Search results for: X-ray Image detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5748

Search results for: X-ray Image detection

2388 The Micro-Activated Organic Regeneration in Rural Construction: A Case Study of Yangdun Village in Deqing County, Zhejiang Province

Authors: Chengyuan Zhu, Zhu Wang

Abstract:

With the strategy of Rural Rejuvenation proposed in China, the rural has become the focus of all works today. In addition to the support of industry and policy, the rural planning and construction which is the space dependence of Rural Rejuvenation are also very crucial. Based on an analysis of the case of Yangdun Village in Deqing County, this paper summarizes village existing resources and construction status quo. It tries to illuminate the micro-activated organic renewal strategies and methods, based on ecological landscape, history context, industry development and living life requirements. It takes advantage of industrial linkage and then asks for the coordination of both spatial and industrial planning, the revival and remodeling of the rural image can be achieved through shaping the of architectural and landscape nodes as well as the activation of street space.

Keywords: rural construction, rural human settlements, micro-activation, organic renewal

Procedia PDF Downloads 231
2387 The Relationship between Religiosity, Childhood Attachment, and Childhood Trauma in Adulthood

Authors: Ashley Sainvil

Abstract:

The present study explores the relationship and possible effects of religiosity on both adverse childhood experiences and childhood attachment. Furthermore, to explore the idea that adult religiousness may play as a protective role, specifically protecting adults with a past of adverse childhood experiences and an insecure childhood attachment from reporting depression. Analyses are based on 57 participants (N= 57, 32.1% of ages 18-22; 70.2% female, 28.1% male, 1.8% other). In the form of an online Qualtrics survey through questionnaires, childhood attachment, adverse childhood experiences, sense of religiosity, and depression were measured. While not significant at conventional levels, there was no direct relationship between adverse childhood experiences, insecure childhood attachment, and sense of religiosity, and when assessing age for the relationship in later adulthood, there was no significance. Positive childhood experiences of feeling protected, love, and special had a direct relationship with a positive image and sense of closeness to God. Results highlight the importance of positive childhood experiences, secure childhood attachment quality relationship, such as trust, communication for positive health outcomes, such as less depression.

Keywords: religiosity, childhood trauma, childhood attachment, depression

Procedia PDF Downloads 83
2386 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.

Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system

Procedia PDF Downloads 124
2385 Abnormal Pap Smear Detection by Application of Revised Bethesda System in Commercial Sex Workers and a Control Group: A Comparative Study

Authors: Priyanka Manghani, Manthan Patel, Rahul Peddawad

Abstract:

Cervical Cancer is a major public health hurdle in the area of women’s health. The most common cause of Cervical Cancer is the Human Papilloma Virus (HPV). Human papilloma virus has various genotypes, with HPV 16 and HPV 18 being the major etiological factor causing carcinoma of the Cervix. Early screening and detection by Papanicolaou Smears (PAP) is an effective method for identifying premalignant and malignant lesions. In case of existing pre- malignant lesions /cervical dysplasia’s found with HPV 16 or 18, appropriate follow up can be done to prevent it from developing into a neoplasm. Aims and Objectives: Primary Aim; To study various abnormal cervical cytology reports as detected by Pap Smear Tests, using the Bethesda System in women at a Tertiary Care Hospital. Secondary Aim; To discuss the importance of Pap smear in Cervical Cancer Screening Program. Materials and Methods: Our study is a prospective study, based on 101 women who attended the Out-patient department of Obstetrics and Gynecology at a tertiary care hospital in age group 20-40 years with chief complaints of white/foul vaginal discharge, post-coital Bleeding, low back pain, irregular menstruation, etc. 60 women, who were tested, of the total no of women, were commercial sex workers, thus being a high-risk group for HPV infection. All women underwent conventional cytology. For all the abnormal smears, further cervical biopsies were done, and the final diagnosis was done on the basis of histopathology (gold standard). Results: In all these patients, 16 patients presented with normal smears out of which 2 belonged to the category of commercial sex workers (3.33%) and 14 being from the normal/control group (34.15%). 44 women presented with inflammatory smears out of which 30 were commercial sex workers (50%) and 14 from the control Group (34.15%). A total of 11 women presented with infectious etiology with 6 being commercial sex workers (10%) and 5 (12.2%) being in the control group. A total of 8 patients presented with low-grade squamous intra epithelial lesion (LSIL) with 7 (11.7%) being commercial sex workers and 1(2.44%) patient belonging to the control group. A Total of 7 patients presented with high-grade squamous intraepithelial lesion (HSIL) with 6 (10%) being commercial sex workers and 1 (2.44%) belonging to the control group. 9 patients in total presented with atypical squamous cells of undetermined significance (ASCUS) with 6(10%) being commercial sex workers and 3 (7.32%) belonging to the control group. Squamous cell carcinoma(SCC) presence was found only in 1(1.7%) commercial sex worker. Conclusion – We conclude that HSIL, LSIL, SCC and sexually related infections are comparatively more common in vulnerable groups such as sex workers due to a variety of factors such as multiple sexual partners and poor genital hygiene. Early screening and follow up interventions are highly needed for them along with Health education for risk factors and to emphasize on the importance of Pap smear screening.

Keywords: cervical cancer, papanicolaou (pap) smear, bethesda system, neoplasm

Procedia PDF Downloads 223
2384 Data Integration in a GIS Geographic Information System Mapping of Agriculture in Semi-Arid Region of Setif, Algeria

Authors: W. Riahi, M. L. Mansour

Abstract:

Using tools of data processing such as geographic information system (GIS) for the contribution of the space management becomes more and more frequent. It allows collecting and analyzing diverse natural information relative to the same territory. Space technologies play crucial role in agricultural phenomenon analysis. For this, satellite images treatment were used to classify vegetation density and particularly agricultural areas in Setif province by making recourse to the Normalized Difference Vegetation Index (NDVI). This step was completed by mapping agricultural activities of the province by using ArcGIS.10 software in order to display an overall view and to realize spatial analysis of various themes combined between them which are chosen according to their strategic importance in different thematic maps. The synthesis map elaborately showed that geographic information system can contribute significantly to agricultural management by describing potentialities and development opportunities of production systems and agricultural sectors.

Keywords: GIS, satellite image, agriculture, NDVI, thematic map

Procedia PDF Downloads 424
2383 Micro-CT Assessment of Fracture Healing in Androgen-Deficient Osteoporosis Model

Authors: Ahmad N. Shuid, Azri Jalil, Sabarul A. Mokhtar, Mohd F. Khamis, Norliza Muhammad

Abstract:

Micro-CT provides a 3-D image of fracture callus, which can be used to calculate quantitative parameters. In this study, micro-CT was used to assess the fracture healing of orchidectomised rats, an androgen-deficient osteoporosis model. The effect of testosterone (hormone replacement) on fracture healing was also assessed with micro-CT. The rats were grouped into orchidectomised-control (ORX), sham-operated (SHAM), and orchidectomised; and injected with testosterone intramuscularly once weekly (TEN). Treatment duration was six weeks. The fracture was induced and fixed with plates and screws in the right tibia of all the rats. An in vitro micro-CT was used to scan the fracture callus area which consisted of 100 axial slices above and below fracture line. The analysis has shown that micro-CT was able to detect a significant difference in the fracture healing rate of ORX and TEN groups. In conclusion, micro-CT can be used to assess fracture healing in androgen-deficient osteoporosis. This imaging tool can be used to test agents that influence fracture healing in the androgen-deficient model.

Keywords: androgen, fracture, orchidectomy, osteoporosis

Procedia PDF Downloads 545
2382 Event-Led Strategy for Cultural Tourism Development: The Case of Liverpool as the 2008 European Capital of Culture

Authors: Yi-De Liu

Abstract:

Cultural tourism is one of the largest and fastest growing global tourism markets and the cultures are increasingly being used to promote cities and to increase their competitiveness and attractiveness. One of the major forms of cultural tourism development undertaken throughout Europe has been the staging of a growing number of cultural events. The event of European Capitals of Culture (ECOC) is probably the best example of the new trends of cultural tourism in Europe, which is therefore used in this article to demonstrate some of the key issues surrounding the event-led strategy for cultural tourism development. Based on the experience of the 2008 ECOC Liverpool, UK, the study’s findings point to a number of ways in which the ECOC constitutes a boost for the development of cultural tourism in terms of realising experience economy, enhancing city image, facilitating urban regeneration, promoting cultural production and consumption, as well as establishing partnerships. This study is concluded by drawing some critical factors that event and tourism organisers should consider.

Keywords: cultural tourism, event tourism, cultural event, European capital of culture, Liverpool

Procedia PDF Downloads 705
2381 PET/CT Patient Dosage Assay

Authors: Gulten Yilmaz, A. Beril Tugrul, Mustafa Demir, Dogan Yasar, Bayram Demir, Bulent Buyuk

Abstract:

A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.

Keywords: PET/CT, TLD, MIRD, dose measurement, patient doses

Procedia PDF Downloads 521
2380 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence

Authors: Sogand Barghi

Abstract:

The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.

Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting

Procedia PDF Downloads 71
2379 Literature Review on Text Comparison Techniques: Analysis of Text Extraction, Main Comparison and Visual Representation Tools

Authors: Andriana Mkrtchyan, Vahe Khlghatyan

Abstract:

The choice of a profession is one of the most important decisions people make throughout their life. With the development of modern science, technologies, and all the spheres existing in the modern world, more and more professions are being arisen that complicate even more the process of choosing. Hence, there is a need for a guiding platform to help people to choose a profession and the right career path based on their interests, skills, and personality. This review aims at analyzing existing methods of comparing PDF format documents and suggests that a 3-stage approach is implemented for the comparison, that is – 1. text extraction from PDF format documents, 2. comparison of the extracted text via NLP algorithms, 3. comparison representation using special shape and color psychology methodology.

Keywords: color psychology, data acquisition/extraction, data augmentation, disambiguation, natural language processing, outlier detection, semantic similarity, text-mining, user evaluation, visual search

Procedia PDF Downloads 76
2378 Joubert Syndrome: A Rare Genetic Disorder Reported in Kurdish Family

Authors: Aran Abd Al Rahman

Abstract:

Joubert syndrome regards as a congenital cerebellar ataxia caused by autosomal recessive carried on X chromosome. The disease diagnosed by brain imaging—the so-called molar tooth sign. Neurological signs were present from the neonatal period and include hypotonia progressing to ataxia, global developmental delay, ocular motor apraxia, and breathing dysregulation. These signs are variably associated with multiorgan involvement, mainly of the retina, kidneys, skeleton, and liver. 30 causative genes have been identified so far, all of which encode for proteins of the primary cilium or its apparatus, The purpose of our project was to detect the mutant gene (INPP5E gene) which cause Joubert syndrome. There were many methods used for diagnosis such as MRI and CT- scan and molecular diagnosis by doing ARMS PCR for detection of mutant gene that we were used in this research project. In this research for individual family which reported, the two children with parents, the two children were affected and were carrier.

Keywords: Joubert syndrome, genetic disease, Kurdistan region, Sulaimani

Procedia PDF Downloads 141
2377 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models

Authors: Yahia. Kourd, N. Guersi D. Lefebvre

Abstract:

In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.

Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor

Procedia PDF Downloads 637
2376 Oil Pollution Analysis of the Ecuadorian Rainforest Using Remote Sensing Methods

Authors: Juan Heredia, Naci Dilekli

Abstract:

The Ecuadorian Rainforest has been polluted for almost 60 years with little to no regard to oversight, law, or regulations. The consequences have been vast environmental damage such as pollution and deforestation, as well as sickness and the death of many people and animals. The aim of this paper is to quantify and localize the polluted zones, which something that has not been conducted and is the first step for remediation. To approach this problem, multi-spectral Remote Sensing imagery was utilized using a novel algorithm developed for this study, based on four normalized indices available in the literature. The algorithm classifies the pixels in polluted or healthy ones. The results of this study include a new algorithm for pixel classification and quantification of the polluted area in the selected image. Those results were finally validated by ground control points found in the literature. The main conclusion of this work is that using hyperspectral images, it is possible to identify polluted vegetation. The future work is environmental remediation, in-situ tests, and more extensive results that would inform new policymaking.

Keywords: remote sensing, oil pollution quatification, amazon forest, hyperspectral remote sensing

Procedia PDF Downloads 163
2375 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling

Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed

Abstract:

Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.

Keywords: machine learning, pattern recognition, facial pose classification, time series

Procedia PDF Downloads 350
2374 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography

Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo

Abstract:

Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.

Keywords: arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s encoding

Procedia PDF Downloads 204
2373 Neuro-Connectivity Analysis Using Abide Data in Autism Study

Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha

Abstract:

Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.

Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model

Procedia PDF Downloads 289
2372 Detection and Identification of Antibiotic Resistant UPEC Using FTIR-Microscopy and Advanced Multivariate Analysis

Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel

Abstract:

Antimicrobial drugs have played an indispensable role in controlling illness and death associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global healthcare problem. Many antibiotics had lost their effectiveness since the beginning of the antibiotic era because many bacteria have adapted defenses against these antibiotics. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing require the isolation of the pathogen from a clinical specimen by culturing on the appropriate media (this culturing stage lasts 24 h-first culturing). Then, chosen colonies are grown on media containing antibiotic(s), using micro-diffusion discs (second culturing time is also 24 h) in order to determine its bacterial susceptibility. Other methods, genotyping methods, E-test and automated methods were also developed for testing antimicrobial susceptibility. Most of these methods are expensive and time-consuming. Fourier transform infrared (FTIR) microscopy is rapid, safe, effective and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria; nonetheless, its true potential in routine clinical diagnosis has not yet been established. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The UTI E.coli bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 700 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 90% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.

Keywords: antibiotics, E.coli, FTIR, multivariate analysis, susceptibility, UTI

Procedia PDF Downloads 173
2371 A Computer-Aided System for Detection and Classification of Liver Cirrhosis

Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy

Abstract:

This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).

Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy

Procedia PDF Downloads 461
2370 Square Wave Anodic Stripping Voltammetry of Copper (II) at the Tetracarbonylmolybdenum(0) MWCNT Paste Electrode

Authors: Illyas Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive electrode for determination of trace amounts of Cu (II) using square wave anodic stripping voltammetry (SWASV) was proposed. The electrode was made of the paste of multiwall carbon nanotubes (MWCNT) and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) at 100:5 (w/w). Under optimal conditions the electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu (II) and limit of detection 8.0 × 10–11 M Cu (II). The relative standard deviation (n = 5) of response to 1.0 × 10–6 M Cu(II) was 0.036. The interferences of cations such as Ni(II), Mg(II), Cd(II), Co(II), Hg(II), and Zn(II) (in 10 and 100-folds concentration) are negligible except from Pb (II). Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favorable. Result of analysis of Cu(II) in several water samples agreed well with those obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES). The proposed electrode was then recommended as an alternative to spectroscopic technique in analyzing Cu (II).

Keywords: chemically modified electrode, Cu(II), Square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 262
2369 The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection

Authors: Jinming Ma, Tianbing Xia, Janusz Getta

Abstract:

This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.

Keywords: mobile internet, advertisement, anti-fraud, fuzzy set theory

Procedia PDF Downloads 181
2368 Host-Guest Interaction in a Homestay Setting a Study Based on Homestays in Sabah and Sarawak, Malaysia

Authors: Lau Sing Yew

Abstract:

The purpose of this research is to investigate and analyse the host-guests interaction in a homestay setting with the sub context of cultural exchange and cultural differences between both parties. The research were carried out in Malaysia, specifically in the state of Sabah and Sarawak which are more well-known for its’ rural tourism and homestay programs. The research problem addressed here is on the suitability of the homestay setting as a platform for intercultural communication between the host and foreign tourists. The key issues that were discussed include ‘cultural representations’, ‘touristic representations’ and ‘social representations’ which contoured the image that tourists form about destinations and local communities while debating on the benefits and disbenefits of cultural exchange. These issues were deliberated through observation and interviews and it was found that the homestay setting in Malaysia though there are varied types available acts as a suitable platform to encourage intercultural interaction between tourists and local communities.

Keywords: homestay program, Malaysia, host-guest interactions, cultural representations

Procedia PDF Downloads 340
2367 Binarization and Recognition of Characters from Historical Degraded Documents

Authors: Bency Jacob, S.B. Waykar

Abstract:

Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.

Keywords: binarization, denoising, global thresholding, local thresholding, thresholding

Procedia PDF Downloads 344
2366 Halal Authentication for Some Product Collected from Jordanian Market Using Real-Time PCR

Authors: Omar S. Sharaf

Abstract:

The mitochondrial 12s rRNA (mt-12s rDNA) gene for pig-specific was developed to detect material from pork species in different products collected from Jordanian market. The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of pig the amplification product using mt-12S rDNA gene were successfully produced a single band with a molecular size of 456 bp. In the present work, the PCR amplification of mtDNA of cytochrome b has been shown as a suitable tool for rapid detection of pig DNA. 100 samples from different dairy, gelatin and chocolate based products and 50 samples from baby food formula were collected and tested to a presence of any pig derivatives. It was found that 10% of chocolate based products, 12% of gelatin and 56% from dairy products and 5.2% from baby food formula showed single band from mt-12S rDNA gene.

Keywords: halal food, baby infant formula, chocolate based products, PCR, Jordan

Procedia PDF Downloads 534
2365 The Temperature Effects on the Microstructure and Profile in Laser Cladding

Authors: P. C. Chiu, Jehnming Lin

Abstract:

In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.

Keywords: laser cladding, temperature, profile, microstructure

Procedia PDF Downloads 223
2364 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension

Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe

Abstract:

The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.

Keywords: neural network, hypertension, data set, training set, supervised learning

Procedia PDF Downloads 392
2363 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 219
2362 Soft Power Building through International Education: Indonesia's KNB Scholarship Scheme

Authors: Ratih Indraswari

Abstract:

As it occupies a new status in international relations, Indonesia needs to re-organize its resources in projecting the preferred image internationally. Attractiveness becomes crucial as Indonesia needs to maintain its posture as a reliable contributor to the world. This paper tries to scrutinize the un-tap potential of ideational powers Indonesia possesses. Herein the ideational power is assumed to be translated into a soft power, intangible and rely on its influential degree to persuade and attract other countries, through its public diplomacy activities. A specific correlation will be dedicated to the effort of Indonesia public diplomacy on international education. It is believed that international education progresses mutual understanding in disseminating Indonesia values and engages public audience. As a result these exchanges and engagements support the attainment of Indonesia’s interests and forwarding Indonesia’s foreign policies. A case study on KNB (Kemitraan Negara berkembang) scholarship scheme will be provided and its impact towards building people-to-people connections.

Keywords: Indonesia, international education, KNB (Kemitraan Negara Berkembang), public diplomacy

Procedia PDF Downloads 369
2361 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 138
2360 Preparation, Characterization and Photocatalytic Activity of a New Noble Metal Modified TiO2@SrTiO3 and SrTiO3 Photocatalysts

Authors: Ewelina Grabowska, Martyna Marchelek

Abstract:

Among the various semiconductors, nanosized TiO2 has been widely studied due to its high photosensitivity, low cost, low toxicity, and good chemical and thermal stability. However, there are two main drawbacks to the practical application of pure TiO2 films. One is that TiO2 can be induced only by ultraviolet (UV) light due to its intrinsic wide bandgap (3.2 eV for anatase and 3.0 eV for rutile), which limits its practical efficiency for solar energy utilization since UV light makes up only 4-5% of the solar spectrum. The other is that a high electron-hole recombination rate will reduce the photoelectric conversion efficiency of TiO2. In order to overcome the above drawbacks and modify the electronic structure of TiO2, some semiconductors (eg. CdS, ZnO, PbS, Cu2O, Bi2S3, and CdSe) have been used to prepare coupled TiO2 composites, for improving their charge separation efficiency and extending the photoresponse into the visible region. It has been proved that the fabrication of p-n heterostructures by combining n-type TiO2 with p-type semiconductors is an effective way to improve the photoelectric conversion efficiency of TiO2. SrTiO3 is a good candidate for coupling TiO2 and improving the photocatalytic performance of the photocatalyst because its conduction band edge is more negative than TiO2. Due to the potential differences between the band edges of these two semiconductors, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Conversely, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Then the photogenerated charge carriers can be efficiently separated by these processes, resulting in the enhancement of the photocatalytic property in the photocatalyst. Additionally, one of the methods for improving photocatalyst performance is addition of nanoparticles containing one or two noble metals (Pt, Au, Ag and Pd) deposited on semiconductor surface. The mechanisms were proposed as (1) the surface plasmon resonance of noble metal particles is excited by visible light, facilitating the excitation of the surface electron and interfacial electron transfer (2) some energy levels can be produced in the band gap of TiO2 by the dispersion of noble metal nanoparticles in the TiO2 matrix; (3) noble metal nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole separation. In view of this, we recently obtained series of TiO2@SrTiO3 and SrTiO3 photocatalysts loaded with noble metal NPs. using photodeposition method. The M- TiO2@SrTiO3 and M-SrTiO3 photocatalysts (M= Rh, Rt, Pt) were studied for photodegradation of phenol in aqueous phase under UV-Vis and visible irradiation. Moreover, in the second part of our research hydroxyl radical formations were investigated. Fluorescence of irradiated coumarin solution was used as a method of ˙OH radical detection. Coumarin readily reacts with generated hydroxyl radicals forming hydroxycoumarins. Although the major hydroxylation product is 5-hydroxycoumarin, only 7-hydroxyproduct of coumarin hydroxylation emits fluorescent light. Thus, this method was used only for hydroxyl radical detection, but not for determining concentration of hydroxyl radicals.

Keywords: composites TiO2, SrTiO3, photocatalysis, phenol degradation

Procedia PDF Downloads 222
2359 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material

Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel

Abstract:

In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.

Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient

Procedia PDF Downloads 432