Search results for: failure detection and prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7739

Search results for: failure detection and prediction

4559 Physicochemical Characterization of Asphalt Ridge Froth Bitumen

Authors: Nader Nciri, Suil Song, Namho Kim, Namjun Cho

Abstract:

Properties and compositions of bitumen and bitumen-derived liquids have significant influences on the selection of recovery, upgrading and refining processes. Optimal process conditions can often be directly related to these properties. The end uses of bitumen and bitumen products are thus related to their compositions. Because it is not possible to conduct a complete analysis of the molecular structure of bitumen, characterization must be made in other terms. The present paper focuses on physico-chemical analysis of two different types of bitumens. These bitumen samples were chosen based on: the original crude oil (sand oil and crude petroleum), and mode of process. The aim of this study is to determine both the manufacturing effect on chemical species and the chemical organization as a function of the type of bitumen sample. In order to obtain information on bitumen chemistry, elemental analysis (C, H, N, S, and O), heavy metal (Ni, V) concentrations, IATROSCAN chromatography (thin layer chromatography-flame ionization detection), FTIR spectroscopy, and 1H NMR spectroscopy have all been used. The characterization includes information about the major compound types (saturates, aromatics, resins and asphaltenes) which can be compared with similar data for other bitumens, more importantly, can be correlated with data from petroleum samples for which refining characteristics are known. Examination of Asphalt Ridge froth bitumen showed that it differed significantly from representative petroleum pitches, principally in their nonhydrocarbon content, heavy metal content and aromatic compounds. When possible, properties and composition were related to recovery and refining processes. This information is important because of the effects that composition has on recovery and processing reactions.

Keywords: froth bitumen, oil sand, asphalt ridge, petroleum pitch, thin layer chromatography-flame ionization detection, infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy

Procedia PDF Downloads 431
4558 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 123
4557 Implementation of Iterative Algorithm for Earthquake Location

Authors: Hussain K. Chaiel

Abstract:

The development in the field of the digital signal processing (DSP) and the microelectronics technology reduces the complexity of the iterative algorithms that need large number of arithmetic operations. Virtex-Field Programmable Gate Arrays (FPGAs) are programmable silicon foundations which offer an important solution for addressing the needs of high performance DSP designer. In this work, Virtex-7 FPGA technology is used to implement an iterative algorithm to estimate the earthquake location. Simulation results show that an implementation based on block RAMB36E1 and DSP48E1 slices of Virtex-7 type reduces the number of cycles of the clock frequency. This enables the algorithm to be used for earthquake prediction.

Keywords: DSP, earthquake, FPGA, iterative algorithm

Procedia PDF Downloads 394
4556 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 290
4555 A Modified Estimating Equations in Derivation of the Causal Effect on the Survival Time with Time-Varying Covariates

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

a systematic observation from a defined time of origin up to certain failure or censor is known as survival data. Survival analysis is a major area of interest in biostatistics and biomedical researches. At the heart of understanding, the most scientific and medical research inquiries lie for a causality analysis. Thus, the main concern of this study is to investigate the causal effect of treatment on survival time conditional to the possibly time-varying covariates. The theory of causality often differs from the simple association between the response variable and predictors. A causal estimation is a scientific concept to compare a pragmatic effect between two or more experimental arms. To evaluate an average treatment effect on survival outcome, the estimating equation was adjusted for time-varying covariates under the semi-parametric transformation models. The proposed model intuitively obtained the consistent estimators for unknown parameters and unspecified monotone transformation functions. In this article, the proposed method estimated an unbiased average causal effect of treatment on survival time of interest. The modified estimating equations of semiparametric transformation models have the advantage to include the time-varying effect in the model. Finally, the finite sample performance characteristics of the estimators proved through the simulation and Stanford heart transplant real data. To this end, the average effect of a treatment on survival time estimated after adjusting for biases raised due to the high correlation of the left-truncation and possibly time-varying covariates. The bias in covariates was restored, by estimating density function for left-truncation. Besides, to relax the independence assumption between failure time and truncation time, the model incorporated the left-truncation variable as a covariate. Moreover, the expectation-maximization (EM) algorithm iteratively obtained unknown parameters and unspecified monotone transformation functions. To summarize idea, the ratio of cumulative hazards functions between the treated and untreated experimental group has a sense of the average causal effect for the entire population.

Keywords: a modified estimation equation, causal effect, semiparametric transformation models, survival analysis, time-varying covariate

Procedia PDF Downloads 180
4554 Fracture and Dynamic Behavior of Leaf Spring Suspension

Authors: S. Lecheb, A. Chellil, H. Mechakra, S. Attou, H. Kebir

Abstract:

Although leaf springs are one of the oldest suspension components they are still frequently used, especially in commercial vehicles. Being able to capture the leaf spring characteristics is of significant importance for vehicle handling dynamics studies. The main function of leaf spring is not only to support vertical load but also to isolate road induced vibrations. It is subjected to millions of load cycles leading to fatigue failure. It needs to have excellent fatigue life. The objective of this work is its use of Abaqus software to locate the most stressed areas and predict the areas in which it occurs in fatigue and crack of leaf spring and calculate the stress and frequencies of this model.

Keywords: leaf spring, crack, stress, natural frequencies

Procedia PDF Downloads 467
4553 Isolation and Molecular Detection of Marek’s Disease Virus from Outbreak Cases in Chicken in South Western Ethiopia

Authors: Abdela Bulbula

Abstract:

Background: Marek’s disease virus is a devastating infection, causing high morbidity and mortality in chickens in Ethiopia. Methods: The current study was conducted from March to November, 2021 with the general objective of performing antemortem and postmortem, isolation, and molecular detection of Marek’s disease virus from outbreak cases in southwestern Ethiopia. Accordingly, based on outbreak information reported from the study sites namely, Bedelle, Yayo, and Bonga towns in southwestern Ethiopia, 50 sick chickens were sampled. The backyard and intensive farming systems of chickens were included in the sampling and priorities were given for chickens that showed clinical signs that are characteristics of Marek’s disease. Results: By clinical examinations, paralysis of legs and wings, gray eye, loss of weight, difficulty in breathing, and depression were recorded on all chickens sampled for this study and death of diseased chickens was observed. In addition, enlargement of the spleen and gross lesions of the liver and heart were recorded during postmortem examination. The death of infected chickens was observed in both vaccinated and non-vaccinated flocks. Out of 50 pooled feather follicle samples, Marek’s disease virus was isolated from 14/50 (28%) by cell culture method and out of six tissue samples, the virus was isolated from 5/6(83.30%). By Real time polymerization chain reaction technique, which was targeted to detect the Meq gene, Marek’s disease virus was detected from 18/50 feather follicles which accounts for 36% of sampled chickens. Conclusion: In general, the current study showed that the circulating Marek’s disease virus in southwestern Ethiopia was caused by the oncogenic Gallid herpesvirus-2 (Serotype-1). Further research on molecular characterization of revolving virus in current and other regions is recommended for effective control of the disease through vaccination.

Keywords: Ethioi, Marek's disease, isolation, molecular

Procedia PDF Downloads 76
4552 FEM and Experimental Modal Analysis of Computer Mount

Authors: Vishwajit Ghatge, David Looper

Abstract:

Over the last few decades, oilfield service rolling equipment has significantly increased in weight, primarily because of emissions regulations, which require larger/heavier engines, larger cooling systems, and emissions after-treatment systems, in some cases, etc. Larger engines cause more vibration and shock loads, leading to failure of electronics and control systems. If the vibrating frequency of the engine matches the system frequency, high resonance is observed on structural parts and mounts. One such existing automated control equipment system comprising wire rope mounts used for mounting computers was designed approximately 12 years ago. This includes the use of an industrial- grade computer to control the system operation. The original computer had a smaller, lighter enclosure. After a few years, a newer computer version was introduced, which was 10 lbm heavier. Some failures of internal computer parts have been documented for cases in which the old mounts were used. Because of the added weight, there is a possibility of having the two brackets impact each other under off-road conditions, which causes a high shock input to the computer parts. This added failure mode requires validating the existing mount design to suit the new heavy-weight computer. This paper discusses the modal finite element method (FEM) analysis and experimental modal analysis conducted to study the effects of vibration on the wire rope mounts and the computer. The existing mount was modelled in ANSYS software, and resultant mode shapes and frequencies were obtained. The experimental modal analysis was conducted, and actual frequency responses were observed and recorded. Results clearly revealed that at resonance frequency, the brackets were colliding and potentially causing damage to computer parts. To solve this issue, spring mounts of different stiffness were modeled in ANSYS software, and the resonant frequency was determined. Increasing the stiffness of the system increased the resonant frequency zone away from the frequency window at which the engine showed heavy vibrations or resonance. After multiple iterations in ANSYS software, the stiffness of the spring mount was finalized, which was again experimentally validated.

Keywords: experimental modal analysis, FEM Modal Analysis, frequency, modal analysis, resonance, vibration

Procedia PDF Downloads 325
4551 Motherhood Constrained: The Minotaur Legend Reimagined Through the Perspective of Marginalized Mothers

Authors: Gevorgianiene Violeta, Sumskiene Egle

Abstract:

Background. Child removal is a profound and life-altering measure that significantly impacts both children and their mothers. Unfortunately, mothers with intellectual disabilities are disproportionately affected by the removal of their children. This action is often taken due to concerns about the mother's perceived inability to care for the child, instances of abuse and neglect, or struggles with addiction. In many cases, the failure to meet society's standards of a "good mother" is seen as a deviation from conventional norms of femininity and motherhood. From an institutional perspective, separating a child from their mother is sometimes viewed as a step toward restoring justice or doing what is considered "right." In another light, this act of child removal can be seen as the removal of a mother from her child, an attempt to shield society from the complexities and fears associated with motherhood for women with disabilities. This separation can be likened to the Greek legend of the Minotaur, a fearsome beast confined within an impenetrable labyrinth. By reimagining this legend, we can see the social fears surrounding 'mothering with intellectual disability' as deeply sealed within an unreachable place. The Aim of this Presentation. Our goal with this presentation is to draw from our research and the metaphors found in the Greek legend to delve into the profound challenges faced by mothers with intellectual disabilities in raising their children. These challenges often become entangled within an insurmountable labyrinth, including navigating complex institutional bureaucracies, enduring persistent doubts cast upon their maternal competencies, battling unfavorable societal narratives, and struggling to retain custody of their children. Coupled with limited social support networks, these challenges frequently lead to situations resulting in maternal failure and, ultimately, child removal. On a broader scale, this separation of a child from their mother symbolizes society’s collective avoidance of confronting the issue of 'mothering with disability,' which can only be effectively addressed through united efforts. Conclusion. Just as in the labyrinth of the Minotaur legend, the struggles faced by mothers with disabilities in their pursuit of retaining their children reveal the need for a metaphorical 'string of Ariadne.' This string symbolizes the support offered by social service providers, communities, and the loved ones these women often dream of but rarely encounter in their lives.

Keywords: motherhood, disability, child removal, support.

Procedia PDF Downloads 61
4550 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings

Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu

Abstract:

Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents.

Keywords: calculator, indoor environmental quality (IEQ), residential buildings, 5-star benchmarks

Procedia PDF Downloads 479
4549 An Experience of HIV Testing and Counseling Services at a Tertiary Care Center of Bangladesh

Authors: S. M. Rashed Ul Islam, Shahina Tabassum, Afsana Anwar Miti

Abstract:

Objective: HIV testing and counseling center (HTC) is an important component of the HIV/AIDS detection, prevention and control interventions. The service was first initiated at the Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU) since the first case detection in 1989. The present study aimed to describe the demographic profile among the attendees tested HIV positive. Methods: The present study was carried out among 219 HIV positive cases detected through screening at the Department of Virology of BSMMU during the year of 2012-2016. Data were collected through pre-structured written questionnaire during the counseling session. Data were expressed as frequency and percentages and analyzed using SPSS v20.0 program. Results: Out of 219 HIV cases detected, 77.6% were males, and 22.4% were females with a mean age (mean±SD) of 35.46±9.46 years. Among them, 70.7% belonged to the 26-45 age groups representing the sexually active age. The majority of the cases were married (86.3%) and 49.8% had primary level of education whereas, 8.7% were illiterate. Nearly 42% of cases were referred from Chittagong division (south-east part of the country) followed by Dhaka division (35.6%). The bulk of study population admitted to involvement in high-risk behaviour (90%) in the past and 42% of them had worked overseas. The Pearson Chi-square (χ2) analysis revealed significant relationship of gender with marital (χ2=7.88 at 2% level) and occupation status (χ2=120.48 at 6% level); however, no association was observed with risk behaviour and educational status. Recommendations: HIV risk behavior was found to be a prime source for HIV infection among the study population. So, there is need for health education and awareness program to bring about behavioral changes to halt the yearly increase of new cases in the country with special attention to our overseas workers on HIV/AIDS risk and safety.

Keywords: Bangladesh, health education, HIV testing and counseling (HTC), HIV/AIDS, risk behavior

Procedia PDF Downloads 299
4548 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices

Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese

Abstract:

Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.

Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis

Procedia PDF Downloads 182
4547 Environmental /Occupational Factors and Seasonality of Birth- Male Infertility

Authors: C. Lalitha, R. Sayee, D. Apoorva

Abstract:

Reproductive failure or infertility may be due to several factors that are not limited to one sex. It remains a common problem causing significant psychological distress to those affected individuals and who are increasingly seeking medical advice. Male infertility means inability to induce conception in normal woman within a year. The etiological factors associated with male infertility are anatomical, developmental, seminal, hormonal, immunological and environmental factors. The paper was aimed to highlight the environmental factors and its association to male infertility and seasonality of birth and its influence. The data was collected from the 75 male patients referred with infertility for karyotyping and counseling. Their age ranged from 21 to 45 years. It is opined that certain occupations are preferentially associated with male infertility.

Keywords: environmental, occupational, seasonal, male infertility

Procedia PDF Downloads 269
4546 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 70
4545 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 73
4544 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection

Authors: Mohsen Hasirian, Amir Shahab Shahabi

Abstract:

Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.

Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks

Procedia PDF Downloads 49
4543 Experimental Study Damage in a Composite Structure by Vibration Analysis- Glass / Polyester

Authors: R. Abdeldjebar, B. Labbaci, L. Missoum, B. Moudden, M. Djermane

Abstract:

The basic components of a composite material made him very sensitive to damage, which requires techniques for detecting damage reliable and efficient. This work focuses on the detection of damage by vibration analysis, whose main objective is to exploit the dynamic response of a structure to detect understand the damage. The experimental results are compared with those predicted by numerical models to confirm the effectiveness of the approach.

Keywords: experimental, composite, vibration analysis, damage

Procedia PDF Downloads 677
4542 In-Situ Studies of Cyclohexane Oxidation Using Laser Raman Spectroscopy for the Refinement of Mechanism Based Kinetic Models

Authors: Christine Fräulin, Daniela Schurr, Hamed Shahidi Rad, Gerrit Waters, Günter Rinke, Roland Dittmeyer, Michael Nilles

Abstract:

The reaction mechanisms of many liquid-phase reactions in organic chemistry have not yet been sufficiently clarified. Process conditions of several hundred degrees celsius and pressures to ten megapascals complicate the sampling and the determination of kinetic data. Space resolved in-situ measurements promises new insights. A non-invasive in-situ measurement technique has the advantages that no sample preparation is necessary, there is no change in sample mixture before analysis and the sampling do no lead to interventions in the flow. Thus, the goal of our research was the development of a contact-free spatially resolved measurement technique for kinetic studies of liquid phase reaction under process conditions. Therefore we used laser Raman spectroscopy combined with an optical transparent microchannel reactor. To show the performance of the system we choose the oxidation of cyclohexane as sample reaction. Cyclohexane oxidation is an economically important process. The products are intermediates for caprolactam and adipic acid, which are starting materials for polyamide 6 and 6.6 production. To maintain high selectivities of 70 to 90 %, the reaction is performed in industry at a low conversion of about six percent. As Raman spectroscopy is usually very selective but not very sensitive the detection of the small product concentration in cyclohexane oxidation is quite challenging. To meet these requirements, an optical experimental setup was optimized to determine the concentrations by laser Raman spectroscopy with respect to good detection sensitivity. With this measurement technique space resolved kinetic studies of uncatalysed and homogeneous catalyzed cyclohexane oxidation were carried out to obtain details about the reaction mechanism.

Keywords: in-situ laser raman spectroscopy, space resolved kinetic measurements, homogeneous catalysis, chemistry

Procedia PDF Downloads 337
4541 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance

Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang

Abstract:

A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.

Keywords: beta function, compressor map, interpolation error, map optimization tool

Procedia PDF Downloads 274
4540 Towards a Doughnut Economy: The Role of Institutional Failure

Authors: Ghada El-Husseiny, Dina Yousri, Christian Richter

Abstract:

Social services are often characterized by market failures, which justifies government intervention in the provision of these services. It is widely acknowledged that government intervention breeds corruption since resources are being transferred from one party to another. However, what is still being extensively studied is the magnitude of the negative impact of corruption on publicly provided services and development outcomes. Corruption has the power to hinder development and cripple our march towards the Sustainable Development Goals. Corruption diminishes the efficiency and effectiveness of public health and education spending and directly impacts the outcomes of these sectors. This paper empirically examines the impact of Institutional Failure on public sector services provision, with the sole purpose of studying the impact of corruption on SDG3 and 4; Good health and wellbeing and Quality education, respectively. The paper explores the effect of corruption on these goals from various perspectives and extends the analysis by examining if the impact of corruption on these goals differed when it accounted for the current corruption state. Using Pooled OLS(Ordinary Least Square) and Fixed effects panel estimation on 22 corrupt and 22 clean countries between 2000 and 2017. Results show that corruption in both corrupt and clean countries has a more severe impact on Health than the Education sector. In almost all specifications, corruption has an insignificant effect on School Enrollment rates but a significant effect on Infant Mortality rates. Results further indicate that, on average, a 1 point increase in the CPI(Consumer Price Index) can increase health expenditures by 0.116% in corrupt and clean countries. However, the fixed effects model indicates that the way Health and Education expenditures are determined in clean and corrupt countries are completely country-specific, in which corruption plays a minimal role. Moreover, the findings show that School Enrollment rates and Infant Mortality rates depend, to a large extent, on public spending. The most astounding results-driven is that corrupt countries, on average, have more effective and efficient healthcare expenditures. While some insights are provided as to why these results prevail, they should be further researched. All in all, corruption impedes development outcomes, and any Anti-corrupt policies taken will bring forth immense improvements and speed up the march towards sustainability.

Keywords: corruption, education, health, public spending, sustainable development

Procedia PDF Downloads 174
4539 Standard Protocol Selection for Acquisition of Breast Thermogram in Perspective of Early Breast Cancer Detection

Authors: Mrinal Kanti Bhowmik, Usha Rani Gogoi Jr., Anjan Kumar Ghosh, Debotosh Bhattacharjee

Abstract:

In the last few decades, breast thermography has achieved an average sensitivity and specificity of 90% for breast tumor detection. Breast thermography is a non-invasive, cost-effective, painless and radiation-free breast imaging modality which makes a significant contribution to the evaluation and diagnosis of patients, suspected of having breast cancer. An abnormal breast thermogram may indicate significant biological risk for the existence or the development of breast tumors. Breast thermography can detect a breast tumor, when the tumor is in its early stage or when the tumor is in a dense breast. The infrared breast thermography is very sensitive to environmental changes for which acquisition of breast thermography should be performed under strictly controlled conditions by undergoing some standard protocols. Several factors like air, temperature, humidity, etc. are there to be considered for characterizing thermal images as an imperative tool for detecting breast cancer. A detailed study of various breast thermogram acquisition protocols adopted by different researchers in their research work is provided here in this paper. After going through a rigorous study of different breast thermogram acquisition protocols, a new standard breast thermography acquisition setup is proposed here in this paper for proper and accurate capturing of the breast thermograms. The proposed breast thermogram acquisition setup is being built in the Radiology Department, Agartala Government Medical College (AGMC), Govt. of Tripura, Tripura, India. The breast thermograms are captured using FLIR T650sc thermal camera with the thermal sensitivity of 20 mK at 30 degree C. The paper is an attempt to highlight the importance of different critical parameters of breast thermography like different thermography views, patient preparation protocols, acquisition room requirements, acquisition system requirements, etc. This paper makes an important contribution by providing a detailed survey and a new efficient approach on breast thermogram capturing.

Keywords: acquisition protocol, breast cancer, breast thermography, infrared thermography

Procedia PDF Downloads 401
4538 Management of Non-Revenue Municipal Water

Authors: Habib Muhammetoglu, I. Ethem Karadirek, Selami Kara, Ayse Muhammetoglu

Abstract:

The problem of non-revenue water (NRW) from municipal water distribution networks is common in many countries such as Turkey, where the average yearly water losses are around 50% . Water losses can be divided into two major types namely: 1) Real or physical water losses, and 2) Apparent or commercial water losses. Total water losses in Antalya city, Turkey is around 45%. Methods: A research study was conducted to develop appropriate methodologies to reduce NRW. A pilot study area of about 60 thousands inhabitants was chosen to apply the study. The pilot study area has a supervisory control and data acquisition (SCADA) system for the monitoring and control of many water quantity and quality parameters at the groundwater drinking wells, pumping stations, distribution reservoirs, and along the water mains. The pilot study area was divided into 18 District Metered Areas (DMAs) with different number of service connections that ranged between a few connections to less than 3000 connections. The flow rate and water pressure to each DMA were on-line continuously measured by an accurate flow meter and water pressure meter that were connected to the SCADA system. Customer water meters were installed to all billed and unbilled water users. The monthly water consumption as given by the water meters were recorded regularly. Water balance was carried out for each DMA using the well-know standard IWA approach. There were considerable variations in the water losses percentages and the components of the water losses among the DMAs of the pilot study area. Old Class B customer water meters at one DMA were replaced by more accurate new Class C water meters. Hydraulic modelling using the US-EPA EPANET model was carried out in the pilot study area for the prediction of water pressure variations at each DMA. The data sets required to calibrate and verify the hydraulic model were supplied by the SCADA system. It was noticed that a number of the DMAs exhibited high water pressure values. Therefore, pressure reducing valves (PRV) with constant head were installed to reduce the pressure up to a suitable level that was determined by the hydraulic model. On the other hand, the hydraulic model revealed that the water pressure at the other DMAs cannot be reduced when complying with the minimum pressure requirement (3 bars) as stated by the related standards. Results: Physical water losses were reduced considerably as a result of just reducing water pressure. Further physical water losses reduction was achieved by applying acoustic methods. The results of the water balances helped in identifying the DMAs that have considerable physical losses. Many bursts were detected especially in the DMAs that have high physical water losses. The SCADA system was very useful to assess the efficiency level of this method and to check the quality of repairs. Regarding apparent water losses reduction, changing the customer water meters resulted in increasing water revenue by more than 20%. Conclusions: DMA, SCADA, modelling, pressure management, leakage detection and accurate customer water meters are efficient for NRW.

Keywords: NRW, water losses, pressure management, SCADA, apparent water losses, urban water distribution networks

Procedia PDF Downloads 409
4537 A Computational Model of the Thermal Grill Illusion: Simulating the Perceived Pain Using Neuronal Activity in Pain-Sensitive Nerve Fibers

Authors: Subhankar Karmakar, Madhan Kumar Vasudevan, Manivannan Muniyandi

Abstract:

Thermal Grill Illusion (TGI) elicits a strong and often painful sensation of burn when interlacing warm and cold stimuli that are individually non-painful, excites thermoreceptors beneath the skin. Among several theories of TGI, the “disinhibition” theory is the most widely accepted in the literature. According to this theory, TGI is the result of the disinhibition or unmasking of the pain-sensitive HPC (Heat-Pinch-Cold) nerve fibers due to the inhibition of cold-sensitive nerve fibers that are responsible for masking HPC nerve fibers. Although researchers focused on understanding TGI throughexperiments and models, none of them investigated the prediction of TGI pain intensity through a computational model. Furthermore, the comparison of psychophysically perceived TGI intensity with neurophysiological models has not yet been studied. The prediction of pain intensity through a computational model of TGI can help inoptimizing thermal displays and understanding pathological conditions related to temperature perception. The current studyfocuses on developing a computational model to predict the intensity of TGI pain and experimentally observe the perceived TGI pain. The computational model is developed based on the disinhibition theory and by utilizing the existing popular models of warm and cold receptors in the skin. The model aims to predict the neuronal activity of the HPC nerve fibers. With a temperature-controlled thermal grill setup, fifteen participants (ten males and five females) were presented with five temperature differences between warm and cold grills (each repeated three times). All the participants rated the perceived TGI pain sensation on a scale of one to ten. For the range of temperature differences, the experimentally observed perceived intensity of TGI is compared with the neuronal activity of pain-sensitive HPC nerve fibers. The simulation results show a monotonically increasing relationship between the temperature differences and the neuronal activity of the HPC nerve fibers. Moreover, a similar monotonically increasing relationship is experimentally observed between temperature differences and the perceived TGI intensity. This shows the potential comparison of TGI pain intensity observed through the experimental study with the neuronal activity predicted through the model. The proposed model intends to bridge the theoretical understanding of the TGI and the experimental results obtained through psychophysics. Further studies in pain perception are needed to develop a more accurate version of the current model.

Keywords: thermal grill Illusion, computational modelling, simulation, psychophysics, haptics

Procedia PDF Downloads 178
4536 Numerical Simulation for Self-Loosening Phenomenon Analysis of Bolt Joint under Vibration

Authors: Long Kim Vu, Ban Dang Nguyen

Abstract:

In this paper, the finite element method (FEM) is utilized to simulate the comprehensive process including tightening, releasing and self-loosening of a bolt joint under transverse vibration. Following to the accurate geometry of helical threads, an absolutely hexahedral meshing is implemented. The accuracy of simulation process is verified and validated by comparison with the experimental results on clamping force-vibration relationship, which shows the sufficient correlation. Further analysis with different amplitude and frequency of transverse vibration is done to determine the dominant factor inducing the failure.

Keywords: bolt self-loosening, contact state, finite element method, FEM, helical thread modeling

Procedia PDF Downloads 207
4535 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model

Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han

Abstract:

Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model

Procedia PDF Downloads 368
4534 Natural Gas Production Forecasts Using Diffusion Models

Authors: Md. Abud Darda

Abstract:

Different options for natural gas production in wide geographic areas may be described through diffusion of innovation models. This type of modeling approach provides an indirect estimate of an ultimately recoverable resource, URR, capture the quantitative effects of observed strategic interventions, and allow ex-ante assessments of future scenarios over time. In order to ensure a sustainable energy policy, it is important to forecast the availability of this natural resource. Considering a finite life cycle, in this paper we try to investigate the natural gas production of Myanmar and Algeria, two important natural gas provider in the world energy market. A number of homogeneous and heterogeneous diffusion models, with convenient extensions, have been used. Models validation has also been performed in terms of prediction capability.

Keywords: diffusion models, energy forecast, natural gas, nonlinear production

Procedia PDF Downloads 230
4533 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 580
4532 Evaluation of Traditional Methods in Construction and Their Effects on Reinforced-Concrete Buildings Behavior

Authors: E. H. N. Gashti, M. Zarrini, M. Irannezhad, J. R. Langroudi

Abstract:

Using ETABS software, this study analyzed 23 buildings to evaluate effects of mistakes during construction phase on buildings structural behavior. For modelling, two different loadings were assumed: 1) design loading and 2) loading due to the effects of mistakes in construction phase. Research results determined that considering traditional construction methods for buildings resulted in a significant increase in dead loads and consequently intensified the displacements and base-shears of buildings under seismic loads.

Keywords: reinforced-concrete buildings, construction mistakes, base-shear, displacements, failure

Procedia PDF Downloads 273
4531 Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch

Authors: Eliska Smidova, Petr Kabele

Abstract:

This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths.

Keywords: compact tension (CT) test, compact tension shear (CTS) test, fixed smeared crack model, four point bending test, laminated arch, laminated veneer lumber LVL, off-axis test, orthotropic elasticity, orthotropic fracture criterion, Radiata Pine LVL, traction-separation law, yellow poplar LVL, 2D constitutive model

Procedia PDF Downloads 292
4530 An Advanced Approach to Detect and Enumerate Soil-Transmitted Helminth Ova from Wastewater

Authors: Vivek B. Ravindran, Aravind Surapaneni, Rebecca Traub, Sarvesh K. Soni, Andrew S. Ball

Abstract:

Parasitic diseases have a devastating, long-term impact on human health and welfare. More than two billion people are infected with soil-transmitted helminths (STHs), including the roundworms (Ascaris), hookworms (Necator and Ancylostoma) and whipworm (Trichuris) with majority occurring in the tropical and subtropical regions of the world. Despite its low prevalence in developed countries, the removal of STHs from wastewater remains crucial to allow the safe use of sludge or recycled water in agriculture. Conventional methods such as incubation and optical microscopy are cumbersome; consequently, the results drastically vary from person-to-person observing the ova (eggs) under microscope. Although PCR-based methods are an alternative to conventional techniques, it lacks the ability to distinguish between viable and non-viable helminth ova. As a result, wastewater treatment industries are in major need for radically new and innovative tools to detect and quantify STHs eggs with precision, accuracy and being cost-effective. In our study, we focus on the following novel and innovative techniques: -Recombinase polymerase amplification and Surface enhanced Raman spectroscopy (RPA-SERS) based detection of helminth ova. -Use of metal nanoparticles and their relative nanozyme activity. -Colorimetric detection, differentiation and enumeration of genera of helminth ova using hydrolytic enzymes (chitinase and lipase). -Propidium monoazide (PMA)-qPCR to detect viable helminth ova. -Modified assay to recover and enumerate helminth eggs from fresh raw sewage. -Transcriptome analysis of ascaris ova in fresh raw sewage. The aforementioned techniques have the potential to replace current conventional and molecular methods thereby producing a standard protocol for the determination and enumeration of helminth ova in sewage sludge.

Keywords: colorimetry, helminth, PMA-QPCR, nanoparticles, RPA, viable

Procedia PDF Downloads 300