Search results for: buildings as material banks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8594

Search results for: buildings as material banks

5264 Will My Home Remain My Castle? Tenants’ Interview Topics regarding an Eco-Friendly Refurbishment Strategy in a Neighborhood in Germany

Authors: Karin Schakib-Ekbatan, Annette Roser

Abstract:

According to the Federal Government’s plans, the German building stock should be virtually climate neutral by 2050. Thus, the “EnEff.Gebäude.2050” funding initiative was launched, complementing the projects of the Energy Transition Construction research initiative. Beyond the construction and renovation of individual buildings, solutions must be found at the neighborhood level. The subject of the presented pilot project is a building ensemble from the Wilhelminian period in Munich, which is planned to be refurbished based on a socially compatible, energy-saving, innovative-technical modernization concept. The building ensemble, with about 200 apartments, is part of the building cooperative. To create an optimized network and possible synergies between researchers and projects of the funding initiative, a Scientific Accompanying Research was established for cross-project analyses of findings and results in order to identify further research needs and trends. Thus, the project is characterized by an interdisciplinary approach that combines constructional, technical, and socio-scientific expertise based on a participatory understanding of research by involving the tenants at an early stage. The research focus is on getting insights into the tenants’ comfort requirements, attitudes, and energy-related behaviour. Both qualitative and quantitative methods are applied based on the Technology-Acceptance-Model (TAM). The core of the refurbishment strategy is a wall heating system intended to replace conventional radiators. A wall heating provides comfortable and consistent radiant heat instead of convection heat, which often causes drafts and dust turbulence. Besides comfort and health, the advantage of wall heating systems is an energy-saving operation. All apartments would be supplied by a uniform basic temperature control system (around perceived room temperature of 18 °C resp. 64,4 °F), which could be adapted to individual preferences via individual heating options (e. g. infrared heating). The new heating system would affect the furnishing of the walls, in terms of not allowing the wall surface to be covered too much with cupboards or pictures. Measurements and simulations of the energy consumption of an installed wall heating system are currently being carried out in a show apartment in this neighborhood to investigate energy-related, economical aspects as well as thermal comfort. In March, interviews were conducted with a total of 12 people in 10 households. The interviews were analyzed by MAXQDA. The main issue of the interview was the fear of reduced self-efficacy within their own walls (not having sufficient individual control over the room temperature or being very limited in furnishing). Other issues concerned the impact that the construction works might have on their daily life, such as noise or dirt. Despite their basically positive attitude towards a climate-friendly refurbishment concept, tenants were very concerned about the further development of the project and they expressed a great need for information events. The results of the interviews will be used for project-internal discussions on technical and psychological aspects of the refurbishment strategy in order to design accompanying workshops with the tenants as well as to prepare a written survey involving all households of the neighbourhood.

Keywords: energy efficiency, interviews, participation, refurbishment, residential buildings

Procedia PDF Downloads 114
5263 Influence of Thermal Annealing on Phase Composition and Structure of Quartz-Sericite Minerale

Authors: Atabaev I. G., Fayziev Sh. A., Irmatova Sh. K.

Abstract:

Raw materials with high content of Kalium oxide widely used in ceramic technology for prevention or decreasing of deformation of ceramic goods during drying process and under thermal annealing. Becouse to low melting temperature it is also used to decreasing of the temperature of thermal annealing during fabrication of ceramic goods [1,2]. So called “Porceline or China stones” - quartz-sericite (muscovite) minerals is also can be used for prevention of deformation as the content of Kalium oxide in muscovite is rather high (SiO2, + KAl2[AlSi3O10](OH)2). [3] . To estimation of possibility of use of this mineral for ceramic manufacture, in the presented article the influence of thermal processing on phase and a chemical content of this raw material is investigated. As well as to other ceramic raw materials (kaoline, white burning clays) the basic requirements of the industry to quality of "a porcelain stone» are following: small size of particles, relative high uniformity of disrtribution of components and phase, white color after burning, small content of colorant oxides or chromophores (Fe2O3, FeO, TiO2, etc) [4,5]. In the presented work natural minerale from the Boynaksay deposit (Uzbekistan) is investigated. The samples was mechanically polished for investigation by Scanning Electron Microscope. Powder with size of particle up to 63 μm was used to X-ray diffractometry and chemical analysis. The annealing of samples was performed at 900, 1120, 1350oC during 1 hour. Chemical composition of Boynaksay raw material according to chemical analysis presented in the table 1. For comparison the composition of raw materials from Russia and USA are also presented. In the Boynaksay quartz – sericite the average parity of quartz and sericite makes 55-60 and 30-35 % accordingly. The distribution of quartz and sericite phases in raw material was investigated using electron probe scanning electronic microscope «JEOL» JXA-8800R. In the figure 1 the scanning electron microscope (SEM) micrograps of the surface and the distributions of Al, Si and K atoms in the sample are presented. As it seen small granular, white and dense mineral includes quartz, sericite and small content of impurity minerals. Basically, crystals of quartz have the sizes from 80 up to 500 μm. Between quartz crystals the sericite inclusions having a tablet form with radiant structure are located. The size of sericite crystals is ~ 40-250 μm. Using data on interplanar distance [6,7] and ASTM Powder X-ray Diffraction Data it is shown that natural «a porcelain stone» quartz – sericite consists the quartz SiO2, sericite (muscovite type) KAl2[AlSi3O10](OH)2 and kaolinite Al203SiO22Н2О (See Figure 2 and Table 2). As it seen in the figure 3 and table 3a after annealing at 900oC the quartz – sericite contains quartz – SiO2 and muscovite - KAl2[AlSi3O10](OH)2, the peaks related with Kaolinite are absent. After annealing at 1120oC the full disintegration of muscovite and formation of mullite phase Al203 SiO2 is observed (the weak peaks of mullite appears in fig 3b and table 3b). After annealing at 1350oC the samples contains crystal phase of quartz and mullite (figure 3c and table 3с). Well known Mullite gives to ceramics high density, abrasive and chemical stability. Thus the obtained experimental data on formation of various phases during thermal annealing can be used for development of fabrication technology of advanced materials. Conclusion: The influence of thermal annealing in the interval 900-1350oC on phase composition and structure of quartz-sericite minerale is investigated. It is shown that during annealing the phase content of raw material is changed. After annealing at 1350oC the samples contains crystal phase of quartz and mullite (which gives gives to ceramics high density, abrasive and chemical stability).

Keywords: quartz-sericite, kaolinite, mullite, thermal processing

Procedia PDF Downloads 399
5262 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

The applications of composite materials within the aviation industry has been increasing at a rapid pace.  However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.

Keywords: additive manufacturing, carbon fiber, composite tooling, molds

Procedia PDF Downloads 187
5261 Optimization of Horticultural Crops by Using the Peats from Rawa Pening Lake as Soil Conditioner

Authors: Addharu Eri, Ningsih P. Lestari, Setyorini Adheliya, Syaiputri Khaidifah

Abstract:

Rawa Pening is a lake at the Ambarawa Basin in Central Java, Indonesia. It serves as a source of power (hydroelectricity), irrigation, and flood control. The potential of this lake is getting worse by the presence of aquatic plants (Eichhornia crassipes) that grows wild, and it can make the lake covered by the cumulation of rotten E. crassipes. This cumulation causes the sediment formation which has high organic material composition. Sediment formation will be lead into a shallowing of the lake and affect water’s quality. The deposition of organic material produces methane gas and hydrogen sulfide, which in rain would turn the water muddy and decompose. Decomposition occuring in the water due to microbe activity in lake's water. The shallowing of Rawa Pening Lake not only will physically can reduce water discharge, but it also has ecologically major impact on water organism. The condition of Rawa Pening Lake peats can not be considered as unimportant issue. One of the solutions that can be applied is by using the peats as a compound materials on growing horticultural crops because the organic materials content on the mineral soil is low, particularly on an old soils. The horticultural crops required organic materials for growth promoting. The horticultural crops that use in this research is mustard cabbage (Brassica sp.). Using Rawa Pening's peats as the medium of plants with high organic materials that also can ameliorate soil’s physical properties, and indirectly serves as soil conditioner. Research will be focus on the peat’s contents and mustard cabbage product’s content. The contents that will be examined is the N-available, Ca, Mg, K, P, and C-organic. The analysis of Ca, Mg, and K is use soil base saturation measurement method and extracting soil is use NH4OAC solution. The aim of this study is to use the peats of Rawa Pening Lake as soil conditioner and increase the productivity of Brassica sp.

Keywords: Brassica sp., peats, rawa pening lake, soil conditioner

Procedia PDF Downloads 238
5260 Decades of Educational Excellence: Case Studies of Successful Family-Owned Higher Educational Institutions

Authors: Maria Luz Macasinag

Abstract:

This study aims to determine and to examine critically successful family-owned higher educational institutions towards identifying the attributes and practices that may likely have led to their success. This research is confined to private, non-sectarian, family-owned higher institutions of learning that have been operating for more than fifty years, had only one founder and had at least two transitions in terms of generation. The criteria for selecting family-owned universities to be part of the cases under investigation include institutions (1) with increasing enrollment over the past five years, with level III accreditation status, (3) with good performance in the Board examinations in most of its programs and (4) with high employability of graduates. The study uses the multiple case study method. A model based on the cross-case analysis of the attributes and practices of all the case studies of successful family- owned higher institutions of learning is the output. The paper provides insights to current and future school owners and administrators in the management of their institutions for competitiveness, sustainability and advancement. This research encourages the evaluation of how the ideas that may lead to the success of schools owned by families in developing a sense of community, a reciprocal relationship among colleagues, the students and other stakeholders will result to the attainment of the vision and mission of the school. The study is beneficial to entrepreneurs and to business students whose know-how may provide insights that would be helpful in guiding prospective school owners. The commission on higher education and the Department of Education stand to benefit from this academic paper for the guidance that they provide to family-owned educational institutions. Banks and other financial institutions may find valuable ideas from this academic paper for the purpose of providing financial assistance to colleges and universities that are family-owned. Researchers in the field of educational management and administration may be able to extract from this study related topics for future research.

Keywords: administration practices, attributes, family-owned schools, success factors

Procedia PDF Downloads 263
5259 Visualized Flow Patterns around and inside a Two-Sided Wind-Catcher in the Presence of Upstream Structures

Authors: M. Afshin, A. Sohankar, M. Dehghan Manshadi, M. R. Daneshgar, G. R. Dehghan Kamaragi

Abstract:

In this paper, the influence of an upstream structure on the flow pattern within and around the wind-catcher is experimentally investigated by smoke flow visualization techniques. Wind-catchers are an important part of natural ventilation in residential buildings or public places such as shopping centers, libraries, etc. Wind-catchers might be also used in places of high urban densities; hence their potential to provide natural ventilation in this case is dependent on the presence of upstream objects. In this study, the two-sided wind-catcher model was based on a real wind-catcher observed in the city of Yazd, Iran. The present study focuses on the flow patterns inside and outside the isolated two-sided wind-catcher, and on a two-sided wind-catcher in the presence of an upstream structure. The results show that the presence of an upstream structure influences the airflow pattern force and direction. Placing a high upstream object reverses the airflow direction inside the wind-catcher.

Keywords: natural ventilation, smoke flow visualization, two-sided wind-catcher, flow patterns

Procedia PDF Downloads 556
5258 Thematic English Textbook on Tasks Designed for a Public Educational Brazilian Context: Issues and Contributions

Authors: Fernanda Goulart, Rita de Cássia Barbirato

Abstract:

Task-based language teaching has received attention among researchers as it has been pointed out with the potential to provide more significant opportunities for using the target language and therefore generate successful language acquisition. Nevertheless, in the Brazilian context, few studies have analyzed the potential of tasks in English language acquisition. There is also a need for textbooks to meet the needs of Brazilian students. This work is part of doctoral research in its initial phase. It aims to demonstrate and discuss thematic textbook samples on tasks designed to be applied among high school and undergraduate students in a public technological educational context in São Paulo State, Brazil. It is a qualitative study. The data collection process for course design and textbook development initially included a survey administered to 159 students. Questions related to students’ English background knowledge, main learning interests, and needs. Most students reported difficulties communicating in English and showed a strong interest in a communicative English course. The theme “Cultural diversity” was chosen among other options provided. The textbook was then designed and comprised nine task cycles divided into four sequences. Cycles were composed of pre-tasks, tasks, and post-tasks. The main findings of this first phase of the research revealed that designing a task-based textbook is not easy and requires the necessary steps and lots of effort to meet students’ language needs. Several revisions were needed before the conclusion of the final version of the textbook. The material will be further applied in a three-month English course. In this presentation, we hope to contribute to discussions in research on task-based teaching. Also, we intend to support teachers with their knowledge of tasks and thematic material development in this field.

Keywords: task-based language teaching, language acquisition, English language teaching, task cycles

Procedia PDF Downloads 60
5257 Easy Way of Optimal Process-Storage Network Design

Authors: Gyeongbeom Yi

Abstract:

The purpose of this study is to introduce the analytic solution for determining the optimal capacity (lot-size) of a multiproduct, multistage production and inventory system to meet the finished product demand. Reasonable decision-making about the capacity of processes and storage units is an important subject for industry. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ (Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. However, the unrealistic material flow assumption of the EOQ/EPQ model is not suitable for chemical plant design with highly interlinked processes and storage units. This study overcomes the limitation of the classical lot sizing method developed on the basis of the single product and single stage assumption. The superstructure of the plant considered consists of a network of serially and/or parallelly interlinked processes and storage units. The processes involve chemical reactions with multiple feedstock materials and multiple products as well as mixing, splitting or transportation of materials. The objective function for optimization is minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis method, PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for plant design and operation problem confronted in diverse economic situations.

Keywords: analytic solution, optimal design, process-storage network

Procedia PDF Downloads 320
5256 The Hindrances Associated with Internet Banking Services in Nigeria: The Lagos State Perspective

Authors: Patience Oluchi Silas, Yemi Adeshina

Abstract:

Financial transactions involving the use of the internet has become an important practice among commercial banks in Nigeria with the introduction of internet banking and this has improved banking efficiency in rending services to customers. However, customers in Lagos State are enslaved in the fear of insecurity, technical failure, inadequate operational facilities, including improper telecommunications and poor power supply. It is in line with this that this paper explores the obstacles faced by Lagosians, tourists, small scale business owners, companies, customers and the government's attitude in addressing the challenges associated with online banking system in Nigeria through relevant legislations. Internet banking has the potential to transform economic activity and achieve developmental goals. If the associated Challenges are addressed quickly, then it will have the desired impact on the Nigerian economy. In this study, Respondents, mostly bank employees and customers were issued well designed and structured questionnaires to effectively examine the new developments brought about by the introduction of Internet banking and the challenges inhibiting its adoption. Hypotheses were formulated to test assumptions and claims generated from the study. The results were statistically analyzed to address the issues of errors and chances, and at the end, the result of the statistical analysis shows that all especially insecurity, inadequate operational facilities and poor power supply are the significant factors affecting the adoption of internet banking services in Nigeria. The study recommends that for internet banking to assume a developmental dimension in Nigeria and for the country to be fully integrated and respected in global financial environment, the prevalent level of frauds in Lagos State and among Nigerians must first be addressed and the relevant local laws should be put in place and in consonance with international laws and conventions; get the citizens well educated on the intricacies of Internet usage and frauds.

Keywords: internet-banking, adoption, challenges, insecurity, legislation, fraud, Lagos state, statistics

Procedia PDF Downloads 328
5255 The Construction of the Residential Landscape in the Mountain Environment: Taking the Eling Peak, 'Mirror of the Sky', in Chongqing, China as an Example

Authors: Yuhang Zou, Zhu Wang

Abstract:

Most of the western part of China is mountainous and hilly region, with abundant resources of mountainous space. However, the resources are complex, and the ecological factors are diverse. As urbanization expands rapidly today, the landscape of the mountain residence needs to be changed. This paper, starting with the ecological environment and visual landscape of the mountain living space, analyzes the basic conditions of the Eling Peak, ‘Mirror of the Sky’, in Chongqing, China before its landscape renovation. Then, it analyzes some parts of the project, including the overall planning, ecological coordination, space expansion and local conditions in mountain environment. After that, this paper concludes the intention of designer and 4 methods, appropriate demolition, space reconstruction, landscape modeling and reasonable road system, to transform the master’s mountain residential works. Finally, through the analysis and understanding of the project, it sums up that the most beautiful landscape is not only the outdoor space, but also borrowing scene from the city and the sky, making them a part of the mountainous residential buildings. Only in this way can people, landscape, building, sky, and city become integrated and coexist harmoniously.

Keywords: landscape design, mountainous architecture, renovation, residence

Procedia PDF Downloads 146
5254 Evaluating Viability of Using South African Forestry Process Biomass Waste Mixtures as an Alternative Pyrolysis Feedstock in the Production of Bio Oil

Authors: Thembelihle Portia Lubisi, Malusi Ntandoyenkosi Mkhize, Jonas Kalebe Johakimu

Abstract:

Fertilizers play an important role in maintaining the productivity and quality of plants. Inorganic fertilizers (containing nitrogen, phosphorus, and potassium) are largely used in South Africa as they are considered inexpensive and highly productive. When applied, a portion of the excess fertilizer will be retained in the soil, a portion enters water streams due to surface runoff or the irrigation system adopted. Excess nutrient from the fertilizers entering the water stream eventually results harmful algal blooms (HABs) in freshwater systems, which not only disrupt wildlife but can also produce toxins harmful to humans. Use of agro-chemicals such as pesticides and herbicides has been associated with increased antimicrobial resistance (AMR) in humans as the plants are consumed by humans. This resistance of bacterial poses a threat as it prevents the Health sector from being able to treat infectious disease. Archaeological studies have found that pyrolysis liquids were already used in the time of the Neanderthal as a biocide and plant protection product. Pyrolysis is thermal degradation process of plant biomass or organic material under anaerobic conditions leading to production of char, bio-oils and syn gases. Bio-oil constituents can be categorized as water soluble (wood vinegar) and water insoluble fractions (tar and light oils). Wood vinegar (pyro-ligneous acid) is said to contain contains highly oxygenated compounds including acids, alcohols, aldehydes, ketones, phenols, esters, furans, and other multifunctional compounds with various molecular weights and compositions depending on the biomass material derived from and pyrolysis operating conditions. Various researchers have found the wood vinegar to be efficient in the eradication of termites, effective in plant protection and plant growth, has antibacterial characteristics and was found effective in inhibiting the micro-organisms such as candida yeast, E-coli, etc. This study investigated characterisation of South African forestry product processing waste with intention of evaluating the potential of using the respective biomass waste as feedstock for boil oil production via pyrolysis process. Ability to use biomass waste materials in production of wood-vinegar has advantages that it does not only allows for reduction of environmental pollution and landfill requirement, but it also does not negatively affect food security. The biomass wastes investigated were from the popular tree types in KZN, which are, pine saw dust (PSD), pine bark (PB), eucalyptus saw dust (ESD) and eucalyptus bark (EB). Furthermore, the research investigates the possibility of mixing the different wastes with an aim to lessen the cost of raw material separation prior to feeding into pyrolysis process and mixing also increases the amount of biomass material available for beneficiation. A 50/50 mixture of PSD and ESD (EPSD) and mixture containing pine saw dust; eucalyptus saw dust, pine bark and eucalyptus bark (EPSDB). Characterisation of the biomass waste will look at analysis such as proximate (volatiles, ash, fixed carbon), ultimate (carbon, hydrogen, nitrogen, oxygen, sulphur), high heating value, structural (cellulose, hemicellulose and lignin) and thermogravimetric analysis.

Keywords: characterisation, biomass waste, saw dust, wood waste

Procedia PDF Downloads 53
5253 Yield and Composition of Bio-Oil from Co-Pyrolysis of Corn Cobs and Plastic Waste of HDPE in a Fixed Bed Reactor

Authors: Dijan Supramono, Eny Kusrini, Haisya Yuana

Abstract:

Pyrolysis, a thermal cracking process in inert environment, may be used to produce bio-oil from biomass and plastic waste thus accommodating the use of renewable energy. Abundant amount of biomass waste in Indonesia are not utilised and plastic wastes are not well processed for clean environment. The aim of present work was to evaluate effect of mass ratio of plastic material to biomass in the feed blend of corn cobs and high density polyethylene (HDPE) of co-pyrolysis on bio-oil yield and chemical composition of bio-oil products. The heating rate of the co-pyrolysis was kept low and residence time was in the order of seconds to accommodate high yield of oil originating from plastic pyrolysis. Corn cobs have high cellulose and hemicellulose content (84%) which is potential to produce bio-oil. The pyrolysis was conducted in a laboratory-scale using a fixed bed reactor with final temperature of 500°C, heating rate 5 °C/min, flow rate N2 750 mL/min, total weight of biomass and plastic material of 20 g, and hold time after peak temperature of 30 min. Set up of conditions of co-pyrolysis should lead to accommodating the production of oil originating from HDPE due to constraint of HDPE pyrolysis residence time. Mass ratio of plastics to biomass in the feed blend was varied 0:100, 25:75, 50:50, 75:25 and 100:0. It was found that by increasing HDPE content up to 100% in the feed blend, the yield of bio-oil at different mass ratios prescribed above were 28.05, 21.55, 14.55, 9.5, and 6.3wt%, respectively. Therefore, in the fixed bed reactor, producing bio-oil is constrained by low contribution of plastic feedstock to the pyrolysis liquid yield. Furthermore, for the same variation of the mass ratio, yields of the mixture of paraffins, olefins and cycloalkanes contained in bio-oil were of 0, 28.35, 40.75, 47.17, and 67.05wt%, respectively. Olefins and cycloalkanes are easily hydrogenised to produce paraffins, suitable to be used as bio-fuel. By increasing composition of HDPE in the feed blend, viscosity and pH of bio-oil change approaching to those of commercial diesel oil.

Keywords: co-pyrolysis, corn cobs, fixed bed reactor, HDPE

Procedia PDF Downloads 340
5252 Mixed Tetravalent Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) Based Vacancy-Ordered Halide Double Perovskites for Enhanced Solar Water Oxidation

Authors: Jigar Shaileshumar Halpati, Aravind Kumar Chandiran

Abstract:

Vacancy ordered double perovskites (VOPs) have been significantly attracting researchers due to their chemical structure diversity and interesting optoelectronic properties. Some VOPs have been recently reported to be suitable photoelectrodes for photoelectrochemical water-splitting reactions due to their high stability and panchromatic absorption. In this work, we systematically synthesized mixed tetravalent VOPs based on Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) and reported their structural, optical, electrochemical and photoelectrochemical properties. The structural characterization confirms that the mixed tetravalent site intermediates formed their own phases. The parent materials, as well as their intermediates, were found to be stable in ambient conditions for over 1 year and also showed incredible stability in harsh pH media ranging from pH 1 to pH 11. Moreover, these materials showed panchromatic absorption with onset up to 1000 nm depending upon the mixture stoichiometry. The extraordinary stability and excellent absorption properties make them suitable materials for photoelectrochemical water-splitting applications. PEC studies of these series of materials showed a high water oxidation photocurrent of 0.56 mA cm-² for Cs₂Ru₀.₅Pt₀.₅Cl₆. Fundamental investigation from photoelectrochemical reactions revealed that the intrinsic ruthenium-based VOP showed enhanced hole transfer to the electrolyte, while the intrinsic platinum-based VOP showed higher photovoltage. The mix of these end members at the tetravalent site showed a synergic effect of reduced charge transfer resistance from the material to the electrolyte and increased photovoltage, which led to increased PEC performance of the intermediate materials.

Keywords: solar water splitting, photo electrochemistry, photo absorbers, material characterization, device characterization, green hydrogen

Procedia PDF Downloads 61
5251 The Women Entrepreneur Support Fund in Bangladesh: Challenges and Prospects

Authors: Chowdhury Dilruba Shoma

Abstract:

Gender is about equal rights that both males and females having access to responsibilities and opportunities in decision making is a fundamental human right. It is also a precondition for, and a mark of, sustainable people-oriented development. In Bangladesh, women have fewer opportunities than men do to access credit from banks and financial institutions. Entrenched patriarchal attitudes, unequal inheritance rights, and male-dominated hierarchies in the financial system, plus high interest rates and a lack of security/collateral, make it harder for women to obtain bank loans. Limited access to institutional credit is a serious restraint on the productivity and income of women entrepreneurs, (and the wider economy). These gender-biased and structural barriers inhibit women’s access to fundamental economic rights. Using a liberal feminist theoretical lens, this study provides some useful insights into the relationship between gender inequality and entrepreneurship, leading to a better understanding of women’s entrepreneurship development in Bangladesh. Recently, the Bangladesh Government, the United Nations Capital Development Fund, and Bangladesh Bank opened up the Women Entrepreneur Support Fund (WESF) ‒ Credit Guarantee Scheme (CGS) pilot project to cover collateral shortfalls for women entrepreneurs in the small and medium enterprise sector. The aim is to improve gender equality and advance women’s rights in relation to receiving credit. This article examines the challenges and prospects of the WESF-CGS, and suggests that implementation of measures in WESF-CGS policymaking, coupled with a combination of legislatory and regulatory reforms that implement the fundamental tenets of liberal feminism, can lead to a comprehensive and effective credit policy to boost women’s agency and economic empowerment. This may ultimately lead to more sustainable development in Bangladesh.

Keywords: Bangladesh, credit guarantee scheme, liberal feminist theory, women entrepreneur support fund

Procedia PDF Downloads 126
5250 Research on Traditional Rammed Earth Houses in Southern Zhejiang, China: Based on the perspective of "Geographical Embeddedness"

Authors: Han Wu, Jie Wang

Abstract:

Zhejiang’s special geographical environment has created characteristic mountain dwellings with climate adaptability. Among them, the terrain of southern Zhejiang is dominated by mountainous and hilly landforms, and its traditional dwellings have distinctive characteristics. They are often adapted to local conditions and laid out in accordance with the mountains. In order to block the severe winter weather conditions, local traditional building materials such as rammed earth are mostly used. However, with the development of urbanization, traditional villages have undergone large-scale changes, gradually losing their original uniqueness. In order to solve this problem, this paper takes traditional villages around Baishanzu National Park in Zhejiang as an example and selects nine typical villages in Jingning County and Longquan, respectively. Based on field investigations, extracting the environmental adaptability of local traditional rammed earth houses from the perspective of “geographical embeddedness”. And then combined with case analysis, discussing the translation and development of its traditional architectural methods in contemporary rammed earth buildings in southern Zhejiang.

Keywords: geographical embeddedness , lighting, modernization translation, rammed earth building, ventilation

Procedia PDF Downloads 93
5249 A Low-Cost Air Quality Monitoring Internet of Things Platform

Authors: Christos Spandonidis, Stefanos Tsantilas, Elias Sedikos, Nektarios Galiatsatos, Fotios Giannopoulos, Panagiotis Papadopoulos, Nikolaos Demagos, Dimitrios Reppas, Christos Giordamlis

Abstract:

In the present paper, a low cost, compact and modular Internet of Things (IoT) platform for air quality monitoring in urban areas is presented. This platform comprises of dedicated low cost, low power hardware and the associated embedded software that enable measurement of particles (PM2.5 and PM10), NO, CO, CO2 and O3 concentration in the air, along with relative temperature and humidity. This integrated platform acts as part of a greater air pollution data collecting wireless network that is able to monitor the air quality in various regions and neighborhoods of an urban area, by providing sensor measurements at a high rate that reaches up to one sample per second. It is therefore suitable for Big Data analysis applications such as air quality forecasts, weather forecasts and traffic prediction. The first real world test for the developed platform took place in Thessaloniki, Greece, where 16 devices were installed in various buildings in the city. In the near future, many more of these devices are going to be installed in the greater Thessaloniki area, giving a detailed air quality map of the city.

Keywords: distributed sensor system, environmental monitoring, Internet of Things, smart cities

Procedia PDF Downloads 129
5248 Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency

Authors: Anderson Braga Mendes, Wallington Felipe de Almeida, Cicero Medeiros da Silva

Abstract:

This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned.

Keywords: 3D hydrodynamic modeling, Churchill trapping efficiency, fish crossing system, Itaipu power plant, lifespan, sedimentological equilibrium

Procedia PDF Downloads 222
5247 Changes in Textural Properties of Zucchini Slices Under Effects of Partial Predrying and Deep-Fat-Frying

Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner

Abstract:

Changes in textural properties of any food material during processing is significant for further consumer’s evaluation and directly affects their decisions. Thus any food material should be considered in terms of textural properties after any process. In the present study zucchini slices were partially predried to control and reduce the product’s final oil content. A conventional oven was used for partially dehydration of zucchini slices. Following frying was carried in an industrial fryer having temperature controller. This study was based on the effect of this predrying process on textural properties of fried zucchini slices. Texture profile analysis was performed. Hardness, elasticity, chewiness, cohesiveness were studied texture parameters of fried zucchini slices. Temperature and weight loss were monitored parameters of predrying process, whereas, in frying, oil temperature and process time were controlled. Optimization of two successive processes was done by response surface methodology being one of the common used statistical process optimization tools. Models developed for each texture parameters displayed high success to predict their values as a function of studied processes’ conditions. Process optimization was performed according to target values for each property determined for directly fried zucchini slices taking the highest score from sensory evaluation. Results indicated that textural properties of predried and then fried zucchini slices could be controlled by well-established equations. This is thought to be significant for fried stuff related food industry, where controlling of sensorial properties are crucial to lead consumer’s perception and texture related ones are leaders. This project (113R015) has been supported by TUBITAK.

Keywords: optimization, response surface methodology, texture profile analysis, conventional oven, modelling

Procedia PDF Downloads 425
5246 Ideal Posture in Regulating Legal Regulations in Indonesia

Authors: M Jeffri Arlinandes Chandra, Puwaningdyah Murti Wahyuni, Dewi Mutiara M Jeffri Arlinandes Chandra, Puwaningdyah Murti Wahyuni, Dewi Mutiara

Abstract:

Indonesia is a state of the law in accordance with article 1 paragraph 3 of the Constitution of the Republic of Indonesia (1945 Constitution), namely, 'the State of Indonesia is a state of law'. The consequences of the rule of law are making the law as the main commanding officer or making the law as a basis for carrying out an action taken by the state. The types of regulations and procedures for the formation of legislation in Indonesia are contained in Law Number 12 of 2011 concerning the Formation of Legislation. Various attempts were made to make quality regulations both in the formal hierarchy and material hierarchy such as synchronization and harmonization in the formation of laws and regulations so that there is no conflict between equal and hierarchical laws, but the fact is that there are still many conflicting regulations found between one another. This can be seen clearly in the many laws and regulations that were sued to judicial institutions such as the Constitutional Court (MK) and the Supreme Court (MA). Therefore, it is necessary to have a formulation regarding the governance of the formation of laws and regulations so as to minimize the occurrence of lawsuits to the court so that positive law can be realized which can be used today and for the future (ius constituendum). The research method that will be used in this research is a combination of normative research (library research) supported by empirical data from field research so that it can formulate concepts and answer the challenges being faced. First, the structuring of laws and regulations in Indonesia must start from the inventory of laws and regulations, whether they can be classified based on the type of legislation, what are they set about, the year of manufacture, etc. so that they can be clearly traced to the regulations relating to the formation of laws and regulations. Second, the search and revocation/revocation of laws and regulations that do not exist in the state registration system. Third, the periodic evaluation system is carried out at every level of the hierarchy of laws and regulations. These steps will form an ideal model of laws and regulations in Indonesia both in terms of content and material so that the instructions can be codified and clearly inventoried so that they can be accessed by the wider community as a concrete manifestation of the principle that all people know the law (presumptio iures de iure).

Keywords: legislation, review, evaluation, reconstruction

Procedia PDF Downloads 134
5245 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines

Authors: Chandra Shekhar Verma, Umesh Chandra Mishra

Abstract:

Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.

Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter

Procedia PDF Downloads 159
5244 The Characteristics of Islamic Concept In Contemporary Mosque Design With The Case Modulation of Study: Kauman Mosque Yogyakarta Indonesia

Authors: Sulihantoro, Muhamad Irga Fahreza

Abstract:

Age of onset of the crisis makes more advanced understanding of the values of Islam that has been etched in architectural design. The majority Muslim mosque architecture designing buildings when they designed the architecture of Islam has always stuck in a cultural symbol, the shape of the facade, carving calligraphy, and all things that are closely related to the culture of the Middle East. As well as the interpretation of symbols, by designing a dome in every mosque, calligraphy carvings inside the mosque, and the other elements in the building which is interpreted by middle eastern culture. So here we have a problem understanding the meaning of Islam with kaf fah (overall), which appears distorted understanding to distinguish between cultural values and theological in design. This paper will try to evaluate the design of a contemporary mosque in Indonesia, with a case study in Masjid Kauman Yogyakarta Indonesia. building characteristics focused on the function of the building, history, aesthetics, comfort, and safety. The results of this study should be found on the evaluation of the integrated design of contemporary mosques are based on a study of the Quran and Hadith.

Keywords: characteristics, Islamic concept, culture, Kauman Mosque

Procedia PDF Downloads 209
5243 Spatial Characters Adapted to Rainwater Natural Circulation in Residential Landscape

Authors: Yun Zhang

Abstract:

Urban housing in China is typified by residential districts that occupy 25 to 40 percentage of the urban land. In residential districts, squares, roads, and building facades, as well as plants, usually form a four-grade spatial structure: district entrances, central landscapes, housing cluster entrances, green spaces between dwellings. This spatial structure and its elements not only compose the visible residential landscape but also play a major role of carrying rain water. These elements, therefore, imply ecological significance to urban fitness. Based upon theories of landscape ecology, residential landscape can be understood as a pattern typified by minor soft patch of planted area and major hard patch of buildings and squares, as well as hard corridors of roads. Use five landscape districts in Hangzhou as examples; this paper finds that the size, shape and slope direction of soft patch, the bend of roads, and the form of the four-grade spatial structure are influential for adapting to natural rainwater circulation.

Keywords: Hangzhou China, rainwater, residential landscape, spatial character, urban housing

Procedia PDF Downloads 311
5242 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs

Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi

Abstract:

Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.

Keywords: active damper, fixation system, hardened material, passive damper

Procedia PDF Downloads 201
5241 Development of Innovative Nuclear Fuel Pellets Using Additive Manufacturing

Authors: Paul Lemarignier, Olivier Fiquet, Vincent Pateloup

Abstract:

In line with the strong desire of nuclear energy players to have ever more effective products in terms of safety, research programs on E-ATF (Enhanced-Accident Tolerant Fuels) that are more resilient, particularly to the loss of coolant, have been launched in all countries with nuclear power plants. Among the multitude of solutions being developed internationally, carcinoembryonic antigen (CEA) and its partners are investigating a promising solution, which is the realization of CERMET (CERamic-METal) type fuel pellets made of a matrix of fissile material, uranium dioxide UO2, which has a low thermal conductivity, and a metallic phase with a high thermal conductivity to improve heat evacuation. Work has focused on the development by powder metallurgy of micro-structured CERMETs, characterized by networks of metallic phase embedded in the UO₂ matrix. Other types of macro-structured CERMETs, based on concepts proposed by thermal simulation studies, have been developed with a metallic phase with a specific geometry to optimize heat evacuation. This solution could not be developed using traditional processes, so additive manufacturing, which revolutionizes traditional design principles, is used to produce these innovative prototype concepts. At CEA Cadarache, work is first carried out on a non-radioactive surrogate material, alumina, in order to acquire skills and to develop the equipment, in particular the robocasting machine, an additive manufacturing technique selected for its simplicity and the possibility of optimizing the paste formulations. A manufacturing chain was set up, with the pastes production, the 3D printing of pellets, and the associated thermal post-treatment. The work leading to the first elaborations of macro-structured alumina/molybdenum CERMETs will be presented. This work was carried out with the support of Framatome and EdF.

Keywords: additive manufacturing, alumina, CERMET, molybdenum, nuclear safety

Procedia PDF Downloads 60
5240 Lightweight Ceramics from Clay and Ground Corncobs

Authors: N.Quaranta, M. Caligaris, R. Varoli, A. Cristobal, M. Unsen, H. López

Abstract:

Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry.

Keywords: ceramic industry, biomass, recycling, hemicellulose glycosidic bonds

Procedia PDF Downloads 393
5239 Study of Elastic-Plastic Fatigue Crack in Functionally Graded Materials

Authors: Somnath Bhattacharya, Kamal Sharma, Vaibhav Sonkar

Abstract:

Composite materials emerged in the middle of the 20th century as a promising class of engineering materials providing new prospects for modern technology. Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn considerable attention of the scientific community. In general, FGMs are defined as composite materials in which the composition or microstructure or both are locally varied so that a certain variation of the local material properties is achieved. This gradual change in composition and microstructure of material is suitable to get gradient of properties and performances. FGMs are synthesized in such a way that they possess continuous spatial variations in volume fractions of their constituents to yield a predetermined composition. These variations lead to the formation of a non-homogeneous macrostructure with continuously varying mechanical and / or thermal properties in one or more than one direction. Lightweight functionally graded composites with high strength to weight and stiffness to weight ratios have been used successfully in aircraft industry and other engineering applications like in electronics industry and in thermal barrier coatings. In the present work, elastic-plastic crack growth problems (using Ramberg-Osgood Model) in an FGM plate under cyclic load has been explored by extended finite element method. Both edge and centre crack problems have been solved by taking additionally holes, inclusions and minor cracks under plane stress conditions. Both soft and hard inclusions have been implemented in the problems. The validity of linear elastic fracture mechanics theory is limited to the brittle materials. A rectangular plate of functionally graded material of length 100 mm and height 200 mm with 100% copper-nickel alloy on left side and 100% ceramic (alumina) on right side is considered in the problem. Exponential gradation in property is imparted in x-direction. A uniform traction of 100 MPa is applied to the top edge of the rectangular domain along y direction. In some problems, domain contains major crack along with minor cracks or / and holes or / and inclusions. Major crack is located the centre of the left edge or the centre of the domain. The discontinuities, such as minor cracks, holes, and inclusions are added either singly or in combination with each other. On the basis of this study, it is found that effect of minor crack in the domain’s failure crack length is minimum whereas soft inclusions have moderate effect and the effect of holes have maximum effect. It is observed that the crack growth is more before the failure in each case when hard inclusions are present in place of soft inclusions.

Keywords: elastic-plastic, fatigue crack, functionally graded materials, extended finite element method (XFEM)

Procedia PDF Downloads 375
5238 Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock

Authors: Azzam Alosaimi

Abstract:

Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock.

Keywords: infiltration rate, energy demands, heating loss, cooling loss, carbon emissions

Procedia PDF Downloads 143
5237 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 128
5236 Oxide Based Memristor and Its Potential Application in Analog-Digital Electronics

Authors: P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu

Abstract:

Oxide based memristors were fabricated in order to establish its potential applications in analog/digital electronics. BaTiO₃-BiFeO₃ (BT-BFO) was employed as an active material, whereas platinum (Pt) and Nb-doped SrTiO₃ (Nb:STO) were served as a top and bottom electrodes, respectively. Piezoelectric force microscopy (PFM) was utilized to present the ferroelectricity and repeatable polarization inversion in the BT-BFO, demonstrating its effectiveness for resistive switching. The fabricated memristors exhibited excellent electrical characteristics, such as hysteresis current-voltage (I-V), high on/off ratio, high retention time, cyclic endurance, and low operating voltages. The band-alignment between the active material BT-BFO and the substrate Nb:STO was experimentally investigated using X-Ray photoelectron spectroscopy, and it attributed to staggered heterojunction alignment. An energy band diagram was proposed in order to understand the electrical transport in BT-BFO/Nb:STO heterojunction. It was identified that the I-V curves of these memristors have several discontinuities. Curve fitting technique was utilized to analyse the I-V characteristic, and the obtained I-V equations were found to be parabolic. Utilizing this analysis, a non-linear BT-BFO memristors equivalent circuit model was developed. Interestingly, the obtained equivalent circuit of the BT-BFO memristors mimics the identical electrical performance, those obtained in the fabricated devices. Based on the developed equivalent circuit, a finite state machine (FSM) design was proposed. Efforts were devoted to fabricate the same FSM, and the results were well matched with those in the simulated FSM devices. Its multilevel noise filtering and immunity to external noise characteristics were also studied. Further, the feature of variable negative resistance was established by controlling the current through the memristor.

Keywords: band alignment, finite state machine, polarization inversion, resistive switching

Procedia PDF Downloads 123
5235 Effects of Soil-Structure Interaction on Seismic Performance of Steel Structures Equipped with Viscous Fluid Dampers

Authors: Faramarz Khoshnoudian, Saeed Vosoughiyan

Abstract:

The main goal of this article is to clarify the soil-structure interaction (SSI) effects on the seismic performance of steel moment resisting frame buildings which are rested on soft soil and equipped with viscous fluid dampers (VFDs). For this purpose, detailed structural models of a ten-story SMRF with VFDs excluding and including the SSI are constructed first. In order to simulate the dynamic response of the foundation, in this paper, the simple cone model is applied. Then, the nonlinear time-history analysis of the models is conducted using three kinds of earthquake excitations with different intensities. The analysis results have demonstrated that the SSI effects on the seismic performance of a structure equipped with VFDs and supported by rigid foundation on soft soil need to be considered. Also VFDs designed based on rigid foundation hypothesis fail to achieve the expected seismic objective while SSI goes into effect.

Keywords: nonlinear time-history analysis, soil-structure interaction, steel moment resisting frame building, viscous fluid dampers

Procedia PDF Downloads 319