameters and control is provided by the polynomial controller RST. The performance and robustness of the controller are compared with PI controller and evaluated by simulation results in MATLAB/simulink.Keywords: DFIG, RST, vector control, wind turbine
Procedia PDF Downloads 65830021 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data
Authors: K. Sathishkumar, V. Thiagarasu
Abstract:
Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.Keywords: microarray technology, gene expression data, clustering, gene Selection
Procedia PDF Downloads 32330020 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems
Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini
Abstract:
Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.Keywords: quantum, machine learning, kernel, non-markovianity
Procedia PDF Downloads 18030019 Resume Ranking Using Custom Word2vec and Rule-Based Natural Language Processing Techniques
Authors: Subodh Chandra Shakya, Rajendra Sapkota, Aakash Tamang, Shushant Pudasaini, Sujan Adhikari, Sajjan Adhikari
Abstract:
Lots of efforts have been made in order to measure the semantic similarity between the text corpora in the documents. Techniques have been evolved to measure the similarity of two documents. One such state-of-art technique in the field of Natural Language Processing (NLP) is word to vector models, which converts the words into their word-embedding and measures the similarity between the vectors. We found this to be quite useful for the task of resume ranking. So, this research paper is the implementation of the word2vec model along with other Natural Language Processing techniques in order to rank the resumes for the particular job description so as to automate the process of hiring. The research paper proposes the system and the findings that were made during the process of building the system.Keywords: chunking, document similarity, information extraction, natural language processing, word2vec, word embedding
Procedia PDF Downloads 15830018 Crime Victim Support Services in Bangladesh: An Analysis
Authors: Mohammad Shahjahan, Md. Monoarul Haque
Abstract:
In the research work information and data were collected from both types of sources, direct and indirect. Numerological, qualitative and participatory analysis methods have been followed. There were two principal sources of collecting information and data. Firstly, the data provided by the service recipients (300 nos. of women and children victims) in the Victim Support Centre and service providing policemen, executives and staffs (60 nos.). Secondly, data collected from Specialists, Criminologists and Sociologists involved in victim support services through Consultative Interview, KII, Case Study and FGD etc. The initial data collection has been completed with the help of questionnaires as per strategic variations and with the help of guidelines. It is to be noted that the main objective of this research was to determine whether services provided to the victims for their facilities, treatment/medication and rehabilitation by different government/non-government organizations was veritable at all. At the same time socio-economic background and demographic characteristics of the victims have also been revealed through this research. The results of the study show that although the number of victims has increased gradually due to socio-economic, political and cultural realities in Bangladesh, the number of victim support centers has not increased as expected. Awareness among the victims about the effectiveness of the 8 centers working in this regard is also not up to the mark. Two thirds of the victims coming to get service were not cognizant regarding the victim support services at all before getting the service. Most of those who have finally been able to come under the services of the Victim Support Center through various means, have received sheltering (15.5%), medical services (13.32%), counseling services (13.10%) and legal aid (12.66%). The opportunity to stay in security custody and psycho-physical services were also notable. Usually, women and children from relatively poor and marginalized families of the society come to victim support center for getting services. Among the women, young unmarried women are the biggest victims of crime. Again, women and children employed as domestic workers are more affected. A number of serious negative impacts fall on the lives of the victims. Being deprived of employment opportunities (26.62%), suffering from psycho-somatic disorder (20.27%), carrying sexually transmitted diseases (13.92%) are among them. It seems apparent to urgently enact distinct legislation, increase the number of Victim Support Centers, expand the area and purview of services and take initiative to increase public awareness and to create mass movement.Keywords: crime, victim, support, Bangladesh
Procedia PDF Downloads 8930017 A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI
Authors: Yavuz Unal, Kemal Polat, H. Erdinc Kocer
Abstract:
In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images.Keywords: lumbar disc abnormality, lumbar MRI, lumbar spine, hybrid models, hybrid features, k-means clustering based feature weighting
Procedia PDF Downloads 52030016 Measures of Phylogenetic Support for Phylogenomic and the Whole Genomes of Two Lungfish Restate Lungfish and Origin of Land Vertebrates
Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou
Abstract:
Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to reassess the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high gene support confidence with confidence intervals exceeding 95%, high internode certainty, and high gene concordance factor. The evidence stems from two datasets containing recently deciphered whole genomes of two lungfish species, as well as five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa diminishes the number of orthologues and leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction (LBA) and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.Keywords: gene support confidence (GSC), origin of land vertebrates, coelacanth, two whole genomes of lungfishes, confidence intervals
Procedia PDF Downloads 8730015 Support Provided by Teachers to Learners With Special Education Needs in Selected Amathole West District Primary Schools South Africa
Authors: Toyin Mary Adewumi, Cina Mosito
Abstract:
Part of enabling learners with special education needs (SEN) to succeed is providing them with adequate support. Support is all activities in a school that enhance its capacity to respond to diversity by making learning contexts and lessons accessible to all learners. The paper reports findings of support provided by teachers to learners with SEN and the pockets of good practice found in the support provided by teachers to these learners in schools in the Amathole West District, Eastern Cape. A purposeful sample, comprising eight teachers, eight principals in eight schools, including one provincial and two district education officials, was selected. Thematic analysis was used for analyzing data gathered through semi-structured interviews. The results established that despite the challenges such as lack of qualifications and training in special education needs, learners with SEN received varied support from teachers which include extra exercises, extra time, special attention during break times or after school hours and homework. The study reveals pockets of good practice in some selected primary schools particularly in the poverty-stricken locations in the Amathole West District. This paper recommends adequate training for teachers for the support of learners with SEN.Keywords: good practice, learner, special education needs, inclusion, support
Procedia PDF Downloads 13430014 Challenges in Achieving Profitability for MRO Companies in the Aviation Industry: An Analytical Approach
Authors: Nur Sahver Uslu, Ali̇ Hakan Büyüklü
Abstract:
Maintenance, Repair, and Overhaul (MRO) costs are significant in the aviation industry. On the other hand, companies that provide MRO services to the aviation industry but are not dominant in the sector, need to determine the right strategies for sustainable profitability in a competitive environment. This study examined the operational real data of a small medium enterprise (SME) MRO company where analytical methods are not widely applied. The company's customers were divided into two categories: airline companies and non-airline companies, and the variables that best explained profitability were analyzed with Logistic Regression for each category and the results were compared. First, data reduction was applied to the transformed variables that went through the data cleaning and preparation stages, and the variables to be included in the model were decided. The misclassification rates for the logistic regression results concerning both customer categories are similar, indicating consistent model performance across different segments. Less profit margin is obtained from airline customers, which can be explained by the variables part description, time to quotation (TTQ), turnaround time (TAT), manager, part cost, and labour cost. The higher profit margin obtained from non-airline customers is explained only by the variables part description, part cost, and labour cost. Based on the two models, it can be stated that it is significantly more challenging for the MRO company, which is the subject of our study, to achieve profitability from Airline customers. While operational processes and organizational structure also affect the profit from airline customers, only the type of parts and costs determine the profit for non-airlines.Keywords: aircraft, aircraft components, aviation, data analytics, data science, gini index, maintenance, repair, and overhaul, MRO, logistic regression, profit, variable clustering, variable reduction
Procedia PDF Downloads 3330013 Evolution of the Speaker in Russian Military Poetry of the Second Half of the 20th Century
Authors: Ilya A. Snegirev
Abstract:
The article focuses on the comparative study of Russian military poetry of the 20th century. To make a complete description, the verse of different genres, mainly minor lyrical form, is taken. The study makes it possible to emphasize the idea that genre is not completely representative for a comprehensive research, as it is also necessary to dwell upon the strategies of war description in verse. Furthermore, the tendency of lyrical hero individualization is noted. This tendency can be traced throughout the whole second half of the 20th century – the poets of the Second World War – and further, to the whole post-war poetry. To characterize these changes, the texts by K.M. Simonov and A.A. Surkov are being analyzed as the examples of the qualitative transition to an individual hero.Keywords: literature’s evolution, narrator, storytelling poetry, tradition
Procedia PDF Downloads 18930012 A Service Evaluation Exploring the Effectiveness of a Tier 3 Weight Management Programme Offering Face-To-Face and Remote Dietetic Support
Authors: Rosemary E. Huntriss, Lucy Jones
Abstract:
Obesity and excess weight continue to be significant health problems in England. Traditional weight management programmes offer face-to-face support or group education. Remote care is recognised as a viable means of support; however, its effectiveness has not previously been evaluated in a tier 3 weight management setting. This service evaluation explored the effectiveness of online coaching, telephone support, and face-to-face support as optional management strategies within a tier 3 weight management programme. Outcome data were collected for adults with a BMI ≥ 45 or ≥ 40 with complex comorbidity who were referred to a Tier 3 weight management programme from January 2018 and had been discharged before October 2018. Following an initial 45-minute consultation with a specialist weight management dietitian, patients were offered a choice of follow-up support in the form of online coaching supported by an app (8 x 15 minutes coaching), face-to-face or telephone appointments (4 x 30 minutes). All patients were invited to a final 30-minute face-to-face assessment. The planned intervention time was between 12 and 24 weeks. Patients were offered access to adjunct face-to-face or telephone psychological support. One hundred and thirty-nine patients were referred into the programme from January 2018 and discharged before October 2018. One hundred and twenty-four patients (89%) attended their initial assessment. Out of those who attended their initial assessment, 110 patients (88.0%) completed more than half of the programme and 77 patients (61.6%) completed all sessions. The average length of the completed programme (all sessions) was 17.2 (SD 4.2) weeks. Eighty-five (68.5%) patients were coached online, 28 (22.6%) patients were supported face-to-face support, and 11 (8.9%) chose telephone support. Two patients changed from online coaching to face-to-face support due to personal preference and were included in the face-to-face group for analysis. For those with data available (n=106), average weight loss across the programme was 4.85 (SD 3.49)%; average weight loss was 4.70 (SD 3.19)% for online coaching, 4.83 (SD 4.13)% for face-to-face support, and 6.28 (SD 4.15)% for telephone support. There was no significant difference between weight loss achieved with face-to-face vs. online coaching (4.83 (SD 4.13)% vs 4.70 (SD 3.19) (p=0.87) or face-to-face vs. remote support (online coaching and telephone support combined) (4.83 (SD 4.13)% vs 4.85 (SD 3.30)%) (p=0.98). Remote support has been shown to be as effective as face-to-face support provided by a dietitian in the short-term within a tier 3 weight management setting. The completion rates were high compared with another tier 3 weight management services suggesting that offering remote support as an option may improve completion rates within a weight management service.Keywords: dietitian, digital health, obesity, weight management
Procedia PDF Downloads 141