Search results for: fault detection and classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5671

Search results for: fault detection and classification

2371 Interaction of the Circumferential Lamb Wave with Delamination in the Middle of Pipe Wall

Authors: Li Ziming, He Cunfu, Liu Zenghua

Abstract:

With aim for delamination type defects detection in manufacturing process of seamless pipe,this paper studies the interaction of the circumferential lamb wave with delamination in aluminum pipe.The delamination is located in the middle of pipe wall.A numerical study is carried out,the circumferential lamb wave used here is CL0 mode,which is generated with a finite element method code.Wave structures from the simulation are compared with theoretical results to verify the model’s accuracy.Delamination along the circumferential direction is established by demerging nodes of the same coordinates.When CL0 mode is incident at the entrance and exit of a delamination,it generates new mode-CL1,undergoes multiple reverberation and mode conversions between the two ends of the delamination. Signals of different receptions are obtained to provide insight in using CL0 mode for locating the delamination.

Keywords: circumferential lamb wave, delamination, FEM, seamless pipe

Procedia PDF Downloads 312
2370 Implementation of Integrated Multi-Channel Analysis of Surface Waves and Waveform Inversion Techniques for Seismic Hazard Estimation with Emphasis on Associated Uncertainty: A Case Study at Zafarana Wind Turbine Towers Farm, Egypt

Authors: Abd El-Aziz Khairy Abd El-Aal, Yuji Yagi, Heba Kamal

Abstract:

In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion methods and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20%) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels.

Keywords: MASW, seismic hazard, wind turbine towers, Zafarana wind farm

Procedia PDF Downloads 403
2369 Karyotyping the Date Palm (Phoenix dactylifera L.)

Authors: Abdullah M. Alzahrani

Abstract:

The karyotypes of Khalas (KH), Sukkary (SK), Sheeshi (SS), Shibeebi (SB) and Sillije (SJ) date palm cultivars were investigated. Data showed no variation in chromosome number, 2n = 36, 34 autosomes in addition to XX in females and XY in males. Mean autosomes length ranged from 3.85-9.93 μm and 3.71-2.73 μm for X and Y chromosomes, respectively. The formula of female date palm karyotype was 8m + 4sm +2st + 4t, and submedian Y chromosome. Relative chromosome length ranged from 3.3- 9.38 μm. SS cultivar showed high asymmetry levels by scoring low values of Syi (45.51), TF (42.8) and high values for A1 (0.53), A (0.41) and AI (0.29). Syi developed an inverse relation with A1 and A while A exhibited a direct correlation with A1. Cultivars SK, SB and SJ score medium values of Syi, A1, AI and A. KH cultivar exhibited high symmetry by scoring highest values of Syi (53.68), TF (51.81) and lowest values of A1 (0.44), A (0.34) and AI (0.18). Higher DI value was obtained in SB cultivar (1.34) followed by SJ (1.15) and low DI scores of 0.99, 0.86 and 0.71 were detected in KH, SS and SK, respectively. Stebbins classification assorted SS as 3B and the other cultivars as 2B, insuring the evolution and asymmetry of SS compared to the other karyotypes. Scatter diagram of Syi-A1 couple has the advantage of revealing high degree of sensitivity to present karyotype interrelationships, followed by AI-A and CVCL-CVCI couples.

Keywords: Karyotype, date palm, Khalas, Sukkary, Sheeshi

Procedia PDF Downloads 370
2368 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)

Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang

Abstract:

This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.

Keywords: decision tree, data mining, customers, life insurance pay package

Procedia PDF Downloads 428
2367 Monitoring the Rate of Expansion of Agricultural Fields in Mwekera Forest Reserve Using Remote Sensing and Geographic Information Systems

Authors: K. Kanja, M. Mweemba, K. Malungwa

Abstract:

Due to the rampant population growth coupled with retrenchments currently going on in the Copper mines in Zambia, a number of people are resorting to land clearing for agriculture, illegal settlements as well as charcoal production among other vices. This study aims at assessing the rate of expansion of agricultural fields and illegal settlements in protected areas using remote sensing and Geographic Information System. Zambia’s Mwekera National Forest Reserve was used as a case study. Iterative Self-Organizing Data Analysis Technique (ISODATA), as well as maximum likelihood, supervised classification on four Landsat images as well as an accuracy assessment of the classifications was performed. Over the period under observation, results indicate annual percentage changes to be -0.03, -0.49 and 1.26 for agriculture, forests and settlement respectively indicating a higher conversion of forests into human settlements and agriculture.

Keywords: geographic information system, land cover change, Landsat TM and ETM+, Mwekera forest reserve, remote sensing

Procedia PDF Downloads 143
2366 Customer Churn Analysis in Telecommunication Industry Using Data Mining Approach

Authors: Burcu Oralhan, Zeki Oralhan, Nilsun Sariyer, Kumru Uyar

Abstract:

Data mining has been becoming more and more important and a wide range of applications in recent years. Data mining is the process of find hidden and unknown patterns in big data. One of the applied fields of data mining is Customer Relationship Management. Understanding the relationships between products and customers is crucial for every business. Customer Relationship Management is an approach to focus on customer relationship development, retention and increase on customer satisfaction. In this study, we made an application of a data mining methods in telecommunication customer relationship management side. This study aims to determine the customers profile who likely to leave the system, develop marketing strategies, and customized campaigns for customers. Data are clustered by applying classification techniques for used to determine the churners. As a result of this study, we will obtain knowledge from international telecommunication industry. We will contribute to the understanding and development of this subject in Customer Relationship Management.

Keywords: customer churn analysis, customer relationship management, data mining, telecommunication industry

Procedia PDF Downloads 317
2365 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea

Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng

Abstract:

During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.

Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea

Procedia PDF Downloads 172
2364 Non-Destructive Visual-Statistical Approach to Detect Leaks in Water Mains

Authors: Alaa Al Hawari, Mohammad Khader, Tarek Zayed, Osama Moselhi

Abstract:

In this paper, an effective non-destructive, non-invasive approach for leak detection was proposed. The process relies on analyzing thermal images collected by an IR viewer device that captures thermo-grams. In this study a statistical analysis of the collected thermal images of the ground surface along the expected leak location followed by a visual inspection of the thermo-grams was performed in order to locate the leak. In order to verify the applicability of the proposed approach the predicted leak location from the developed approach was compared with the real leak location. The results showed that the expected leak location was successfully identified with an accuracy of more than 95%.

Keywords: thermography, leakage, water pipelines, thermograms

Procedia PDF Downloads 355
2363 Numerical Simulation and Laboratory Tests for Rebar Detection in Reinforced Concrete Structures using Ground Penetrating Radar

Authors: Maha Al-Soudani, Gilles Klysz, Jean-Paul Balayssac

Abstract:

The aim of this paper is to use Ground Penetrating Radar (GPR) as a non-destructive testing (NDT) method to increase its accuracy in recognizing the geometric reinforced concrete structures and in particular, the position of steel bars. This definition will help the managers to assess the state of their structures on the one hand vis-a-vis security constraints and secondly to quantify the need for maintenance and repair. Several configurations of acquisition and processing of the simulated signal were tested to propose and develop an appropriate imaging algorithm in the propagation medium to locate accurately the rebar. A subsequent experimental validation was used by testing the imaging algorithm on real reinforced concrete structures. The results indicate that, this algorithm is capable of estimating the reinforcing steel bar position to within (0-1) mm.

Keywords: GPR, NDT, Reinforced concrete structures, Rebar location.

Procedia PDF Downloads 504
2362 Vision Based People Tracking System

Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti

Abstract:

In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.

Keywords: camshift algorithm, computer vision, Kalman filter, object tracking

Procedia PDF Downloads 446
2361 Monoallelic and Biallelic Deletions of 13q14 in a Group of 36 CLL Patients Investigated by CGH Haematological Cancer and SNP Array (8x60K)

Authors: B. Grygalewicz, R. Woroniecka, J. Rygier, K. Borkowska, A. Labak, B. Nowakowska, B. Pienkowska-Grela

Abstract:

Introduction: Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the Western world. Hemizygous and or homozygous loss at 13q14 occur in more than half of cases and constitute the most frequent chromosomal abnormality in CLL. It is believed that deletions 13q14 play a role in CLL pathogenesis. Two microRNA genes miR-15a and miR- 16-1 are targets of 13q14 deletions and plays a tumor suppressor role by targeting antiapoptotic BCL2 gene. Deletion size, as a single change detected in FISH analysis, has haprognostic significance. Patients with small deletions, without RB1 gene involvement, have the best prognosis and the longest overall survival time (OS 133 months). In patients with bigger deletion region, containing RB1 gene, prognosis drops to intermediate, like in patients with normal karyotype and without changes in FISH with overall survival 111 months. Aim: Precise delineation of 13q14 deletions regions in two groups of CLL patients, with mono- and biallelic deletions and qualifications of their prognostic significance. Methods: Detection of 13q14 deletions was performed by FISH analysis with CLL probe panel (D13S319, LAMP1, TP53, ATM, CEP-12). Accurate deletion size detection was performed by CGH Haematological Cancer and SNP array (8x60K). Results: Our investigated group of CLL patients with the 13q14 deletion, detected by FISH analysis, comprised two groups: 18 patients with monoallelic deletions and 18 patients with biallelic deletions. In FISH analysis, in the monoallelic group the range of cells with deletion, was 43% to 97%, while in biallelic group deletion was detected in 11% to 94% of cells. Microarray analysis revealed precise deletion regions. In the monoallelic group, the range of size was 348,12 Kb to 34,82 Mb, with median deletion size 7,93 Mb. In biallelic group discrepancy of total deletions, size was 135,27 Kb to 33,33 Mb, with median deletion size 2,52 Mb. The median size of smaller deletion regions on one copy chromosome 13 was 1,08 Mb while the average region of bigger deletion on the second chromosome 13 was 4,04 Mb. In the monoallelic group, in 8/18 deletion region covered RB1 gene. In the biallelic group, in 4/18 cases, revealed deletion on one copy of biallelic deletion and in 2/18 showed deletion of RB1 gene on both deleted 13q14 regions. All minimal deleted regions included miR-15a and miR-16-1 genes. Genetic results will be correlated with clinical data. Conclusions: Application of CGH microarrays technique in CLL allows accurately delineate the size of 13q14 deletion regions, what have a prognostic value. All deleted regions included miR15a and miR-16-1, what confirms the essential role of these genes in CLL pathogenesis. In our investigated groups of CLL patients with mono- and biallelic 13q14 deletions, patients with biallelic deletion presented smaller deletion sizes (2,52 Mb vs 7,93 Mb), what is connected with better prognosis.

Keywords: CLL, deletion 13q14, CGH microarrays, SNP array

Procedia PDF Downloads 255
2360 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors

Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller

Abstract:

In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.

Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault

Procedia PDF Downloads 53
2359 Primer Design for the Detection of Secondary Metabolite Biosynthetic Pathways in Metagenomic Data

Authors: Jeisson Alejandro Triana, Maria Fernanda Quiceno Vallejo, Patricia del Portillo, Juan Manuel Anzola

Abstract:

Most of the known antimicrobials so far discovered are secondary metabolites. The potential for new natural products of this category increases as new microbial genomes and metagenomes are being sequenced. Despite the advances, there is no systematic way to interrogate metagenomic clones for their potential to contain clusters of genes related to these pathways. Here we analyzed 52 biosynthetic pathways from the AntiSMASH database at the protein domain level in order to identify domains of high specificity and sensitivity with respect to specific biosynthetic pathways. These domains turned out to have various degrees of divergence at the DNA level. We propose PCR assays targetting such domains in-silico and corroborated one by Sanger sequencing.

Keywords: bioinformatic, anti smash, antibiotics, secondary metabolites, natural products, protein domains

Procedia PDF Downloads 180
2358 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition

Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie

Abstract:

In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.

Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks

Procedia PDF Downloads 112
2357 If You Can't Teach Yourself, No One Can

Authors: Timna Mayer

Abstract:

This paper explores the vast potential of self-directed learning in violin pedagogy. Based in practice and drawing on concepts from neuropsychology, the author, a violinist and teacher, outlines five learning principles. Self-directed learning is defined as an ongoing process based on problem detection, definition, and resolution. The traditional roles of teacher and student are reimagined within this context. A step-by-step guide to applied self-directed learning suggests a model for both teachers and students that realizes student independence in the classroom, leading to higher-level understanding and more robust performance. While the value of self-directed learning is well-known in general pedagogy, this paper is novel in applying the approach to the study of musical performance, a field which is currently dominated by habit and folklore, rather than informed by science.

Keywords: neuropsychology and musical performance, self-directed learning, strategic problem solving, violin pedagogy

Procedia PDF Downloads 149
2356 Effects of Reversible Watermarking on Iris Recognition Performance

Authors: Andrew Lock, Alastair Allen

Abstract:

Fragile watermarking has been proposed as a means of adding additional security or functionality to biometric systems, particularly for authentication and tamper detection. In this paper we describe an experimental study on the effect of watermarking iris images with a particular class of fragile algorithm, reversible algorithms, and the ability to correctly perform iris recognition. We investigate two scenarios, matching watermarked images to unmodified images, and matching watermarked images to watermarked images. We show that different watermarking schemes give very different results for a given capacity, highlighting the importance of investigation. At high embedding rates most algorithms cause significant reduction in recognition performance. However, in many cases, for low embedding rates, recognition accuracy is improved by the watermarking process.

Keywords: biometrics, iris recognition, reversible watermarking, vision engineering

Procedia PDF Downloads 458
2355 A Fast GPS Satellites Signals Detection Algorithm Based on Simplified Fast Fourier Transform

Authors: Beldjilali Bilal, Benadda Belkacem, Kahlouche Salem

Abstract:

Due to the Doppler effect caused by the high velocity of satellite and in some case receivers, the frequency of the Global Positioning System (GPS) signals are transformed into a new ones. Several acquisition algorithms frequency of the Global Positioning System (GPS) signals are transformed can be used to estimate the new frequency and phase shifts values. Numerous algorithms are based on the frequencies domain calculation. Our developed algorithm is a new approach dedicated to the Global Positioning System signal acquisition based on the fast Fourier transform. Our proposed new algorithm is easier to implement and has fast execution time compared with elder ones.

Keywords: global positioning system, acquisition, FFT, GPS/L1, software receiver, weak signal

Procedia PDF Downloads 251
2354 Introduction to Techno-Sectoral Innovation System Modeling and Functions Formulating

Authors: S. M. Azad, H. Ghodsi Pour, F. Roshannafasa

Abstract:

In recent years ‘technology management and policymaking’ is one of the most important problems in management science. In this field, different generations of innovation and technology management are presented which the earliest one is Innovation System (IS) approach. In a general classification, innovation systems are divided in to 4 approaches: Technical, sectoral, regional, and national. There are many researches in relation to each of these approaches in different academic fields. Every approach has some benefits. If two or more approaches hybrid, their benefits would be combined. In addition, according to the sectoral structure of the governance model in Iran, in many sectors such as information technology, the combination of three other approaches with sectoral approach is essential. Hence, in this paper, combining two IS approaches (technical and sectoral) and using system dynamics, a generic model is presented for a sample of software industry. As a complimentary point, this article is introducing a new hybrid approach called Techno-Sectoral Innovation System. This TSIS model is accomplished by Changing concepts of the ‘functions’ which came from Technological IS literature and using them into sectoral system as measurable indicators.

Keywords: innovation system, technology, techno-sectoral system, functional indicators, system dynamics

Procedia PDF Downloads 440
2353 Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing

Authors: Nileshkumar Vishnav, Aditya Tatu

Abstract:

A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction.

Keywords: graph signal processing, algebraic signal processing, graph similarity, isospectral graphs, nonuniform signal processing

Procedia PDF Downloads 352
2352 Evaluation of the Radiolabelled 68GA-DOTATOC Complex in Adenocarcinoma Breast Cancer

Authors: S. Zolghadri, M. Naderi, H. Yousefnia, B. Alirzapour, A. R. Jalilian, A. Ramazani

Abstract:

Nowadays, 68Ga-DOTATOC has been known as a potential agent for the detection of neuroendocrine tumours and it has indicated higher sensitivity compared with the 111In-Octeroetide. The aim of this study was to evaluate the effectiveness of this new agent in the diagnosis of adenocarcinoma breast cancer. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by the specific activity of 39.6 TBq/mmol. 37 MBq of the complex was injected intravenously into the BULB/c mice with adenocarcinoma breast cancer. PET/CT images were acquired after 30, 60 and 90 min post injection demonstrated significant accumulation in the tumour sites. Also, considerable activity was observed in the kidney and bladder as the main routs of excretion. Generally, the results showed that 68Ga-DOTATOC can be considered as a suitable complex for diagnosis of the adenocarcinoma breast cancer using PET procedure.

Keywords: adenocarcinoma breast cancer, 68Ga, octreotide, imaging

Procedia PDF Downloads 341
2351 Patient-Friendly Hand Gesture Recognition Using AI

Authors: K. Prabhu, K. Dinesh, M. Ranjani, M. Suhitha

Abstract:

During the tough times of covid, those people who were hospitalized found it difficult to always convey what they wanted to or needed to the attendee. Sometimes the attendees might also not be there. In that case, the patients can use simple hand gestures to control electrical appliances (like its set it for a zero watts bulb)and three other gestures for voice note intimation. In this AI-based hand recognition project, NodeMCU is used for the control action of the relay, and it is connected to the firebase for storing the value in the cloud and is interfaced with the python code via raspberry pi. For three hand gestures, a voice clip is added for intimation to the attendee. This is done with the help of Google’s text to speech and the inbuilt audio file option in the raspberry pi 4. All the five gestures will be detected when shown with their hands via the webcam, which is placed for gesture detection. The personal computer is used for displaying the gestures and for running the code in the raspberry pi imager.

Keywords: nodeMCU, AI technology, gesture, patient

Procedia PDF Downloads 168
2350 Predicting Machine-Down of Woodworking Industrial Machines

Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta

Abstract:

In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.

Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence

Procedia PDF Downloads 227
2349 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability

Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto

Abstract:

Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.

Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT

Procedia PDF Downloads 795
2348 Defining of the Shape of the Spine Using Moiré Method in Case of Patients with Scheuermann Disease

Authors: Petra Balla, Gabor Manhertz, Akos Antal

Abstract:

Nowadays spinal deformities are very frequent problems among teenagers. Scheuermann disease is a one dimensional deformity of the spine, but it has prevalence over 11% of the children. A traditional technology, the moiré method was used by us for screening and diagnosing this type of spinal deformity. A LabVIEW program has been developed to evaluate the moiré pictures of patients with Scheuermann disease. Two different solutions were tested in this computer program, the extreme and the inflexion point calculation methods. Effects using these methods were compared and according to the results both solutions seemed to be appropriate. Statistical results showed better efficiency in case of the extreme search method where the average difference was only 6,09⁰.

Keywords: spinal deformity, picture evaluation, Moiré method, Scheuermann disease, curve detection, Moiré topography

Procedia PDF Downloads 352
2347 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database

Procedia PDF Downloads 151
2346 A Spectrophotometric Method for the Determination of Folic Acid - A Vitamin B9 in Pharmaceutical Dosage Samples

Authors: Chand Pasha, Yasser Turki Alharbi, Krasamira Stancheva

Abstract:

A simple spectrophotometric method for the determination of folic acid in pharmaceutical dosage samples was developed. The method is based on the diazotization reaction of thiourea with sodium nitrite in acidic medium yields diazonium compounds, which is then coupled with folic acid in basic medium yields yellow coloured azo dyes. Beer’s Lamberts law is observed in the range 0.5 – 16.2 μgmL-1 at a maximum wavelength of 416nm. The molar absorbtivity, sandells sensitivity, linear regression equation and detection limit and quantitation limit were found to be 5.695×104 L mol-1cm-1, 7.752×10-3 g cm-2, y= 0.092x - 0.018, 0.687 g mL-1 and 2.083 g mL-1. This method successfully determined Folate in Pharmaceutical formulations.

Keywords: folic acid determination, spectrophotometry, diazotization, thiourea, pharmaceutical dosage samples

Procedia PDF Downloads 76
2345 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method

Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya

Abstract:

Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.

Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms

Procedia PDF Downloads 94
2344 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews

Authors: Vishnu Goyal, Basant Agarwal

Abstract:

Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.

Keywords: feature selection, sentiment analysis, hybrid feature selection

Procedia PDF Downloads 340
2343 A Method for Quantifying Arsenolipids in Sea Water by HPLC-High Resolution Mass Spectrometry

Authors: Muslim Khan, Kenneth B. Jensen, Kevin A. Francesconi

Abstract:

Trace amounts (ca 1 µg/L, 13 nM) of arsenic are present in sea water mostly as the oxyanion arsenate. In contrast, arsenic is present in marine biota (animals and algae) at very high levels (up to100,000 µg/kg) a significant portion of which is present as lipid-soluble compounds collectively termed arsenolipids. The complex nature of sea water presents an analytical challenge to detect trace compounds and monitor their environmental path. We developed a simple method using liquid-liquid extraction combined with HPLC-High Resolution Mass Spectrometer capable of detecting trace of arsenolipids (99 % of the sample matrix while recovering > 80 % of the six target arsenolipids with limit of detection of 0.003 µg/L.)

Keywords: arsenolipids, sea water, HPLC-high resolution mass spectrometry

Procedia PDF Downloads 366
2342 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 275