Search results for: Sertoli cell only syndrome (SCOS)
1365 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method
Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh
Abstract:
Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel
Procedia PDF Downloads 4561364 Vitamin D Deficiency is Associated with Increases IgE Receptors in Children with Asthma
Authors: A. Vijayendra Chary, R. Hemalatha
Abstract:
Background: Vitamin D is a potent modulator of the immune system and is involved in regulating cell proliferation and differentiation. Vitamin D deficiency has been linked to increased severity of asthma in children. Asthma has dramatically increased in past decades, particular in developing countries and affects up to 20% of the population. IgE and its receptors, CD23 (FcεRII) and CD 21, play an essential role in all allergic conditions. Methods: A case control study was conducted on asthma and age and sex matched control children. 25 hydroxyvitamin D3 was quantified by HPLC; CD23; and CD21 expression on B cells were performed by flow cytometry. Total Histamine, total IGE and IL-5 and IFN-γ cytokines were determined by ELISA in blood samples of bronchial asthma (n=45) and control children (n=45). Results: The mean ± SE of vitamin D was significantly (p<0.05) low in asthma children (13.6±0.54 ng/mL) than in controls (17.4 ± 0.37 ng/mL). The mean (%) ± SE of CD23 and CD21 expression on B cells were significantly (p<0.01) high in asthma (1.02±0.09; 1.67± 0.13), when compared to controls (0.24±0.01; 0.94±0.03) respectively. The mean± SE of Serum IgE and blood histamine levels in asthma children (354.52 ± 17.33 IU/mL; 53.27 ± 2.54 nM/mL) were increased (P<0.05) when compared to controls (183.12±17.62 IU/mL 39.34±4.16 nM/mL) respectively and IFN-γ (Th1 cytokine) was lower (P<0.01) (16.37±1.27 pg/mL) than in controls (43.34±6.21 pg/mL). Conclusion: Our study provides evidence that low vitamin D levels are associated with increased IgE receptors CD23 and CD21 on B cells. In addition, there was preferential activation of Th2 (IL-5) and suppression of Th1 (IFN-γ) cytokines in children with asthma.Keywords: bronchial asthma, CD23, IgE, vitamin D
Procedia PDF Downloads 4751363 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.Keywords: gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model
Procedia PDF Downloads 1591362 The Efficacy of Preoperative Thermal Pulsation Treatment in Reducing Post Cataract Surgery Dry Eye Disease: A Systematic Review and Meta-analysis
Authors: Lugean K. Alomari, Rahaf K. Sharif, Basil K. Alomari, Hind M. Aljabri, Faisal F. Aljahdali, Amal A. Alomari, Saeed A. Alghamdi
Abstract:
Background: The thermal pulsation system is a therapy that uses heat and massage to treat dry eye disease; thus, some trials have been published to compare it with the conventional treatment. The aim of this study is to conduct a systematic review and meta-analysis comparing the efficacy of thermal pulsation systems with conventional treatment in patients undergoing cataract surgery. Methods: Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for eligible trials. We included three randomized controlled trials (RCTs) that compared the thermal pulsation system with the conventional treatment in patients undergoing cataract surgery. A table of characteristics was plotted, and the Quality of the studies was assessed using the Cochrane risk-of-bias tool for randomized trials (RoB 2). Forest plots were plotted using the Random-effect Inverse Variance method. χ2 test and the Higgins-I-squared (I2) model were used to assess heterogeneity. A total of 201 cataract surgery patients were included, with 105 undergoing preoperative pulsation therapy and 96 receiving conventional treatment. Demographic analysis revealed comparable distributions across groups. Results: All the studies in our analysis are of good quality with a low risk of bias. A total of 201 patients were included in the analysis, out of which 105 underwent pulsation therapy, and 95 were in the control group. Tear Break-up Time (TBUT) analysis revealed no significant baseline differences, except pulsation therapy being better at 1 month. (SMD 0.42 [95%CI 0.14 - 0.70] p=0.004). This positive trend continued at three months (SMD 0.52 [95% CI (0.20 – 0.84)] p=0.002). Corneal fluorescein staining scores and Meibomian gland-yielding secretion scores showed no significant differences at baseline. However, at one month, pulsation therapy significantly improved Meibomian gland function (SMD -0.86 [95% CI (-1.20 - -0.53)] p<0.00001), indicating a reduced risk of dry eye syndrome. Conclusion: Preoperative pulsation therapy appears to enhance post-cataract surgery outcomes, particularly in terms of tear film stability and Meibomian gland secretory function. The sustained positive effects observed at one and three months post-surgery suggest the potential for long-term benefits.Keywords: lipiflow, cataract, thermal pulsation, dry eye
Procedia PDF Downloads 211361 Hybrid Materials on the Basis of Magnetite and Magnetite-Gold Nanoparticles for Biomedical Application
Authors: Mariia V. Efremova, Iana O. Tcareva, Anastasia D. Blokhina, Ivan S. Grebennikov, Anastasia S. Garanina, Maxim A. Abakumov, Yury I. Golovin, Alexander G. Savchenko, Alexander G. Majouga, Natalya L. Klyachko
Abstract:
During last decades magnetite nanoparticles (NPs) attract a deep interest of scientists due to their potential application in therapy and diagnostics. However, magnetite nanoparticles are toxic and non-stable in physiological conditions. To solve these problems, we decided to create two types of hybrid systems based on magnetite and gold which is inert and biocompatible: gold as a shell material (first type) and gold as separate NPs interfacially bond to magnetite NPs (second type). The synthesis of the first type hybrid nanoparticles was carried out as follows: Magnetite nanoparticles with an average diameter of 9±2 nm were obtained by co-precipitation of iron (II, III) chlorides then they were covered with gold shell by iterative reduction of hydrogen tetrachloroaurate with hydroxylamine hydrochloride. According to the TEM, ICP MS and EDX data, final nanoparticles had an average diameter of 31±4 nm and contained iron even after hydrochloric acid treatment. However, iron signals (K-line, 7,1 keV) were not localized so we can’t speak about one single magnetic core. Described nanoparticles covered with mercapto-PEG acid were non-toxic for human prostate cancer PC-3/ LNCaP cell lines (more than 90% survived cells as compared to control) and had high R2-relaxivity rates (>190 mМ-1s-1) that exceed the transverse relaxation rate of commercial MRI-contrasting agents. These nanoparticles were also used for chymotrypsin enzyme immobilization. The effect of alternating magnetic field on catalytic properties of chymotrypsin immobilized on magnetite nanoparticles, notably the slowdown of catalyzed reaction at the level of 35-40 % was found. The synthesis of the second type hybrid nanoparticles also involved two steps. Firstly, spherical gold nanoparticles with an average diameter of 9±2 nm were synthesized by the reduction of hydrogen tetrachloroaurate with oleylamine; secondly, they were used as seeds during magnetite synthesis by thermal decomposition of iron pentacarbonyl in octadecene. As a result, so-called dumbbell-like structures were obtained where magnetite (cubes with 25±6 nm diagonal) and gold nanoparticles were connected together pairwise. By HRTEM method (first time for this type of structure) an epitaxial growth of magnetite nanoparticles on gold surface with co-orientation of (111) planes was discovered. These nanoparticles were transferred into water by means of block-copolymer Pluronic F127 then loaded with anti-cancer drug doxorubicin and also PSMA-vector specific for LNCaP cell line. Obtained nanoparticles were found to have moderate toxicity for human prostate cancer cells and got into the intracellular space after 45 minutes of incubation (according to fluorescence microscopy data). These materials are also perspective from MRI point of view (R2-relaxivity rates >70 mМ-1s-1). Thereby, in this work magnetite-gold hybrid nanoparticles, which have a strong potential for biomedical application, particularly in targeted drug delivery and magnetic resonance imaging, were synthesized and characterized. That paves the way to the development of special medicine types – theranostics. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132). This work was also supported by Grant of Ministry of Education and Science of the Russian Federation К1-2014-022, Grant of Russian Scientific Foundation 14-13-00731 and MSU development program 5.13.Keywords: drug delivery, magnetite-gold, MRI contrast agents, nanoparticles, toxicity
Procedia PDF Downloads 3821360 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere
Authors: Gizachew Belay Adugna
Abstract:
Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing
Procedia PDF Downloads 741359 Preliminary Results on a Study of Antimicrobial Susceptibility Testing of Bacillus anthracis Strains Isolated during Anthrax Outbreaks in Italy from 2001 to 2017
Authors: Viviana Manzulli, Luigina Serrecchia, Adelia Donatiello, Valeria Rondinone, Sabine Zange, Alina Tscherne, Antonio Parisi, Antonio Fasanella
Abstract:
Anthrax is a zoonotic disease that affects a wide range of animal species (primarily ruminant herbivores), and can be transmitted to humans through consumption or handling of contaminated animal products. The etiological agent B.anthracis is able to survive in unfavorable environmental conditions by forming endospore which remain viable in the soil for many decades. Furthermore, B.anthracis is considered as one of the most feared agents to be potentially misused as a biological weapon and the importance of the disease and its treatment in humans has been underscored before the bioterrorism events in the United States in 2001. Due to the often fatal outcome of human cases, antimicrobial susceptibility testing plays especially in the management of anthrax infections an important role. In Italy, animal anthrax is endemic (predominantly found in the southern regions and on islands) and is characterized by sporadic outbreaks occurring mainly during summer. Between 2012 and 2017 single human cases of cutaneous anthrax occurred. In this study, 90 diverse strains of B.anthracis, isolated in Italy from 2001 to 2017, were screened to their susceptibility to sixteen clinically relevant antimicrobial agents by using the broth microdilution method. B.anthracis strains selected for this study belong to the strain collection stored at the Anthrax Reference Institute of Italy located inside the Istituto Zooprofilattico Sperimentale of Puglia and Basilicata. The strains were isolated at different time points and places from various matrices (human, animal and environmental). All strains are a representative of over fifty distinct MLVA 31 genotypes. The following antibiotics were used for testing: gentamicin, ceftriaxone, streptomycin, penicillin G, clindamycin, chloramphenicol, vancomycin, linezolid, cefotaxime, tetracycline, erythromycin, rifampin, amoxicillin, ciprofloxacin, doxycycline and trimethoprim. A standard concentration of each antibiotic was prepared in a specific diluent, which were then twofold serial diluted. Therefore, each wells contained: bacterial suspension of 1–5x104 CFU/mL in Mueller-Hinton Broth (MHB), the antibiotic to be tested at known concentration and resazurin, an indicator of cell growth. After incubation overnight at 37°C, the wells were screened for color changes caused by the resazurin: a change from purple to pink/colorless indicated cell growth. The lowest concentration of antibiotic that prevented growth represented the minimal inhibitory concentration (MIC). This study suggests that B.anthracis remains susceptible in vitro to many antibiotics, in addition to doxycycline (MICs ≤ 0,03 µg/ml), ciprofloxacin (MICs ≤ 0,03 µg/ml) and penicillin G (MICs ≤ 0,06 µg/ml), recommend by CDC for the treatment of human cases and for prophylactic use after exposure to the spores. In fact, the good activity of gentamicin (MICs ≤ 0,25 µg/ml), streptomycin (MICs ≤ 1 µg/ml), clindamycin (MICs ≤ 0,125 µg/ml), chloramphenicol(MICs ≤ 4 µg/ml), vancomycin (MICs ≤ 2 µg/ml), linezolid (MICs ≤ 2 µg/ml), tetracycline (MICs ≤ 0,125 µg/ml), erythromycin (MICs ≤ 0,25 µg/ml), rifampin (MICs ≤ 0,25 µg/ml), amoxicillin (MICs ≤ 0,06 µg/ml), towards all tested B.anthracis strains demonstrates an appropriate alternative choice for prophylaxis and/or treatment. All tested B.anthracis strains showed intermediate susceptibility to the cephalosporins (MICs ≥ 16 µg/ml) and resistance to trimethoprim (MICs ≥ 128 µg/ml).Keywords: Bacillus anthracis, antibiotic susceptibility, treatment, minimum inhibitory concentration
Procedia PDF Downloads 2141358 Activation of AMPK-TSC axis is involved in cryptotanshinone inhibition of mTOR signaling in cancer cells
Authors: Wenxing Chen, Guangying Chen, Yin Lu, Shile Huang
Abstract:
Cryptotanshinone (CPT), a fat-soluble tanshinone from Salvia miltiorrhiza Bunge, has been demonstrated to inhibit mTOR pathway, resulting in inhibition of cancer cell proliferation. However, the molecular mechanism how CPT acts on mTOR is unknown. Here, cancer cells expressing rapamycin-resistant mutant mTOR are also sensitive to CPT, while phosphorylation of AMPK and TSC2 was activated, suggesting that CPT inhibition of mTOR maybe due to activating upstream of mTOR, AMPK, but not directly binding to and inhibiting mTOR. Further results indicated that Compound C, inhibitor of AMPK, could partially reversed CPT inhibition effect on cancer cells, and dominant-negative AMPK in cancer cells conferred resistance to CPT inhibition of 4EBP1 and phosphorylation of S6K1, as well as sh-AMPK. Furthermore, compared with MEF cells with AMPK positive, MEF cells with AMPK knock out are less sensitive to CPT by the findings that 4E-BP1 and phosphorylation of S6K1 express comparatively much. Furthermore, downexpression of TSC2 slightly recovered expression of 4EBP1 and phosphorylation of S6K1, while co-immunoprecipitation of TSC2 did not affect expression of TSC1 by CPT. Collectively, the above-mentioned results suggest that CPT inhibited mTOR pathway mostly was due to activation of AMPK-TSC2 pathway rather than specific inhibition of mTOR and then induction of subsequent lethal cellular effect.Keywords: cryptotanshinone, AMPK, TSC2, mTOR, cancer cells
Procedia PDF Downloads 4901357 Acrylamide-Induced Acute Nephrotoxicity in Rats
Authors: Keivan Jamshidi, Afshin Zahedi
Abstract:
Acrylamide (ACR) has been shown to cause neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. To investigate the nephrotoxic effect of Acrylamide (ACR), 50 adult male rats (Wistar, approximately 250 g) housed in polycarbonate boxes as 5 per each, and randomly assigned in 5 groups including 4 exposure groups as A, B, C, and D groups of rats (10 rats per exposure group., total) and were exposed to 0.5, 5, 50, 100 mg/kg ACR per day×11days i.p. respectively. The remaining 10 rats were housed in group (E) as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). On day 12, four rats, were randomly selected, perfused , dissected and proper samples were collected from their kidneys. Results of histopathological studies based on H&E technique did show no morphologic changes in kidneys of rats belong to groups A, B and E, while moderate to severe morphologic changes including glomerular hypercellularity, global pattern of proliferative glomerulonephritis, occupation of capsular space, tubular cell swelling and hyaline cast formation, were observed in different stained sections obtained from the kidneys of rats belong to group, C, and D. This finding, beside neurotoxic, reproductive and carcinogenic effects, seems to indicate for the first time another important aspect of toxic effect of ACR, i.e., acute nephrotoxicity.Keywords: acrylamide, nephrotoxicity, glomerulonephritis, rats
Procedia PDF Downloads 6181356 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers
Authors: Nishank Raisinghani
Abstract:
Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.Keywords: drug discovery, transformers, graph neural networks, multiomics
Procedia PDF Downloads 1541355 Development and Characterization of Bio-Tribological, Nano- Multilayer Coatings for Medical Tools Application
Authors: L. Major, J. M. Lackner, M. Dyner, B. Major
Abstract:
Development of new generation bio- tribological, multilayer coatings, opens an avenue for fabrication of future high- tech functional surfaces. In the presented work, nano- composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nano- multilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio- tribological properties of the coatings were studied. The bio-tests were used as a screening tool for the analyzed nano- multilayer coatings before they could be deposited on medical tools. Bio- medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-on-disc mechanical test. The microhardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio- tribological point of view, the optimal properties had the C106_1 material.Keywords: bio- tribological coatings, cell- material interaction, hybrid PLD, tribology
Procedia PDF Downloads 3801354 An Interesting Case of Management of Life Threatening Calcium Disequilibrium in a Patient with Parathyroid Tumor
Authors: Rajish Shil, Mohammad Ali Houri, Mohammad Milad Ismail, Fatimah Al Kaabi
Abstract:
The clinical presentation of Primary hyperparathyroidism can vary from simple asymptomatic hypercalcemia to severe life-threatening hypercalcemic crisis with multi-organ dysfunction, which can be due to parathyroid adenoma or sometimes with malignant cancer. This cascade of clinical presentation can lead to a diagnostic and therapeutic challenge for treating the disease. We are presenting a case of severe hypercalcemic crisis due to parathyroid adenoma with an emphasis on early management, diagnosis, and interventions to prevent any lifelong complications and any permanent organ dysfunction. A 30 years old female with a history of primary Infertility, admitted to Al Ain Hospital critical care unit with Acute Severe Necrotizing Pancreatitis. She initially had a 1-month history of abdominal pain on and off, for which she was treated conservatively with no much improvement, and later on, she developed life-threatening severe pancreatitis, which required her to be admitted to the critical care unit. She was transferred from a private healthcare facility, where she was found to have a very high level of calcium up to 15mmol/L. She received systemic Zoledronic Acid, which lowered her calcium level transiently and later was increased again. She went on to develop multiple end-organ damages along with multiple electrolytes disturbances. She was found to have high levels of Parathyroid hormone, which was correlated with a parathyroid mass on the neck via radiological imaging. After a long course of medical treatment to lower the calcium to a near-normal level, parathyroidectomy was done, which showed parathyroid adenoma on histology. She developed hungry bone syndrome after the surgery and pancreatic pseudocyst after resolving of pancreatitis. She required aggressive treatment with Intravenous calcium for her hypocalcemia as she received zoledronic acid at the beginning of the disease. Later on, she was discharged on long term calcium and other electrolytes supplements. In patients presenting with hypercalcemia, it is prudent to investigate and start treatment early to prevent complications and end-organ damage from hypercalcemia and also to treat the primary cause of the hypercalcemia, with conscious follow up to prevent hypocalcemic complications after treatment. It is important to follow up patients with parathyroid adenomas for a long period in order to detect any recurrence of the tumor or to make sure if the primary tumor is either benign or malignant.Keywords: hypercalcemia, pancreatitis, hypocalcemia, hyperparathyroidism
Procedia PDF Downloads 1231353 Across-Breed Genetic Evaluation of New Zealand Dairy Goats
Authors: Nicolas Lopez-Villalobos, Dorian J. Garrick, Hugh T. Blair
Abstract:
Many dairy goat farmers of New Zealand milk herds of mixed breed does. Simultaneous evaluation of sires and does across breed is required to select the best animals for breeding on a common basis. Across-breed estimated breeding values (EBV) and estimated producing values for 208-day lactation yields of milk (MY), fat (FY), protein (PY) and somatic cell score (SCS; LOG2(SCC) of Saanen, Nubian, Alpine, Toggenburg and crossbred dairy goats from 75 herds were estimated using a test day model. Evaluations were based on 248,734 herd-test records representing 125,374 lactations from 65,514 does sired by 930 sires over 9 generations. Averages of MY, FY and PY were 642 kg, 21.6 kg and 19.8 kg, respectively. Average SCC and SCS were 936,518 cells/ml milk and 9.12. Pure-bred Saanen does out-produced other breeds in MY, FY and PY. Average EBV for MY, FY and PY compared to a Saanen base were Nubian -98 kg, 0.1 kg and -1.2 kg; Alpine -64 kg, -1.0 kg and -1.7 kg; and Toggenburg -42 kg, -1.0 kg and -0.5 kg. First-cross heterosis estimates were 29 kg MY, 1.1 kg FY and 1.2 kg PY. Average EBV for SCS compared to a Saanen base were Nubian 0.041, Alpine -0.083 and Toggenburg 0.094. Heterosis for SCS was 0.03. Breeding values are combined with respective economic values to calculate an economic index used for ranking sires and does to reflect farm profit.Keywords: breed effects, dairy goats, milk traits, test-day model
Procedia PDF Downloads 3311352 Modeling of Nanocomposite Films Made of Cloisite 30b- Metal Nanoparticle in Packaging of Soy Burger
Authors: Faranak Beigmohammadi, Seyed Hadi Peighambardoust, Seyed Jamaledin Peighambardoust
Abstract:
This study undertakes to investigate the ability of different kinds of nanocomposite films made of cloisite-30B with different percentages of silver and copper oxide nanoparticles incorporated into a low-density polyethylene (LDPE) polymeric matrix by a melt mixing method in order to inhibit the growth of microorganism in soy burger. The number of surviving cell of the total count was decreased by 3.61 log and mold and yeast diminished by 2.01 log after 8 weeks storage at 18 ± 0.5°C below zero, whilst pure LDPE did not has any antimicrobial effect. A composition of 1.3 % cloisite 30B-Ag and 2.7 % cloisite 30B-CuO for total count and 0 % cloisite 30B-Ag and 4 % cloisite 30B-CuO for yeast & mold gave optimum points in combined design test in Design Expert 7.1.5. Suitable microbial models were suggested for retarding above microorganisms growth in soy burger. To validation of optimum point, the difference between the optimum point of nanocomposite film and its repeat was not significant (p<0.05) by one-way ANOVA analysis using SPSS 17.0 software, while the difference was significant for pure film. Migration of metallic nanoparticles into a food stimulant was within the accepted safe level.Keywords: modeling, nanocomposite film, packaging, soy burger
Procedia PDF Downloads 3021351 Development and Evaluation of Novel Diagnostic Methods for Infectious Rhinotracheitis of Cattle
Authors: Wenxiao Liu, Kun Zhang, Yongqing Li
Abstract:
Bovine herpesvirus 1, a member of the genus Variellovirus of the subfamily Alphaherpesvirinae, has caused severe economic cost to the bovine industry. In this study, BoHV-1 glycerol protein gD was expressed in insect cells, and the purified gD was immunized in the Balb/C mice to generate monoclonal antibodies. Based on hybridoma cell fusion techniques, 20 monoclonal antibodies against Bovine herpesvirus 1 have been obtained. Further, mAb 3F8 with neutralizing activity and gD were applied to develop a blocking enzyme-linked immunosorbent assay (Elisa) for detecting neutralizing antibodies against BoHV-1, which shows a significant correlation between the blocking Elisa and VNT. The sensitivity and specificity of the test were estimated to be 94.59% and 93.42%, respectively. Furthermore, antibody pairing tests revealed that mAb 1B6 conjugated to fluorescence microspheres was used as the capture antibody, and mAb 3F9 was used as the detectable antibody to establish the immunochromatographic assay (ICS). The ICS was conducted to detect BoHV-1 in bovine samples with high sensitivity, specificity, and good stability. Clinical sample testing revealed that the results of ICS and real-time PCR have a coincidence rate of 95.42%. Our research confirmed that the ICS is a rapid and reliable method for the diagnosis of BoHV-1. In conclusion, our results lay a solid foundation for the prevention and control of BoHV-1 infection.Keywords: bovine disease, BoHV-1, ELISA, ICS assay
Procedia PDF Downloads 741350 Effect of Gel Concentration on Physical Properties of an Electrochromic Device
Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos
Abstract:
In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer
Procedia PDF Downloads 1381349 Synthesis of Biostabilized Gold Nanoparticles Using Garcinia indica Extract and Its Antimicrobial and Anticancer Properties
Authors: Rebecca Thombre, Aishwarya Borate
Abstract:
Chemical synthesis of nanoparticles produces toxic by-products, as a result of which eco-friendly methods of synthesis are gaining importance. The synthesis of nanoparticles using plant derived extracts is economical, safe and eco-friendly. Biostabilized gold nanoparticles were synthesized using extracts of Garcinia indica. The gold nanoparticles were characterized using UV-Vis spectrophotometry and demonstrated a peak at 527 nm. The presence of plant derived peptides and phytoconstituents was confirmed using the FTIR spectra. TEM analysis revealed formation of gold nanopyramids and nanorods. The SAED analysis confirmed the crystalline nature of nanoparticles. The gold nanoparticles demonstrated antibacterial and antifungal activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Aspergillus niger and Pichia pastoris. The cytotoxic activity of gold nanoparticles was studied using HEK, Hela and L929 cancerous cell lines and the apoptosis of cancerous cells were observed using propidium iodide staining. Thus, a simple and eco-friendly method for synthesis of biostabilized gold nanoparticles using fruit extracts of Garcinia indica was developed and the nanoparticles had potent antibacterial, antifungal and anticancer properties.Keywords: cytotoxic, gold nanoparticles, green synthesis, Garcinia indica, anticancer
Procedia PDF Downloads 9291348 Efficacy Enhancement of Hydrophobic Antibiotics Employing Rhamnolipid as Biosurfactant
Authors: Abdurrahim A. Elouzi, Abdurrauf M. Gusbi, Ali M. Elgerbi
Abstract:
Antibiotic resistance has become a global public-health problem, thus it is imperative that new antibiotics continue to be developed. Major problems are being experienced in human medicine from antibiotic resistant bacteria. Moreover, no new chemical class of antibiotics has been introduced into medicine in the past two decades. The aim of the current study presents experimental results that evaluate the capability of bio surfactant rhamnolipid on enhancing the efficacy of hydrophobic antibiotics. Serial dilutions of azithromycin and clarithromycin were prepared. A bacterial suspension (approximately 5 X 105 CFU) from an overnight culture in MSM was inoculated into 20 ml sterile test tube each containing a serial 10-fold dilution of the test antibiotic(s) in broth with or without 200 mgL-1 rhamnolipid. The tubes were incubated for 24 h with vigorous shaking at 37°C. Antimicrobial activity in multiple antibiotic-resistant gram-negative bacteria pathogens and gram-positive bacteria were assessed using optical density technique. The results clearly demonstrated that the presence of rhamnolipid significantly improved the efficiency of both antibiotics. We hypothesized that the addition of rhamnolipid at low concentration, causes release of LPS which results in an increase in cell surface hydrophobicity. This allows increased association of cells with hydrophobic antibiotics resulting in increased cytotoxicity rates.Keywords: hydrophobic antibiotics, biosurfactant, rhamnolipid, azithromycin, clarithromycin
Procedia PDF Downloads 5161347 Mimicking of Various ECM Tangible Cues for the Manipulation of Hepatocellular Behaviours
Authors: S. A. Abdellatef, A. Taniguchi, Namiki, Tsukuba, Ibaraki
Abstract:
The alterations in the physicochemical characteristics of bio-materials are renowned for their impact in cellular behaviors. Surface chemistry and substratum topography are separately considered as mutable characteristics with deep impact on the overall cell behaviors. In our recent work, we examined the manipulation of the physical cues on hepatic cellular behaviors. We have proven that the geometrical or dimensional characteristics of nano features are essential for the optimum hepatocellular functions. While here, the collective impact of both physical and chemical cues on hepatocellular behaviors was investigated. On which RGD peptide was immobilized on a TiO2 nano pattern that imitates the hierarchically extend collagen nano fibrillar structures. The hepatocytes morphological and functional changes induced by simultaneously combining the diversified cues were investigated. TiO2 substrates that integrate nano topography with the adhesive peptide motif (RGD) had showed an increase in the hepatocellular functionality to the maximum extent. While a significant enhancement in expression of these liver specific markers on RGD coated surfaces were observed compared to uncoated substrates regardless of topography. Consequently in depth understanding of the relationship between various kind of cues and hepatocytes behaviors would be a paving step in the application of tissue engineering and bio reactor technology.Keywords: biomaterial, tiO2, hepG2, RGD
Procedia PDF Downloads 3931346 Decreased Autophagy Contributes to Senescence Induction in HS68 Cells
Authors: Byeal-I Han, Michael Lee
Abstract:
Ageing is associated with an increased risk of diseases such as cancer, and neurodegenerative disorders. Increased autophagy delays ageing and extends longevity. In this study, we investigated the role of autophagy in longevity using human foreskin fibroblast HS68 cells, in which a senescence-like growth arrest can be induced. In particular, cellular senescence is manifested by the irreversible cell cycle arrest, and may contribute to the ageing of organisms. The senescence state was measured with staining for senescence-associated β-galactosidase (SA-β-gal) activity that represents a sensitive and reliable marker to quantify senescent cells. We detected a significantly increased percentage (%) of SA-β-gal positive cells in HS68 cultures at passage 40 (63%) when compared with younger ones at passage 15 (0.5%). As expected, HS68 cells at passage 40 exhibited much lower proliferation rate than cells at passage 15. The basal levels of LC3 were measured by immunoblotting showing a comparison of LC3-I and LC3-II levels at 3 age-points in serially passaged HS68 cells. LC3-II/LC3-I ratio at different passage levels relative to β-actin levels of each band confirmed that cells at passage 34 showed lower conversion of non-autophagic LC3-I to autophagic LC3-II than the cells at passage 16. Furthermore, Cyto-ID autophagy assay also revealed that late passage cells showed lower autophagy than the early passage cells. Together, our findings suggest that senescence induction might be associated with decreased autophagy.Keywords: ageing, autophagy, senescence, HS68
Procedia PDF Downloads 2551345 Effects of Pressure and Temperature on the Extraction of Benzyl Isothiocyanate by Supercritical Fluids from Tropaeolum majus L. Leaves
Authors: Espinoza S. Clara, Gamarra Q. Flor, Marianela F. Ramos Quispe S. Miguel, Flores R. Omar
Abstract:
Tropaeolum majus L. is a native plant to South and Central America, used since ancient times by our ancestors to combat different diseases. Glucotropaeolonin is one of its main components, which when hydrolyzed, forms benzyl isothiocyanate (BIT) that promotes cellular apoptosis (programmed cell death in cancer cells). Therefore, the present research aims to evaluate the effect of the pressure and temperature of BIT extraction by supercritical CO2 from Tropaeolum majus L. The extraction was carried out in a supercritical fluid extractor equipment Speed SFE BASIC Brand: Poly science, the leaves of Tropaeolum majus L. were ground for one hour and lyophilized until obtaining a humidity of 6%. The extraction with supercritical CO2 was carried out with pressures of 200 bar and 300 bar, temperatures of 50°C, 60°C and 70°C, obtained by the conjugation of these six treatments. BIT was identified by thin layer chromatography using 98% BIT as the standard, and as the mobile phase hexane: dichloromethane (4:2). Subsequently, BIT quantification was performed by high performance liquid chromatography (HPLC). The highest yield of oleoresin by supercritical CO2 extraction was obtained pressure 300 bar and temperature at 60°C; and the higher content of BIT at pressure 200 bar and 70°C for 30 minutes to obtain 113.615 ± 0.03 mg BIT/100 g dry matter was obtained.Keywords: solvent extraction, Tropaeolum majus L., supercritical fluids, benzyl isothiocyanate
Procedia PDF Downloads 4381344 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model
Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu
Abstract:
Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing
Procedia PDF Downloads 2511343 Controlled Size Synthesis of ZnO and PEG-ZnO NPs and Their Biological Evaluation
Authors: Mahnoor Khan, Bashir Ahmad, Khizar Hayat, Saad Ahmad Khan, Laiba Ahmad, Shumaila Bashir, Abid Ali Khan
Abstract:
The objective of this study was to synthesize the smallest possible size of ZnO NPs using a modified wet chemical synthesis method and to prepare core shell using polyethylene glycol (PEG) as shell material. Advanced and sophisticated techniques were used to confirm the synthesis, size, and shape of these NPs. Rounded, clustered NPs of size 5.343 nm were formed. Both the plain and core shell NPs were tested against MDR bacteria (E. cloacae, E. amnigenus, Shigella, S. odorifacae, Citrobacter, and E. coli). Both of the NPs showed excellent antibacterial properties, whereas E. cloacae showed maximum zone of inhibition of 16 mm, 27 mm, and 32 mm for 500 μg/ml, 1000 μg/ml, and 1500 μg/ml, respectively for plain ZnO NPs and 18 mm, 28 mm and 35 mm for 500 μg/ml, 1000 μg/ml and 1500 μg/ml for core shell NPs. These NPs were also biocompatible on human red blood cells showing little hemolysis of only 4% for 70 μg/ml for plain NPs and 1.5% for 70 μg/ml for core shell NPs. Core shell NPs were highly biocompatible because of the PEG. Their therapeutic effect as photosensitizers in photodynamic therapy (PDT) for cancer treatment was also monitored. The cytotoxicity of ZnO and PEG-ZnO was evaluated using MTT assay. Our results demonstrated that these NPs could generate ROS inside tumor cells after irradiation which in turn initiates an apoptotic pathway leading to cell death hence proving to be an effective candidate for PDT.Keywords: ZnO, hemolysis, cytotoxiciy assay, photodynamic therapy, antibacterial
Procedia PDF Downloads 1401342 Electronic Raman Scattering Calibration for Quantitative Surface-Enhanced Raman Spectroscopy and Improved Biostatistical Analysis
Authors: Wonil Nam, Xiang Ren, Inyoung Kim, Masoud Agah, Wei Zhou
Abstract:
Despite its ultrasensitive detection capability, surface-enhanced Raman spectroscopy (SERS) faces challenges as a quantitative biochemical analysis tool due to the significant dependence of local field intensity in hotspots on nanoscale geometric variations of plasmonic nanostructures. Therefore, despite enormous progress in plasmonic nanoengineering of high-performance SERS devices, it is still challenging to quantitatively correlate the measured SERS signals with the actual molecule concentrations at hotspots. A significant effort has been devoted to developing SERS calibration methods by introducing internal standards. It has been achieved by placing Raman tags at plasmonic hotspots. Raman tags undergo similar SERS enhancement at the same hotspots, and ratiometric SERS signals for analytes of interest can be generated with reduced dependence on geometrical variations. However, using Raman tags still faces challenges for real-world applications, including spatial competition between the analyte and tags in hotspots, spectral interference, laser-induced degradation/desorption due to plasmon-enhanced photochemical/photothermal effects. We show that electronic Raman scattering (ERS) signals from metallic nanostructures at hotspots can serve as the internal calibration standard to enable quantitative SERS analysis and improve biostatistical analysis. We perform SERS with Au-SiO₂ multilayered metal-insulator-metal nano laminated plasmonic nanostructures. Since the ERS signal is proportional to the volume density of electron-hole occupation in hotspots, the ERS signals exponentially increase when the wavenumber is approaching the zero value. By a long-pass filter, generally used in backscattered SERS configurations, to chop the ERS background continuum, we can observe an ERS pseudo-peak, IERS. Both ERS and SERS processes experience the |E|⁴ local enhancements during the excitation and inelastic scattering transitions. We calibrated IMRS of 10 μM Rhodamine 6G in solution by IERS. The results show that ERS calibration generates a new analytical value, ISERS/IERS, insensitive to variations from different hotspots and thus can quantitatively reflect the molecular concentration information. Given the calibration capability of ERS signals, we performed label-free SERS analysis of living biological systems using four different breast normal and cancer cell lines cultured on nano-laminated SERS devices. 2D Raman mapping over 100 μm × 100 μm, containing several cells, was conducted. The SERS spectra were subsequently analyzed by multivariate analysis using partial least square discriminant analysis. Remarkably, after ERS calibration, MCF-10A and MCF-7 cells are further separated while the two triple-negative breast cancer cells (MDA-MB-231 and HCC-1806) are more overlapped, in good agreement with the well-known cancer categorization regarding the degree of malignancy. To assess the strength of ERS calibration, we further carried out a drug efficacy study using MDA-MB-231 and different concentrations of anti-cancer drug paclitaxel (PTX). After ERS calibration, we can more clearly segregate the control/low-dosage groups (0 and 1.5 nM), the middle-dosage group (5 nM), and the group treated with half-maximal inhibitory concentration (IC50, 15 nM). Therefore, we envision that ERS calibrated SERS can find crucial opportunities in label-free molecular profiling of complicated biological systems.Keywords: cancer cell drug efficacy, plasmonics, surface-enhanced Raman spectroscopy (SERS), SERS calibration
Procedia PDF Downloads 1381341 Design of an Instrumentation Setup and Data Acquisition System for a GAS Turbine Engine Using Suitable DAQ Software
Authors: Syed Nauman Bin Asghar Bukhari, Mohtashim Mansoor, Mohammad Nouman
Abstract:
Engine test-Bed system is a fundamental tool to measure dynamic parameters, economic performance, and reliability of an aircraft Engine, and its automation and accuracy directly influences the precision of acquired and analysed data. In this paper, we present the design of digital Data Acquisition (DAQ) system for a vintage aircraft engine test bed that lacks the capability of displaying all the analyzed parameters at one convenient location (one panel-one screen). Recording such measurements in the vintage test bed is not only time consuming but also prone to human errors. Digitizing such measurement system requires a Data Acquisition (DAQ) system capable of recording these parameters and displaying them on one screen-one panel monitor. The challenge in designing upgrade to the vintage systems arises with a need to build and integrate digital measurement system from scratch with a minimal budget and modifications to the existing vintage system. The proposed design not only displays all the key performance / maintenance parameters of the gas turbine engines for operator as well as quality inspector on separate screens but also records the data for further processing / archiving.Keywords: Gas turbine engine, engine test cell, data acquisition, instrumentation
Procedia PDF Downloads 1231340 Identifying Metabolic Pathways Associated with Neuroprotection Mediated by Tibolone in Human Astrocytes under an Induced Inflammatory Model
Authors: Daniel Osorio, Janneth Gonzalez, Andres Pinzon
Abstract:
In this work, proteins and metabolic pathways associated with the neuroprotective response mediated by the synthetic neurosteroid tibolone under a palmitate-induced inflammatory model were identified by flux balance analysis (FBA). Three different metabolic scenarios (‘healthy’, ‘inflamed’ and ‘medicated’) were modeled over a gene expression data-driven constructed tissue-specific metabolic reconstruction of mature astrocytes. Astrocyte reconstruction was built, validated and constrained using three open source software packages (‘minval’, ‘g2f’ and ‘exp2flux’) released through the Comprehensive R Archive Network repositories during the development of this work. From our analysis, we predict that tibolone executes their neuroprotective effects through a reduction of neurotoxicity mediated by L-glutamate in astrocytes, inducing the activation several metabolic pathways with neuroprotective actions associated such as taurine metabolism, gluconeogenesis, calcium and the Peroxisome Proliferator Activated Receptor signaling pathways. Also, we found a tibolone associated increase in growth rate probably in concordance with previously reported side effects of steroid compounds in other human cell types.Keywords: astrocytes, flux balance analysis, genome scale metabolic reconstruction, inflammation, neuroprotection, tibolone
Procedia PDF Downloads 2241339 Biogenic Synthesis of ZnO Nanoparticles Using Annona muricata Plant Leaf Extract and Its Anti-Cancer Efficacy
Authors: Siva Chander Chabattula, Piyush Kumar Gupta, Debashis Chakraborty, Rama Shanker Verma
Abstract:
Green nanoparticles have gotten a lot of attention because of their potential applications in tissue regeneration, bioimaging, wound healing, and cancer therapy. The physical and chemical methods to synthesize metal oxide nanoparticles have an environmental impact, necessitating the development of an environmentally friendly green strategy for nanoparticle synthesis. In this study, we used Annona muricata plant leaf extract to synthesize Zinc Oxide nanoparticles (Am-ZnO NPs), which were evaluated using UV/Visible spectroscopy, FTIR spectroscopy, X-Ray Diffraction, DLS, and Zeta potential. Nanoparticles had an optical absorbance of 355 nm and a net negative surface charge of ~ - 2.59 mV. Transmission Electron Microscope characterizes the Shape and size of the nanoparticles. The obtained Am-ZnO NPs are biocompatible and hemocompatible in nature. These nanoparticles caused an anti-cancer therapeutic effect in MIA PaCa2 and MOLT4 cancer cells by inducing oxidative stress, and a change in mitochondrial membrane potential leads to programmed cell death. Further, we observed a reduction in the size of lung cancer spheroids (act as tumor micro-environment) with doxorubicin as a positive control.Keywords: Biomaterials, nanoparticle, anticancer activity, ZnO nanoparticles
Procedia PDF Downloads 2041338 Optimization of Laser Doping Selective Emitter for Silicon Solar Cells
Authors: Meziani Samir, Moussi Abderrahmane, Chaouchi Sofiane, Guendouzi Awatif, Djema Oussama
Abstract:
Laser doping has a large potential for integration into silicon solar cell technologies. The ability to process local, heavily diffused regions in a self-aligned manner can greatly simplify processing sequences for the fabrication of selective emitter. The choice of laser parameters for a laser doping process with 532nm is investigated. Solid state lasers with different power and speed were used for laser doping. In this work, the aim is the formation of selective emitter solar cells with a reduced number of technological steps. In order to have a highly doped localized emitter region, we used a 532 nm laser doping. Note that this region will receive the metallization of the Ag grid by screen printing. For this, we use SOLIDWORKS software to design a single type of pattern for square silicon cells. Sheet resistances, phosphorus doping concentration and silicon bulk lifetimes of irradiated samples are presented. Additionally, secondary ion mass spectroscopy (SIMS) profiles of the laser processed samples were acquired. Scanning electron microscope and optical microscope images of laser processed surfaces at different parameters are shown and compared.Keywords: laser doping, selective emitter, silicon, solar cells
Procedia PDF Downloads 1021337 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma
Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam
Abstract:
Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.Keywords: systems biology, ependymoma, deg, network analysis
Procedia PDF Downloads 2981336 Prevalence and Influencing Factors of Type 2 Diabetes among Obese Patients (Diabesity) among Patients Attending Selected Healthcare Facilities in Calabar, Nigeria
Authors: Anietie J. Atangwho, Udeme E. Asibong, Item J. Atangwho, Ndifreke E. Udonwa
Abstract:
Diabesity, a syndrome where diabetes and obesity occur simultaneously in a single patient, has emerged as a recent challenge to the medical world and is already at epidemic proportion in some countries. Therefore, this study aimed to determine the prevalence of diabesity among adult patients attending the General Outpatient clinic of three healthcare facilities in Calabar in a bid to improve healthcare delivery to patients at risk. A cross-sectional descriptive study design was employed using a mixed method approach that comprised quantitative and qualitative components i.e., Focused Group Discussion (FGD) and Key Informant Interview (KII). One hundred and ninety (190) participants aged 18 to 72 years and body mass index (BMI) ≥ 30kg/m2 were recruited as the study population for the quantitative study using systematic random sampling technique and analysed using SPSS version 25. The qualitative component performed 4 FGDs and 3 KIIs. Results of sociodemographic variables showed respondents aged 35 – 44 as highest in number (37.3%). Of this number, 83.7% were females, 76.8% married, and 3.7% earned USD1,110.00 monthly. Whereas majority of the participants (65.8 %) were within class 1 obesity, only 38% considered themselves obese. Diabesity occurrence was found to be 12.6% (i.e. BMI ≥ 30 to 45.2kg/m2 vs FBS ≥ 7.0 – 14.8mmo/l), with 38% of them being previously undiagnosed. About 48.4 % of the respondents ate two meals only per day; with 90.5% eating between meals. Snacking was predominant, mostly pastries (67.9%), with 58.9% taking cola drinks alongside. Sixty-one percent participated in one form of exercise or the other, with walking/trekking as the most common; 34.4 % had no regular exercise schedule. Only about 39.5% of the participants spent less than an hour on devices like phone, television, and laptops. Additionally, previously known and newly diagnosed hypertensive patients were 27.9% and 7.2%, respectively. Qualitative assessment with KII and FGDs showed eating unhealthy diets and lack of exercise as major factors responsible for diabesity. The bivariate analysis revealed significant association between diabesity with marital status and hypertension (p = 0.007 and p = 0.005, respectively). Also, positive association with diabesity were eating snacking (p = 0.017) and number of times a respondent snacks per day (p = 0.035). Overall, the study has revealed the occurrence of diabesity in Calabar at 12.6 % of the study population, with 38 % of them previously undiagnosed; it identified unhealthy diets and lack of exercise as causative factors as well as hypertension as snacking associatory indicators of diabesity.Keywords: diabesity, obesity, diabetes, unhealthy diet
Procedia PDF Downloads 80