Search results for: game TRABR TRAining of BReath)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4590

Search results for: game TRABR TRAining of BReath)

1200 Innovations in International Trauma Education: An Evaluation of Learning Outcomes and Community Impact of a Guyanese trauma Training Graduate Program

Authors: Jeffrey Ansloos

Abstract:

International trauma education in low and emerging economies requires innovative methods for capacity building in existing social service infrastructures. This study details the findings of a program evaluation used to assess the learning outcomes and community impact of an international trauma-focused graduate degree program in Guyana. Through a collaborative partnership between Lesley University, the Government of Guyana, and UNICEF, a 2-year low-residency masters degree graduate program in trauma-focused assessment, intervention, and treatment was piloted with a cohort of Guyanese mental health professionals. Through an analytical review of the program development, as well as qualitative data analysis of participant interviews and focus-groups, this study will address the efficacy of the programming in terms of preparedness of professionals to understand, evaluate and implement trauma-informed practices across various child, youth, and family mental health service settings. Strengths and limitations of this international trauma-education delivery model will be discussed with particular emphasis on the role of capacity-building interventions, community-based participatory curriculum development, innovative technological delivery platforms, and interdisciplinary education. Implications for further research and subsequent program development will be discussed.

Keywords: mental health promotion, global health promotion, trauma education, innovations in education, child, youth, mental health education

Procedia PDF Downloads 366
1199 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 93
1198 Engineering of E-Learning Content Creation: Case Study for African Countries

Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola

Abstract:

This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.

Keywords: teaching contents engineering, e-learning, blended learning, international cooperation, 3dslicer, open anatomy browser

Procedia PDF Downloads 172
1197 Like a Bridge over Troubled Waters: The Value of Joint Learning Programs in Intergroup Identity-Based Conflict in Israel

Authors: Rachelly Ashwall, Ephraim Tabory

Abstract:

In an attempt to reduce the level of a major identity-based conflict in Israel between Ultra-orthodox and secular Jews, several initiatives in recent years have tried to bring members of the two societies together in facilitated joint discussion forums. Our study analyzes the impact of two types of such programs: joint mediation training classes and confrontation-based learning programs that are designed to facilitate discussions over controversial issues. These issues include claims about an unequal shouldering of national obligations such as military service, laws requiring public observance of the Sabbath, and discrimination against women, among others. The study examines the factors that enabled the two groups to reduce their social distance, and increase their understanding of each other, and develop a recognition and tolerance of the other group's particular social identity. The research conducted over a course of two years involved observations of the activities of the groups, interviews with the participants, and analysis of the social media used by the groups. The findings demonstrate the progression from a mutual initial lack of knowledge about habits, norms, and attitudes of the out-group to an increasing desire to know, understand and more readily accept the identity of a previously rejected outsider. Participants manifested more respect, concern for and even affection for those whose identity initially led them to reject them out of hand. We discuss the implications for seemingly intractable identity-based conflict in fragile societies.

Keywords: identity-based conflict, intergroup relations, joint mediation learning, out-group recognition, social identity

Procedia PDF Downloads 252
1196 The Relevance of Family Involvement in the Journey of Dementia Patients

Authors: Akankunda Veronicah Karuhanga

Abstract:

Dementia is an age mental disorder that makes victims lose normal functionality that needs delicate attention. It has been technically defined as a clinical syndrome that presents a number of difficulties in speech and other cognitive functions that change someone’s behaviors and can also cause impairments in activities of daily living, not forgetting a range of neurological disorders that bring memory loss and cognitive impairment. Family members are the primary healthcare givers and therefore, the way how they handle the situation in its early stages determines future deterioration syndromes like total memory loss. Unfortunately, most family members are ignorant about this condition and in most cases, the patients are brought to our facilities when their condition was already mismanaged by family members and we thus cannot do much. For example, incontinence can be managed at early stages through potty training or toilet scheduling before resorting to 24/7 diapers which are also not good. Professional Elderly care should be understood and practiced as an extension of homes, not a dumping place for people considered “abnormal” on account of ignorance. Immediate relatives should therefore be sensitized concerning the normalcy of dementia in the context of old age so that they can be understanding and supportive of dementia patients rather than discriminating against them as present-day lepers. There is a need to skill home-based caregivers on how to handle dementia in its early stages. Unless this is done, many of our elderly homes shall be filled with patients who should have been treated and supported from their homes. This skilling of home-based caregivers is a vital intervention because until elderly care is appreciated as a human moral obligation, many transactional rehabilitation centers will crop up and this shall be one of the worst moral decadences of our times.

Keywords: dementia, family, Alzheimers, relevancy

Procedia PDF Downloads 93
1195 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 162
1194 Avoiding Medication Errors in Juvenile Facilities

Authors: Tanja Salary

Abstract:

This study uncovers a gap in the research and adds to the body of knowledge regarding medication errors in a juvenile justice facility. The study includes an introduction to data collected about medication errors in a juvenile justice facility and explores contributing factors that relate to those errors. The data represent electronic incident records of the medication errors that were documented from the years 2011 through 2019. In addition, this study reviews both current and historical research of empirical data about patient safety standards and quality care comparing traditional healthcare facilities to juvenile justice residential facilities. The theoretical/conceptual framework for the research study pertains to Bandura and Adams’s (1977) framework of self-efficacy theory of behavioral change and Mark Friedman’s results-based accountability theory (2005). Despite the lack of evidence in previous studies about addressing medication errors in juvenile justice facilities, this presenter will relay information that adds to the body of knowledge to note the importance of how assessing the potential relationship between medication errors. Implications for more research include recommendations for more education and training regarding increased communication among juvenile justice staff, including nurses, who administer medications to juveniles to ensure adherence to patient safety standards. There are several opportunities for future research concerning other characteristics about factors that may affect medication administration errors within the residential juvenile justice facility.

Keywords: juvenile justice, medication errors, psychotropic medications, behavioral health, juveniles, incarcerated youth, recidivism, patient safety

Procedia PDF Downloads 79
1193 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach

Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma

Abstract:

Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.

Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX

Procedia PDF Downloads 129
1192 Experiences of Marital Relationship of Middle-Aged Couples in Hong Kong: Implications for Services Interventions

Authors: Wai M. Shum

Abstract:

There was evidence that the change of marital quality satisfaction was related to the different stages of the family life cycle. Research studies have been largely based on western contexts, which found a curvilinear U-shaped trend in changes of marital satisfaction over the course of a marriage, but little is known about the marital experiences of Hong Kong couples. Through in-depth interviews, this qualitative study explored the marital relationship of middle-aged couples in a satisfying marriage and to identify how couples maintain a satisfying relationship in the local context. Findings from this study suggested twelve themes with some showing consistency with previous literature, such as communication, companionship, trust, and fidelity. The affective aspects of empathetic understanding and perceived empathy were found to have an enormous effect on couples’ bondedness. The high level of differentiation and security served as a basis for unconditional contribution, acceptance, and adjustment to unsolvable issues such that negative emotion would not be escalated. The manifestations of intimacy and commitment in the triangular theory of love were more frequently addressed than passion in striving for marital longevity in the local context. This study challenged the curvilinear trend of marital satisfaction throughout marriage, with couples showing different pathways of marital satisfaction. The study gave insights on martial enrichment, such as facilitating couples to disclose their vulnerabilities, desire for physical intimacy, and passion in the pursuit of enduring marriage instead of an emphasis on skills training on communication and conflict resolution.

Keywords: intimacy, marital relationship, marital satisfaction, middle-aged

Procedia PDF Downloads 113
1191 From Dissection to Diagnosis: Integrating Radiology into Anatomy Labs for Medical Students

Authors: Julia Wimmers-Klick

Abstract:

At the Canadian University of British Columbia's Faculty of Medicine, anatomy has traditionally been taught through a combination of lectures and dissection labs in the first two years, with radiology taught separately through lectures and online modules. However, this separation may leave students underprepared for medical practice, as medical imaging is essential for diagnosing anatomical and pathological conditions. To address this, a pilot project was initiated aimed at integrating radiological imaging into anatomy dissection labs from day one of medical school. The incorporated radiological images correlated with the current dissection areas. Additional stations were added within the lab, tailored to the specific content being covered. These stations focused on bones, and quiz questions, along with light-box exercises using radiographs, CT scans, and MRIs provided by the radiology department. The images used were free of pathologies. Examples of these will be presented in the poster. Feedback from short interviews with students and instructors has been positive, particularly among second-year students who appreciated the integration compared to their first-year experience. This low-budget approach was easy to implement but faced challenges, as lab instructors were not radiologists and occasionally struggled to answer students' questions. Instructors expressed a desire for basic training or a refresher course in radiology image reading, particularly focused on identifying healthy landmarks. Overall, all participants agreed that integrating radiology with anatomy reinforces learning during dissection, enhancing students' understanding and preparation for clinical practice.

Keywords: quality improvement, radiology education, anatomy education, integration

Procedia PDF Downloads 7
1190 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 153
1189 Parental Separation and 'the Best Interests of the Child' at International Law: Guidance for Nation States in the 21st Century

Authors: Cassandra Seery

Abstract:

During the twentieth century, the notion of child rights at the international level began with the League of Nations’ Geneva Declaration of the Rights of the Child 1924, culminating in the development and adoption of the UN Convention on the Rights of the Child (‘the Convention’) in 1989. A key foundation of child rights lies in the development of the ‘best interests of the child’ principle and its subsequent incorporation into domestic legislation across the globe. This principle has become a key concept in child rights protection and has become a widely recognized principle in the protection of child rights. However, despite its status as the primary operating standard in child and family law and its ‘deepening hold in domestic and international instruments’, the meaning of the ‘best interests of the child’ principle has been criticised as open-ended and vague. This paper explores the evolution and development of the principle in the context of parental separation at international law throughout the 21st century and identifies opportunities for the Nation States to further improve legislative responses in associated child protection cases. An extensive review of relevant United Nations documentation (including instruments, resolutions and comments, jurisprudence, reports, guidelines and policies, training materials and so forth) explores: (i) what progress has been made to further develop the principle at the international level with regard to parental separation; and (ii) what developments participating the Nation States should consider as part of future legal and social policy reforms in this space. It will highlight opportunities for improvement and explore the benefit and relevance of international approaches for the Nation States moving forward.

Keywords: international human rights, best interests of the child, legal and social policy, child rights

Procedia PDF Downloads 259
1188 Safe Zone: A Framework for Detecting and Preventing Drones Misuse

Authors: AlHanoof A. Alharbi, Fatima M. Alamoudi, Razan A. Albrahim, Sarah F. Alharbi, Abdullah M Almuhaideb, Norah A. Almubairik, Abdulrahman Alharby, Naya M. Nagy

Abstract:

Recently, drones received a rapid interest in different industries worldwide due to its powerful impact. However, limitations still exist in this emerging technology, especially privacy violation. These aircrafts consistently threaten the security of entities by entering restricted areas accidentally or deliberately. Therefore, this research project aims to develop drone detection and prevention mechanism to protect the restricted area. Until now, none of the solutions have met the optimal requirements of detection which are cost-effectiveness, high accuracy, long range, convenience, unaffected by noise and generalization. In terms of prevention, the existing methods are focusing on impractical solutions such as catching a drone by a larger drone, training an eagle or a gun. In addition, the practical solutions have limitations, such as the No-Fly Zone and PITBULL jammers. According to our study and analysis of previous related works, none of the solutions includes detection and prevention at the same time. The proposed solution is a combination of detection and prevention methods. To implement the detection system, a passive radar will be used to properly identify the drone against any possible flying objects. As for the prevention, jamming signals and forceful safe landing of the drone integrated together to stop the drone’s operation. We believe that applying this mechanism will limit the drone’s invasion of privacy incidents against highly restricted properties. Consequently, it effectively accelerates drones‘ usages at personal and governmental levels.

Keywords: detection, drone, jamming, prevention, privacy, RF, radar, UAV

Procedia PDF Downloads 210
1187 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: impersonation, image registration, incrimination, object detection, threshold evaluation

Procedia PDF Downloads 228
1186 Attitudes of Resort Hotel Managers toward Climate Change Adaptation and Mitigation Practices, Bishoftu, Ethiopia

Authors: Mohammed Aman Kassim

Abstract:

This study explored the attitudes of hotel managers toward climate change adaption and mitigation practices in resort hotels located in Bishoftu town, Ethiopia. Weak resource management in the area causes serious environmental problems. So sustainable way forward is needed for the destination in order to reduce environmental damage. Six resorts were selected out of twelve resort hotels in Bishoftu City by using the systematic sampling method, and a total of fifty-six managers were taken for the study. The data analyzed came from self-administered questionnaires, site observation, and a short face-to-face interview with general managers. The results showed that 99% of hotel managers possess positive attitudes toward climate change adaptation and mitigation practices. But they did not show a high commitment to adopting all adaptation and mitigation practices in their hotel’s actions and day-to-day operation. Key adoption influencing factors identified were: owners' commitment toward sustainability, the applicability of government rules and regulations, and incentives for good achievement. The findings also revealed that the attitudes of resort hotel managers toward climate change adaption and mitigation practices are more significantly influenced by their social factors, such as level of education and age, in this study. The study demonstrated that in order to increase managers' commitment and hotels become green: government led-education and training programs, green certification actions, and application of government environmental regulation are important.

Keywords: climate change, climate change adaptation and mitigation practices, environmental attitude, resort hotels

Procedia PDF Downloads 101
1185 A Robust Spatial Feature Extraction Method for Facial Expression Recognition

Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda

Abstract:

This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.

Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure

Procedia PDF Downloads 423
1184 Impact of Extension Services Pastoralists’ Vulnerability to Climate Change in Northern Guinea Savannah of Nigeria

Authors: Sidiqat A. Aderinoye-Abdulwahab, Lateef L. Adefalu, Jubril O. Animashaun

Abstract:

Pastoralists in Nigeria are situated in dry regions - where water and pasture for livestock are particularly scarce, as well as areas with poor availability of social amenities and infrastructure. This study therefore explored how extension service could be used to reduce the exposure of nomads to effects of seasonality, climate change, and the poor environmental conditions. The study was carried out in Northern guinea Savannah region of Nigeria because pastoralists have settled there in large numbers due to desertification and low rainfall in the arid regions. A multi-stage sampling procedure was used to arrive at the selection of two states (Kwara and Nassarawa) in the region. A total of 63 respondents were randomly chosen using simple random sampling. Focus group discussions and questionnaire were used to gather information while the data was analysed using content analysis. The facilities required by the sampled households are milking machine, cheese making machine, and preservatives to increase the shelf life of cheese. Whilst, the extension service required are demonstration on cheese making, training and seminars on animal husbandry. Additionally, livestock of pastoralists often encroach on farmers’ plots which usually result in pastoralist-farmer conflicts. The study thus recommends diversification of economic activity from livestock to non-livestock related activities as well as creation of grazing routes to reduce pastoralist/farmer conflict.

Keywords: arid region, coping strategies, livestock, livelihood

Procedia PDF Downloads 389
1183 Integrating Artificial Intelligence in Social Work Education: An Exploratory Study

Authors: Nir Wittenberg, Moshe Farhi

Abstract:

This mixed-methods study examines the integration of artificial intelligence (AI) tools in a first-year social work course to assess their potential for enhancing professional knowledge and skills. The incorporation of digital technologies, such as AI, in social work interventions, training, and research has increased, with the expectation that AI will become as commonplace as email and mobile phones. However, policies and ethical guidelines regarding AI, as well as empirical evaluations of its usefulness, are lacking. As AI is gradually being adopted in the field, it is prudent to explore AI thoughtfully in alignment with pedagogical goals. The outcomes assessed include professional identity, course satisfaction, and motivation. AI offers unique reflective learning opportunities through personalized simulations, feedback, and queries to complement face-to-face lessons. For instance, AI simulations provide low-risk practices for situations such as client interactions, enabling students to build skills with less stress. However, it is essential to recognize that AI alone cannot ensure real-world competence or cultural sensitivity. Outcomes related to student learning, experience, and perceptions will help to elucidate the best practices for AI integration, guiding faculty, and advancing pedagogical innovation. This strategic integration of selected AI technologies is expected to diversify course methodology, improve learning outcomes, and generate new evidence on AI’s educational utility. The findings will inform faculty seeking to thoughtfully incorporate AI into teaching and learning.

Keywords: artificial intelligence (AI), social work education, students, developing a professional identity, ethical considerations

Procedia PDF Downloads 78
1182 Development and Optimization of German Diagnostical Tests in Mathematics for Vocational Training

Authors: J. Thiele

Abstract:

Teachers working at vocational Colleges are often confronted with the problem, that many students graduated from different schools and therefore each had a different education. Especially in mathematics many students lack fundamentals or had different priorities at their previous schools. Furthermore, these vocational Colleges have to provide Graduations for many different working-fields, with different core themes. The Colleges are interested in measuring the different Education levels of their students and providing assistance for those who need to catch up. The Project mathe-meistern was initiated to remedy this problem at vocational Colleges. For this purpose, online-tests were developed. The aim of these tests is to evaluate basic mathematical abilities of the students. The tests are online Multiple-Choice-Tests with a total of 65 Items. They are accessed online with a unique Transaction-Number (TAN) for each participant. The content is divided in several Categories (Arithmetic, Algebra, Fractions, Geometry, etc.). After each test, the student gets a personalized summary depicting their strengths and weaknesses in mathematical Basics. Teachers can visit a special website to examine the results of their classes or single students. In total 5830 students did participate so far. For standardization and optimization purposes the tests are being evaluated, using the classic and probabilistic Test-Theory regarding Objectivity, Reliability and Validity, annually since 2015. This Paper is about the Optimization process considering the Rasch-scaling and Standardization of the tests. Additionally, current results using standardized tests will be discussed. To achieve this Competence levels and Types of errors of students attending vocational Colleges in Nordrheinwestfalen, Germany, were determined, using descriptive Data and Distractorevaluations.

Keywords: diagnostical tests in mathematics, distractor devaluation, test-optimization, test-theory

Procedia PDF Downloads 122
1181 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 64
1180 Development of Affordable and Reliable Diagnostic Tools to Record Vital Parameters for Improving Health Care in Low Resources Settings

Authors: Mannan Mridha, Usama Gazay, Kosovare V. Aslani, Hugo Linder, Alice Ravizza, Carmelo de Maria

Abstract:

In most developing countries, although the vast majority of the people are living in the rural areas, the qualified medical doctors are not available there. Health care workers and paramedics, called village doctors, informal healthcare providers, are largely responsible for the rural medical care. Mishaps due to wrong diagnosis and inappropriate medication have been causing serious suffering that is preventable. While innovators have created many devices, the vast majority of these technologies do not find applications to address the needs and conditions in low-resource settings. The primary motive is to address the acute lack of affordable medical technologies for the poor people in low-resource settings. A low cost smart medical device that is portable, battery operated and can be used at any point of care has been developed to detect breathing rate, electrocardiogram (ECG) and arterial pulse rate to improve diagnosis and monitoring of patients and thus improve care and safety. This simple and easy to use smart medical device can be used, managed and maintained effectively and safely by any health worker with some training. In order to empower the health workers and village doctors, our device is being further developed to integrate with ICT tools like smart phones and connect to the medical experts wherever available, to manage the serious health problems.

Keywords: e-health for low resources settings, health awareness education, improve patient care and safety, smart and affordable medical device

Procedia PDF Downloads 193
1179 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model

Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo

Abstract:

In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.

Keywords: climatic change, artificial neural networks, dorado fish, CPUE

Procedia PDF Downloads 242
1178 Effect of Relaxation Techniques in Reducing Stress Level among Mothers of Children with Autism Spectrum Disorder

Authors: R. N. Jay A. Ablog, M. N. Dyanne R. Del Carmen, Roma Rose A. Dela Cruz, Joselle Dara M. Estrada, Luke Clifferson M. Gagarin, Florence T. Lang-ay, Ma. Dayanara O. Mariñas, Maria Christina S. Nepa, Jahraine Chyle B. Ocampo, Mark Reynie Renz V. Silva, Jenny Lyn L. Soriano, Loreal Cloe M. Suva, Jackelyn R. Torres

Abstract:

Background: To date, there is dearth of literature as to the effect of relaxation techniques in lowering the stress level of mothers of children with autism spectrum disorder (ASD). Aim: To investigate the effectiveness of 4-week relaxation techniques in stress level reduction of mothers of children with ASD. Methods: Quasi experimental design. It included 25 mothers (10-experimental, 15-control) who were chosen via purposive sampling. The mothers were recruited in the different SPED centers in Baguio City and La Trinidad and in the community. Statistics used were T-test and Related T-Test. Results: The overall weighted mean score after 4-week training is 2.3, indicating that the relaxation techniques introduced were moderately effective in lowering stress level. Statistical analysis (T-test; CV=4.51>TV=2.26) shown a significant difference in the stress level reduction of mothers in the experimental group pre and post interventions. There is also a significant difference in the stress level reduction in the control and the experimental group (Related T-test; CV=2.08 >TV=2.07). The relaxation techniques introduced were favorable, cost-effective, and easy to perform interventions to decrease stress level.

Keywords: relaxation techniques, mindful eating, progressive muscle relaxation, breathing exercise, autism spectrum disorder

Procedia PDF Downloads 431
1177 Prevalence Pediculosis and Associated Risk Factors in Primary-School Children of Mazandaran Province, Iran, 2012-2013

Authors: Seyyed Farzad Motevalli-Haghi, Javad Rafinejad, Mahboobeh Hosseni, Jamshid Yazdani-Charati, Behzad Parsi

Abstract:

Background and purpose: Pediculosis is a worldwide public health concern. This descriptive study was performed on primary-school-aged children to determine the prevalence of pediculosis and its risk factors in Mazandaran Province, Iran, on basis of geographic information system (GIS). Materials and methods: A random sampling method was used to select 45237 school-aged children from Sari to Ramsar cities during September 2012 to June 2013. Data were collected from the selected schools by five trained nursing inspectors. A detailed questionnaire was filled for each child prior to hair examination following which examination was carried out to detect head lice as well as eggs/nits. Data were analyzed chi-square test. Finally, the GIS map was obtained in province informational chart. Results: 823 primary-school children (of 45237) were infected with lice in Mazandaran Province. The mean infection prevalence was 1.4% in cities 5.64% in rural area from Sari to Ramsar. There were significant relationships between pediculosis and some factors (P<0.05). GIS map revealed that the contamination was less in west than in east and central regions. Conclusion: Increasing awareness and training of teachers and parents, as well as improving standards of personal health can significantly reduce the prevalence of pediculosis.

Keywords: pediculosis capitis, primary school children, epidemiology, geographic information system (GIS), Mazandaran, Iran

Procedia PDF Downloads 548
1176 The Rehabilitation of Drug Addiction by Thai Indigenous Knowledge: A Case Study of Thamkrabok Monastery

Authors: Wanwimon Mekwimon

Abstract:

Drug addiction is a serious problem in Thailand which has occurred continuously and repeatedly and enormously impacting health and economy of drug users. The indigenous wisdom and folk medicine is an attractive alternative choice, especially in detoxification and rehabilitation period. There are two objectives: First is to study about rehabilitation process and the curing for drug eaters and 2nd is to investigate the effectiveness of the curing and rehabilitation process by indigenous wisdom at Tamkrabok monastery, Pra-Puttabat district, Saraburi province. The main informants are 10 curers, 15 patients and 17 after-1-year rehabilitators. In the process, the semi-structured questionnaire is administered, the data are analyzed and proved by triangulation. The curing and rehabilitation process which use herbal remedies has a period of 15 days (5 days for detoxification and 10 days for recovery period) and the occupational training and self-consciousness awakening were delivered. The follow-up process includes twice-a-month recall for 6 months, follow-up letters and in depth interview with their families. The outcome of 1 year post-treatment was 94% (16 from 17). There are many reasons for not relapsing: the recovering patients have drawn on their inner strength, self-awareness and coping skill as well as their family and social support while rehabilitation process which includes difficulties in contacting with family members. They can void themselves from high risk situations to relapse. Recommendations: The follow-up system should be improved for continuous quality improvement, there should be the qualification standard for herbal remedies and the comparison among rehabilitation process of Tamkrabok and another methods are to be guideline for the further development.

Keywords: rehabilitation, drug addiction, Thai indigenous knowledge, herbal remedies

Procedia PDF Downloads 243
1175 Prevalence and Factors Associated to Work Accidents in the Construction Sector in Benin: Cases of CFIR – Consulting

Authors: Antoine Vikkey Hinson, Menonli Adjobimey, Gemayel Ahmed Biokou, Rose Mikponhoue

Abstract:

Introduction: Construction industry is a critical concern with regard to Health and Safety Service worldwide. World health Organization revealed that work-related disease and trauma were held responsible for the death of one million nine hundred thousand people in 2016. The aim of this study it was to determine the prevalence and factors associated with the occurrence of work accidents in a construction industry in Benin. Method: It was a descriptive cross-sectional and analytical study. Data analysis was performed with R software 4.1.1. In multivariate analysis, we performed a binary logistic regression. OR adjusted (ORa) association measures and their 95% confidence interval [CI95%] were presented for the explanatory variables used in the final model. The significance threshold for all tests selected was 5% (p < 0.05) Result: In this study, 472 workers were included, and, of these, 452 (95.7%) were men corresponding to a sex ratio of 22.6. The average age of the workers was 33 years ± 8.8 years. Workers were mostly laborers (84.7%), and had declared having inadequate personal protective equipment (50.6%, n=239). The prevalence of work accidents is 50.8%. Collision with a rolling stock (25.8%), cut (16.2%), and stumbling (16.2%) were the main types of work accidents on the construction site. Four factors were associated with contributing to work accidents. Fatigue or exhaustion (ORa : 1.53[1.03 ; 2.28]); The use of dangerous tools (ORa : 1.81 [1.22 ; 2.71]); The various laborers’ jobs (ORa : 4.78 [2.62 ; 9.21]); and seniority in the company ≥ 4 years (ORa : 2.00 [1.35 ; 2.96]). Conclusion: This study allowed us to identify the associated factors. It is imperative to implement a rigorous policy of occupational health and security mostly the continuing training for workers safe, the supply of appropriate work tools and protective

Keywords: prevalence, work accident, associated factors, construction, benin

Procedia PDF Downloads 55
1174 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement

Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini

Abstract:

Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.

Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis

Procedia PDF Downloads 135
1173 Anxiety and Depression in Parents of Children with Developmental Disabilities in Early Childhood

Authors: S. Bagur, S. Verger, B. Mut

Abstract:

Early childhood intervention (ECI) is the set of actions aimed at children aged 0-6 years with special needs, the family, and the environment that aim to improve child development and family well-being. Socio-educational intervention with children with disabilities and their families should be understood through the principles of family-centered practice (FCP). The multidisciplinary team of professionals carries out the intake, assessment, and intervention, understanding that families may experience mental health problems, parental role incompetence, or feelings of exclusion. This study examines the relationship between caregivers' levels of anxiety and depression and child development during the fostering and assessment phase. The design is quantitative, non-experimental, and cross-sectional. The sample consisted of 135 family members (78.5% female, 21.5% male) users of child development services in the Balearic Islands (Spain). Three questionnaires were completed: Anxiety and Depression Scale, Child Behavior Checklist (CBCL 1½-5), and sociodemographic questionnaire. The main results show that parents of children with special needs score higher on anxiety than on depression. It should be noted that professional discipline is a variable to be taken into account in relation to parents' perception of the improvement of their child's development. In addition, there is an association between the developmental subscales, where the more the child is affected, the more the parents' mental health is affected. In short, we propose a reflection on the application of FCP during the intervention, understanding the lack of professional training as a predictor of quality in early intervention. Likewise, future lines of research are proposed to improve early care practices.

Keywords: anxiety, depression, early childhood intervention, family

Procedia PDF Downloads 85
1172 The Effect of Fetal Movement Counting on Maternal Antenatal Attachment

Authors: Esra Güney, Tuba Uçar

Abstract:

Aim: This study has been conducted for the purpose of determining the effects of fetal movement counting on antenatal maternal attachment. Material and Method: This research was conducted on the basis of the real test model with the pre-test /post-test control groups. The study population consists of pregnant women registered in the six different Family Health Centers located in the central Malatya districts of Yeşilyurt and Battalgazi. When power analysis is done, the sample size was calculated for each group of at least 55 pregnant women (55 tests, 55 controls). The data were collected by using Personal Information Form and MAAS (Maternal Antenatal Attachment Scale) between July 2015-June 2016. Fetal movement counting training was given to pregnant women by researchers in the experimental group after the pre-test data collection. No intervention was applied to the control group. Post-test data for both groups were collected after four weeks. Data were evaluated with percentage, chi-square arithmetic average, chi-square test and as for the dependent and independent group’s t test. Result: In the MAAS, the pre-test average of total scores in the experimental group is 70.78±6.78, control group is also 71.58±7.54 and so there was no significant difference in mean scores between the two groups (p>0.05). MAAS post-test average of total scores in the experimental group is 78.41±6.65, control group is also is 72.25±7.16 and so the mean scores between groups were found to have statistically significant difference (p<0.05). Conclusion: It was determined that fetal movement counting increases the maternal antenatal attachments.

Keywords: antenatal maternal attachment, fetal movement counting, pregnancy, midwifery

Procedia PDF Downloads 269
1171 Comparative Study of Mechanical and Physiological Gait Efficiency Following Anterior Cruciate Ligament Reconstruction

Authors: Radwa E. Sweif, Amira A. A. Abdallah

Abstract:

Background: Evaluation of gait efficiency is used to examine energy consumption especially in patients with movement disorders. Hypothesis/Purpose: This study compared the physiological and mechanical measures of gait efficiency between patients with ACL reconstruction (ACLR) and healthy controls and correlated among these measures. Methods: Seventeen patients with ACLR and sixteen healthy controls with mean ± SD age 23.06±4.76 vs 24.85±6.47 years, height 173.93±6.54 vs 175.64±7.37cm, and weight 74.25±12.1 vs 76.52±10.14 kg, respectively, participated in the study. The patients were operated on six months prior to testing. They should have completed their accelerated rehabilitation program during this period. A 3D motion analysis system was used for collecting the mechanical measures (Biomechanical Efficiency Quotient (BEQ), the maximum degree of knee internal rotation during stance phase and speed of walking). The physiological measures (Physiological Cost Index (PCI) and Rate of Perceived Exertion (RPE)) were collected after performing the 6- minute walking test. Results: MANOVA showed that the maximum degree of knee internal rotation, PCI, and RPE increased and the speed decreased significantly (p<0.05) in the patients compared with the controls with no significant difference for the BEQ. Finally, there were significant (p<0.05) positive correlations between each of the PCI & RPE and each of the BEQ, speed of walking and the maximum degree of knee internal rotation in each group. Conclusion: It was concluded that there are alterations in both mechanical and physiological measures of gait efficiency in patients with ACLR after being rehabilitated, clarifying the need for performing additional endurance as well as knee stability training programs. Moreover, the positive correlations indicate that using either of the mechanical or physiological measures for evaluating gait efficiency is acceptable.

Keywords: ACL reconstruction, mechanical, physiological, gait efficiency

Procedia PDF Downloads 436