Search results for: duplicate removal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1671

Search results for: duplicate removal

1341 Interference of Contaminants in the Characterization of Sugarcane Straw for Energy Purpose

Authors: Gabriela T. Nakashima, Ana Larissa S. Hansted, Gabriela B. Belini, Carlos R. Sette Jr, Hiroyuki Yamamoto, Fabio M. Yamaji

Abstract:

The aim of this study was to determine the interference from contaminants in the characterization of sugarcane straw. The sugarcane straw was collected after the harvest and taken to the drying oven, and then it was crushed in the mill type Willey. Analyzes of ash contents and Klason lignin were done in triplicate and high heating value (HHV) in duplicate, according to ASTM standard. The results obtained for the sugarcane straw were 5.29% for ash content, 29.87% for Klason lignin and 17.67 MJ.kg-1 for HHV. Also, the material was analyzed by scanning electron microscope (SEM). The presence of contaminants was observed, such as silica. The high amount of contaminants in the samples may impact the results of analyzes, also raising its values, for example in the Klason lignin content. These contaminants can also adversely affect the quality of the biomass. Even using the standards is important to know what the purpose of the analysis and care mainly of sampling.

Keywords: biomass, bioenergy, residues, solid fuel

Procedia PDF Downloads 281
1340 Fire Smoke Removal over Cu-Mn-Ce Oxide Catalyst with CO₂ Sorbent Addition: Co Oxidation and in-situ CO₂ Sorption

Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew

Abstract:

In a fire accident, fire smoke often poses a serious threat to human safety especially in the enclosed space such as submarine and space-crafts environment. Efficient removal of the hazardous gas products particularly a large amount of CO and CO₂ gases from these confined space is critical for the security of the staff and necessary for the post-fire environment recovery. In this work, Cu-Mn-Ce composite oxide catalysts coupled with CO₂ sorbents were prepared using wet impregnation method, solid-state impregnation method and wet/solid-state impregnation method. The as-prepared samples were tested dynamically and isothermally for CO oxidation and CO₂ sorption and further characterized by the X-ray diffraction (XRD), nitrogen adsorption and desorption, and field emission scanning electron microscopy (FE-SEM). The results showed that all the samples were able to catalyze CO into CO₂ and capture CO₂ in situ by chemisorption. Among all the samples, the sample synthesized by the wet/solid-state impregnation method showed the highest catalytic activity toward CO oxidation and the fine ability of CO₂ sorption. The sample prepared by the solid-state impregnation method showed the second CO oxidation performance, while the coupled sample using the wet impregnation method exhibited much poor CO oxidation activity. The various CO oxidation and CO₂ sorption properties of the samples might arise from the different dispersed states of the CO₂ sorbent in the CO catalyst, owing to the different preparation methods. XRD results confirmed the high-dispersed sorbent phase in the samples prepared by the wet and solid impregnation method, while that of the sample prepared by wet/solid-state impregnation method showed the larger bulk phase as indicated by the high-intensity diffraction peaks. Nitrogen adsorption and desorption results further revealed that the latter sample had a higher surface area and pore volume, which were beneficial for the CO oxidation over the catalyst. Hence, the Cu-Mn-Ce oxide catalyst coupled with CO₂ sorbent using wet/solid-state impregnation method could be a good choice for fire smoke removal in the enclosed space.

Keywords: CO oxidation, CO₂ sorption, preparation methods, smoke removal

Procedia PDF Downloads 139
1339 Thermophilic Anaerobic Granular Membrane Distillation Bioreactor for Wastewater Reuse

Authors: Duong Cong Chinh, Shiao-Shing Chen, Le Quang Huy

Abstract:

Membrane distillation (MD) is actually claimed to be a cost-effective separation process when waste heat, alternative energy sources, or wastewater are used. To the best of our knowledge, this is the first study that a thermophilic anaerobic granular bioreactor is integrated with membrane distillation (ThAnMDB) was investigated. In this study, the laboratory scale anaerobic bioreactor (1.2 litter) was set-up. The bioreactor was maintained at temperature 55 ± 2°C, hydraulic retention time = 0.5 days, organic loading rates of 7 and 10 kg chemical oxygen demand (COD) m³/day. Side-stream direct contact membrane distillation with the polytetrafluoroethylene membrane area was 150 cm². The temperature of the distillate was kept at 25°C. Results show that distillate flux was 19.6 LMH (Liters per square meter per hour) on the first day and gradually decreased to 6.9 LMH after 10 days, and the membrane was not wet. Notably, by directly using the heat from the thermophilic anaerobic for MD separation process, all distilled water from wastewater was reuse as fresh water (electrical conductivity < 120 µs/cm). The ThAnMDB system showed its high pollutant removal performance: chemical oxygen demand (COD) from 99.6 to 99.9%, NH₄⁺ from 60 to 95%, and PO₄³⁻ complete removal. In addition, methane yield was from 0.28 to 0.34 lit CH₄/gram COD removal (80 – 97% of the theoretical) demonstrated that the ThAnMDB system was quite stable. The achievement of the ThAnMDB is not only in removing pollutants and reusing wastewater but also in absolutely unnecessarily adding alkaline to the anaerobic bioreactor system.

Keywords: high rate anaerobic digestion, membrane distillation, thermophilic anaerobic, wastewater reuse

Procedia PDF Downloads 127
1338 Removal of Nutrients from Sewage Using Algal Photo-Bioreactor

Authors: Purnendu Bose, Jyoti Kainthola

Abstract:

Due to recent advances in illumination technology, artificially illuminated algal-bacterial photo bioreactors are now a potentially feasible option for simultaneous and comprehensive organic carbon and nutrients removal from secondary treated domestic sewage. The experiments described herein were designed to determine the extent of nutrient uptake in photo bioreactors through algal assimilation. Accordingly, quasi steady state data on algal photo bioreactor performance was obtained under 20 different conditions. Results indicated that irrespective of influent N and P levels, algal biomass recycling resulted in superior performance of algal photo bioreactors in terms of both N and P removals. Further, both N and P removals were positively related to the growth of algal biomass in the reactor. Conditions in the reactor favouring greater algal growth also resulted in greater N and P removals. N and P removals were adversely impacted in reactors with low algal concentrations due to the inability of the algae to grow fast enough under the conditions provided. Increasing algal concentrations in reactors over a certain threshold value through higher algal biomass recycling was also not fruitful, since algal growth slowed under such conditions due to reduced light availability due to algal ‘self-shading’. It was concluded that N removals greater than 80% at high influent N concentrations is not possible with the present reactor configuration. Greater than 80% N removals may however be possible in similar reactors if higher light intensity is provided. High P removal is possible only if the influent N: P ratio in the reactor is aligned closely with the algal stoichiometric requirements for P.

Keywords: nutrients, algae, photo, bioreactor

Procedia PDF Downloads 212
1337 Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process

Authors: Mahsa Ja’fari, Mohammad R. Khosravi-Nikou, Mohsen Motavassel

Abstract:

A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.

Keywords: design of experiment (DOE), dibenzothiophene (DBT), optimization, oxidative desulfurization (ODS)

Procedia PDF Downloads 217
1336 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation

Authors: Feng Yin

Abstract:

Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.

Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation

Procedia PDF Downloads 278
1335 Adsorption of Toluene from Aqueous Solutions by Porous Clay Hetero-Structures

Authors: F. Asadi, M. M. Zerafat, S. Sabbaghi

Abstract:

Among water pollutants, volatile organic compounds can cause severe long lasting effects not only on biotic organism but also on human health. As a result, this material group has attracted more attention in recent years. Adsorption is one of the common processes for remediation of aromatic compounds. In this study, porous clay hetrostructers (PCHs) are synthesized through gallery template approach and cetyltrimethylammonium bromide and dodecylamine used as template and co-template, respectively. Porous clay is characterized by XRD and FTIR. Batch adsorption experiments were carried out to investigate the effect of various adsorption parameters like adsorbent dosage, pH, initial concentration and contact time. It was found that by increasing adsorbent dosage from 0.5gr/lit to 4gr/lit, toluene removal is increased from 34% to 88.1%. Increasing contact time and decreasing the pH of aqueous solution increases toluene removal efficiency.

Keywords: adsorption, clay, nano-porous, toluene

Procedia PDF Downloads 338
1334 Texturing of Tool Insert Using Femtosecond Laser

Authors: Ashfaq Khan, Aftab Khan, Mushtaq Khan, Sarem Sattar, Mohammad A Sheikh, Lin Li

Abstract:

Chip removal processes are one of key processes of the manufacturing industry where chip removal is conducted by tool inserts of exceptionally hard materials. Tungsten carbide has been extensively used as tool insert for machining processes involving chip removal processes. These hard materials are generally fabricated by single step sintering process as further modification after fabrication in these materials cannot be done easily. Advances in tool surface modification have revealed that advantages such as improved tribological properties and extended tool life can be harnessed from the same tool by texturing the tool rake surface. Moreover, it has been observed that the shape and location of the texture also influences the behavior. Although texturing offers plentiful advantages the challenge lies in the generation of textures on the tool surface. Extremely hard material such as diamond is required to process tungsten carbide. Laser is unique processing tool that does not have a physical contact with the material and thus does not wear. In this research the potential of utilizing laser for texturing of tungsten carbide to develop custom features would be studied. A parametric study of texturing of Tungsten Carbide with a femtosecond laser would be conducted to investigate the process parameters and establish the feasible processing window. The effect of fluence, scan speed and number of repetition would be viewed in detail. Moreover, the mechanism for the generation of features would also be reviewed.

Keywords: laser, texturing, femtosecond, tungsten carbide

Procedia PDF Downloads 658
1333 Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

Authors: Janjira Triped, Wipada Sanongraj, Wipawee Khamwichit

Abstract:

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

Keywords: photocatalytic oxidation process, formaldehyde (HCHO), silk fibroin (SF), titanium dioxide (TiO2)

Procedia PDF Downloads 469
1332 A Comparative Study of Simple and Pre-polymerized Fe Coagulants for Surface Water Treatment

Authors: Petros Gkotsis, Giorgos Stratidis, Manassis Mitrakas, Anastasios Zouboulis

Abstract:

This study investigates the use of original and pre-polymerized iron (Fe) reagents compared to the commonly applied polyaluminum chloride (PACl) coagulant for surface water treatment. Applicable coagulants included both ferric chloride (FeCl₃) and ferric sulfate (Fe₂(SO₄)₃) and their pre-polymerized Fe reagents, such as polyferric sulfate (PFS) and polyferric chloride (PFCl). The efficiency of coagulants was evaluated by the removal of natural organic matter (NOM) and suspended solids (SS), which were determined in terms of reducing the UV absorption at 254 nm and turbidity, respectively. The residual metal concentration (Fe and Al) was also measured. Coagulants were added at five concentrations (1, 2, 3, 4 and 5 mg/L) and three pH values (7.0, 7.3 and 7.6). Experiments were conducted in a jar-test device, with two types of synthetic surface water (i.e., of high and low organic strength) which consisted of humic acid (HA) and kaolin at different concentrations (5 mg/L and 50 mg/L). After the coagulation/flocculation process, clean water was separated with filters of pore size 0.45 μm. Filtration was also conducted before the addition of coagulants in order to compare the ‘net’ effect of the coagulation/flocculation process on the examined parameters (UV at 254 nm, turbidity, and residual metal concentration). Results showed that the use of PACl resulted in the highest removal of humics for both types of surface water. For the surface water of high organic strength (humic acid-kaolin, 50 mg/L-50 mg/L), the highest removal of humics was observed at the highest coagulant dosage of 5 mg/L and at pH=7. On the contrary, turbidity was not significantly affected by the coagulant dosage. However, the use of PACl decreased turbidity the most, especially when the surface water of high organic strength was employed. As expected, the application of coagulation/flocculation prior to filtration improved NOM removal but slightly affected turbidity. Finally, the residual Fe concentration (0.01-0.1 mg/L) was much lower than the residual Al concentration (0.1-0.25 mg/L).

Keywords: coagulation/flocculation, iron and aluminum coagulants, metal salts, pre-polymerized coagulants, surface water treatment

Procedia PDF Downloads 154
1331 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.

Keywords: anammox, filter media, kinetics, nitrogen removal

Procedia PDF Downloads 382
1330 Fabrication of Electrospun Carbon Nanofibers-Reinforced Chitosan-Based Hydrogel for Environmental Applications

Authors: Badr M. Thamer

Abstract:

The use of hydrogels as adsorbents for pollutants removal from wastewater is limited due to their high swelling properties and the difficulty in recovering them after the adsorption process. To overcome these problems, a new hydrogel nanocomposite based on chitosan-g-polyacrylic acid/oxidized electrospun carbon nanofibers (CT-g-PAA/O-ECNFs) was prepared by in-situ grafting polymerization process. The prepared hydrogel nanocomposite was used as a novel effective and highly reusable adsorbent for the removal of methylene blue (MB) from polluted water with low cost. The morphology and the structure of CT-g-PAA/O-ECNFs were investigated by numerous techniques. The effect of incorporating O-ECNFs on the swelling capability of the prepared hydrogel was explored in distillated water and MB solution at normal pH. The effect of parameters including the ratio of O-ECNFs, contact time, pH, initial concentration, and temperature on the adsorption process were explored. The adsorption isotherm and kinetic were studied by numerous non-linear models. The obtained results confirmed that the incorporation of O-ECNFs into the hydrogel network improved its ability towards MB dye removal with decreasing their swelling capacity. The adsorption process depends on the pH value of the dye solution. Additionally, the adsorption and kinetic results were fitted using the Freundlich isotherm model and pseudo second order model (PSO), respectively. Moreover, the new adsorbents can be recycled for at least five cycles keeping its adsorption capacity and can be easily recovered without loss in its initial weight.

Keywords: carbon nanofibers, hydrogels, nanocomposites, water treatment

Procedia PDF Downloads 147
1329 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network

Authors: Yasaman Sanayei, Alireza Bahiraie

Abstract:

This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.

Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis

Procedia PDF Downloads 412
1328 Removal of Heavy Metals in Wastewater Treatment System of Suan Sunandha Rajabhat University

Authors: Pantip Kayee, Yuwadee Yaponha, Jiranit Pongtubthai

Abstract:

This study focused on the determination of heavy metal concentration in wastewater and the investigation of heavy metal removal of wastewater treatment system of Suan Sunandha Rajabhat University. Heavy metals (Pb, Cu, Mn, Ni and Zn) were found in wastewater of Suan Sunandha Rajabhat University. Wastewater treatment systems of Suan Sunandha Rajabhat University showed the performance to remove heavy metals. However, heavy metals were still presented in effluent but these residue heavy metals were not over the standard for industrial wastewater. Wastewater treatment system can remove heavy metal by different process such as bioaccumulation by microorganism and biosorption on activated sludge.

Keywords: heavy metal, wastewater, bioaccumulation, biosorption

Procedia PDF Downloads 451
1327 Acidic Dye Removal From Aqueous Solution Using Heat Treated and Polymer Modified Waste Containing Boron Impurity

Authors: Asim Olgun, Ali Kara, Vural Butun, Pelin Sevinc, Merve Gungor, Orhan Ornek

Abstract:

In this study, we investigated the possibility of using waste containing boron impurity (BW) as an adsorbent for the removal of Orange 16 from aqueous solution. Surface properties of the BW, heat treated BW, and diblock copolymer coated BW were examined by using Zeta Meter and scanning electron microscopy (SEM). The polymer modified sample having the highest positive zeta potential was used as an adsorbent. Batch adsorption studies were carried out. The operating variables studied were the initial dye concentration, contact time, solution pH, and adsorbent dosage. It was found that the dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 3. The adsorption followed pseudo-second-order kinetics and the isotherm fit well to the Langmuir model.

Keywords: zeta potential, adsorption, Orange 16, isotherms

Procedia PDF Downloads 196
1326 Adsorption-desorption Behavior of Weak Polyelectrolytes Deposition on Aminolyzed-PLA Non-woven

Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari

Abstract:

In this study, the adsorption-desorption behavior of poly(amidoamine) (PAMAM) as a polycation and poly (acrylic acid) (PAA) as a polyanion deposited on aminolyzed-PLA nonwoven through layer-by-layer technique (lbl) was studied. The adsorption-desorption behavior was monitored by UV adsorbance spectroscopy and turbidity tests of the waste polyelectrolytes after each deposition. Also, the drying between each deposition step was performed to study the effect of drying on adsorption-desorption behavior. According to UV adsorbance spectroscopy of the waste polyelectrolyte after each deposition, it was revealed that drying has a great effect on the deposition behavior of the next layer. Regarding the deposition of the second layer, drying caused more desorption and removal of the previously deposited layer since the turbidity and the absorbance of the waste increased in comparison to pure polyelectrolyte. To deposit the third layer, the same scenario occurred and drying caused more removal of the previously deposited layer. However, the deposition of the fourth layer drying after the deposition of the third layer did not affect the adsorption-desorption behavior. Since the adsorbance and turbidity of the samples that were dried and those that were not dried were the same. As a result, it seemed that deposition of the fourth layer could be the starting point where lbl reached its constant state. The decrease in adsorbance and remaining turbidity of the waste same as a pure polyelectrolyte can indicate that most portion of the polyelectrolyte was adsorbed onto the substrate rather than complex formation in the bath as the subsequence of the previous layer removal.

Keywords: Adsorption-desorption behavior, lbl technique, poly(amidoamine), poly (acrylic acid), weak polyelectrolytes

Procedia PDF Downloads 53
1325 Optimization of the Drinking Water Treatment Process

Authors: M. Farhaoui, M. Derraz

Abstract:

Problem statement: In the water treatment processes, the coagulation and flocculation processes produce sludge according to the level of the water turbidity. The aluminum sulfate is the most common coagulant used in water treatment plants of Morocco as well as many countries. It is difficult to manage the sludge produced by the treatment plant. However, it can be used in the process to improve the quality of the treated water and reduce the aluminum sulfate dose. Approach: In this study, the effectiveness of sludge was evaluated at different turbidity levels (low, medium, and high turbidity) and coagulant dosage to find optimal operational conditions. The influence of settling time was also studied. A set of jar test experiments was conducted to find the sludge and aluminum sulfate dosages in order to improve the produced water quality for different turbidity levels. Results: Results demonstrated that using sludge produced by the treatment plant can improve the quality of the produced water and reduce the aluminum sulfate using. The aluminum sulfate dosage can be reduced from 40 to 50% according to the turbidity level (10, 20 and 40 NTU). Conclusions/Recommendations: Results show that sludge can be used in order to reduce the aluminum sulfate dosage and improve the quality of treated water. The highest turbidity removal efficiency is observed within 6 mg/l of aluminum sulfate and 35 mg/l of sludge in low turbidity, 20 mg/l of aluminum sulfate and 50 mg/l of sludge in medium turbidity and 20 mg/l of aluminum sulfate and 60 mg/l of sludge in high turbidity. The turbidity removal efficiency is 97.56%, 98.96% and 99.47% respectively for low, medium and high turbidity levels.

Keywords: coagulation process, coagulant dose, sludge, turbidity removal

Procedia PDF Downloads 335
1324 Testing Ammonia Borane for Multilayer Aprons in Nuclear Medicine as a Promising Non-toxic, Lightweight, Hydrogen Rich Material and to Enhance the Efficiency of Aprons for Workers Who Deal with Neutrons Radiation in Nuclear Medicine

Authors: Wed Othman Alghamdi

Abstract:

The current study aims to find a non-toxic, low density, hydrogen-rich material that can be used in aprons without causing health issues for nuclear medical workers that could hinder their work and negatively affect patients. Five samples were tested in terms of fast neutron removal cross-section(C21H25ClO5, C2H4, LiH,H3NBH3,MgH2) mathematically using computer program called Phy-x/PSD it is a computer program designed to calculate the fast neutron removal cross section, and it was obtained that ammonia borane (𝐻3𝑁𝐵𝐻3) with a density of 0.78 (g/ cm3) ,And it containment of the three most important elements that play a major role in protection shields, which are (hydrogen, boron, nitrogen), Hydrogen works as a moderator that slows neutrons and turn them into thermal neutrons, boron and nitrogen both have the largest neutron absorption cross section. Ammonia borane has the highest fast neutron removal cross-section with the value of (0.122959317985393cm-1) and the least for polyethylene (𝐶2𝐻4) with the value of (0.0838038707225853 cm-1) which made the ammonia borane a better candidate than polyethylene and other compounds that have been tasted in previous research for multi-layer aprons in nuclear medicine, and may approve a proper protection against the hazard radiations that its produced in nuclear medicine filed by several ways, due to it is low density and non-toxicity.

Keywords: aprons, radiation, non-toxic, nuclear medicine, neutrons

Procedia PDF Downloads 66
1323 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater

Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar

Abstract:

Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.

Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater

Procedia PDF Downloads 589
1322 Operating Parameters and Costs Assessments of a Real Fishery Wastewater Effluent Treated by Electrocoagulation Process

Authors: Mirian Graciella Dalla Porta, Humberto Jorge José, Danielle de Bem Luiz, Regina de F. P. M.Moreira

Abstract:

Similar to most processing industries, fish processing produces large volumes of wastewater, which contains especially organic contaminants, salts and oils dispersed therein. Different processes have been used for the treatment of fishery wastewaters, but the most commonly used are chemical coagulation and flotation. These techniques are well known but sometimes the characteristics of the treated effluent do not comply with legal standards for discharge. Electrocoagulation (EC) is an electrochemical process that can be used to treat wastewaters in terms of both organic matter and nutrient removal. The process is based on the use of sacrificial electrodes such as aluminum, iron or zinc, that are oxidized to produce metal ions that can be used to coagulate and react with organic matter and nutrients in the wastewater. While EC processes are effective to treatment of several types of wastewaters, applications have been limited due to the high energy demands and high current densities. Generally, the for EC process can be performed without additional chemicals or pre-treatment, but the costs should be reduced for EC processes to become more applicable. In this work, we studied the treatment of a real wastewater from fishmeal industry by electrocoagulation process. Removal efficiencies for chemical oxygen demand (COD), total organic carbon (TOC) turbidity, phosphorous and nitrogen concentration were determined as a function of the operating conditions, such as pH, current density and operating time. The optimum operating conditions were determined to be operating time of 10 minutes, current density 100 A.m-2, and initial pH 4.0. COD, TOC, phosphorous concentration, and turbidity removal efficiencies at the optimum operating conditions were higher than 90% for aluminum electrode. Operating costs at the optimum conditions were calculated as US$ 0.37/m3 (US$ 0.038/kg COD) for Al electrode. These results demonstrate that the EC process is a promising technology to remove nutrients from fishery wastewaters, as the process has both a high efficiency of nutrient removal, and low energy requirements.

Keywords: electrocoagulation, fish, food industry, wastewater

Procedia PDF Downloads 248
1321 Application and Regeneration of CuMnCeO Catalyst Supporting K₂CO₃ Sorbent Adapted to CO Oxidation and CO₂ Absorption

Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew

Abstract:

The requirement for the long-term mission of the submarine and spacecraft has made the removal of CO₂ and trace CO the critical technology to ensure the health and life of the crews. In this work, CuMnCe, a metal oxide catalyst, supporting K₂CO₃ sorbent was prepared by the wet-solid state impregnation method to realize the integrated CO and CO₂ removal, which might also reduce the volume/mass load of the purification units in the limited space. The as-prepared samples with different addition amount of K₂CO₃ were tested using the fixed bed reactor to reveal the CO oxidation and CO₂ absorption behavior. And the regeneration and stability experiments were also conducted. The results showed that the samples realized the catalyst and sorbent integration to capture CO and CO₂ at the same time. The addition amount of the sorbent had a weak influence on the CO oxidation performance. While the addition amount affected the CO₂ sorption efficiency and capacity significantly. Meanwhile, the presence of water vapor could reduce the CO oxidation activity of the samples similarly, whether with K2CO3 sorbent addition or not. Furtherly, regeneration and stability experiment results showed that the samples after 3-5 times regeneration exhibited almost the same performance of CO and CO₂ removal. Summarily, CuMnCe catalyst supporting K₂CO₃ sorbent could be a good attempt to control CO and CO₂ pollutants generated from the daily equipment running and staff breathing in the confined space such as submarine and spacecraft.

Keywords: CO oxidation, CO₂ absorptio, potassium carbonate, CuMnCe metal oxide, confined space

Procedia PDF Downloads 119
1320 Performance of an Anaerobic Baffled Reactor (ABR) during Start-Up Period

Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa

Abstract:

Appropriate start-up of an anaerobic baffled reactor (ABR) is considered to be the most delicate and important issue in the anaerobic process, and depends on several factors such as wastewater composition, reactor configuration, inoculum and operating conditions. In this work, the start-up performance of an ABR with working volume of 30 liters, fed continuously with synthetic food industrial wastewater along with semi-batch study to measure the methangenic activity by specific methanogenic activity (SMA) test were carried out at various organic loading rates (OLRs) to determine the best OLR used to start up the reactor. The comparison was based on COD removal efficiencies, start-up time, pH stability and methane production. An OLR of 1.8 Kg COD/m3d (5400 gCOD/m3 and 3 days HRT) showed best overall performance with COD removal efficiency of 94.44% after four days from the feeding and methane production of 3802 ml/L with an overall SMA of 0.36 gCH4-COD/gVS.d

Keywords: anaerobic baffled reactor, anaerobic reactor start-up, food industrial wastewater, specific methanogenic activity

Procedia PDF Downloads 388
1319 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric

Authors: J. R. Mudakavi, K. Puttanna

Abstract:

Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.

Keywords: activated carbon fabric, hexavalent chromium, adsorption, drinking water

Procedia PDF Downloads 336
1318 EEG Signal Processing Methods to Differentiate Mental States

Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon

Abstract:

EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.

Keywords: EEG, focus, mental state, outlier, signal processing

Procedia PDF Downloads 283
1317 Degradation of Different Organic Contaminates Using Corona Discharge Plasma

Authors: A. H. El-Shazly, A. El-Tayeb, M. F. Elkady, Mona G. E. Ibrahim, Abdelazim M. Negm

Abstract:

In this paper, corona discharge plasma reactor was used for degradation of organic pollution in aqueous solutions in batch reactor. This work examines the possibility of increasing the organic pollution removal efficiency from wastewater using non-thermal plasma. Three types of organic pollution phenol, acid blue 25 and methylene blue are presented to investigate experimentally the amount of organic pollution removal efficiency from wastewater. Measurement results for phenol degradation percentage are 71% in 35 min and 96% when its residence time is 60 min. In addition, the degradation behavior of acid blue 25 utilizing dual pin-to-plate corona discharge plasma system displays a removal efficiency of 82% in 11 min. The complete decolorization was accomplished in 35 min for concentration of acid blue 25 up to 100 ppm. Furthermore, the methylene blue degradation touched up to 85% during 35 min treatment in corona discharge plasma a batch reactor system. The decolorization ratio, conductivity, corona current and discharge energy are considered at various concentration molarity for AlCl3, CaCl2, KCl and NaCl under different molar concentration. It was observed that the attendance of salts at the same concentration level considerably diminished the rate and the extent of decolorization. The research presented that the corona system could be positively utilized in a diversity of organically contaminated at diverse concentrations. Energy consumption requirements for decolorization was considered. The consequences will be valuable for designing the plasma treatment systems appropriate for industrial wastewaters.

Keywords: wastewater treatment, corona discharge, non-thermal plasma, organic pollution

Procedia PDF Downloads 338
1316 Removal of Lead in High Rate Activated Sludge System

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda

Abstract:

The heavy metals pollution in water, sediments and fish of Lake Manzala affected from the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h was designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200, and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L, respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56%, respectively.

Keywords: industrial wastewater, activated sludge, BOD5, lead, alum salt

Procedia PDF Downloads 518
1315 Bio-Desalination and Bioremediation of Agroindustrial Wastewaters Using Yarrowia Lipolytica

Authors: Selma Hamimed, Abdelwaheb Chatti

Abstract:

The current study deals with the biological treatment of saline wastewaters generated by various agro-food industries using Yarrowia lipolytica. The ability of this yeast was studied on the mixture of olive mill wastewater and tuna wash processing wastewater. Results showed that the high proportion of olive mill wastewater in the mixture about (75:25) is the suitable one for the highest Y. lipolytica biomass production, reaching 11.3 g L⁻¹ after seven days. In addition, results showed significant removal of chemical oxygen demand (COD) and phosphorous of 97.49 % and 98.90 %, respectively. On the other hand, Y. lipolytica was found to be effective to desalinate all mixtures reaching a removal of 92.21 %. Moreover, the analytical results using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed the biosorption of NaCl on the surface of the yeast as nanocrystals form with a size of 47.3 nm.

Keywords: nanocrystallization of NaCl, desalination, wastewater treatment, yarrowia lipolytica

Procedia PDF Downloads 187
1314 Design of a Laboratory Test for InvestigatingPermanent Deformation of Asphalt

Authors: Esmaeil Ahmadinia, Frank Bullen, Ron Ayers

Abstract:

Many concerns have been raised in recent years about the adequacy of existing creep test methods for evaluating rut-resistance of asphalt mixes. Many researchers believe the main reason for the creep tests being unable to duplicate field results is related to a lack of a realistic confinement for laboratory specimens. In-situ asphalt under axle loads is surrounded by a mass of asphalt, which provides stress-strain generated confinement. However, most existing creep tests are largely unconfined in their nature. It has been hypothesised that by providing a degree of confinement, representative of field conditions, in a creep test, it could be possible to establish a better correlation between the field and laboratory. In this study, a new methodology is explored where confinement for asphalt specimens is provided. The proposed methodology is founded on the current Australian test method, adapted to provide simulated field conditions through the provision of sample confinement.

Keywords: asphalt mixture, creep test, confinements, permanent deformation

Procedia PDF Downloads 322
1313 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 297
1312 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment

Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa

Abstract:

The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 32