Search results for: renal cell carcinoma
1108 Design of a Recombinant Expression System for Bacterial Cellulose Production
Authors: Gizem Buldum, Alexander Bismarck, Athanasios Mantalaris
Abstract:
Cellulose is the most abundant biopolymer on earth and it is currently being utilised in a multitude of industrial applications. Over the last 30 years, attention has been paid to the bacterial cellulose (BC), since BC exhibits unique physical, chemical and mechanical properties when compared to plant-based cellulose, including high purity and biocompatibility. Although Acetobacter xylinum is the most efficient producer of BC, it’s long doubling time results in insufficient yields of the cellulose production. This limits widespread and continued use of BC. In this study, E. coli BL21 (DE3) or E. coli HMS cells are selected as host organisms for the expression of bacterial cellulose synthase operon (bcs) of A.xylinum. The expression system is created based on pET-Duet1 and pCDF plasmid vectors, which carry bcs operon. The results showed that all bcs genes were successfully transferred and expressed in E.coli strains. The expressions of bcs proteins were shown by SDS and Native page analyses. The functionality of the bcs operon was proved by congo red binding assay. The effect of culturing temperature and the inducer concentration (IPTG) on cell growth and plasmid stability were monitored. The percentage of plasmid harboring cells induced with 0.025 mM IPTG was obtained as 85% at 22˚C in the end of 10-hr culturing period. It was confirmed that the high output cellulose production machinery of A.xylinum can be transferred into other organisms.Keywords: bacterial cellulose, biopolymer, recombinant expression system, production
Procedia PDF Downloads 4051107 Highly Robust Crosslinked BIAN-based Binder to Stabilize High-Performance Silicon Anode in Lithium-Ion Secondary Battery
Authors: Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi
Abstract:
Introduction: Recently, silicon has been recognized as one of the potential alternatives as anode active material in Li-ion batteries (LIBs) to replace the conventionally used graphite anodes. Silicon is abundantly present in the nature, it can alloy with lithium metal, and has a higher theoretical capacity (~4200 mAhg-1) that is approximately 10 times higher than graphite. However, because of a large volume expansion (~400%) upon repeated de-/alloying, the pulverization of Si particles causes the exfoliation of electrode laminate leading to the loss of electrical contact and adversely affecting the formation of solid-electrolyte interface (SEI).1 Functional polymers as binders have emerged as a competitive strategy to mitigate these drawbacks and failure mechanism of silicon anodes.1 A variety of aqueous/non-aqueous polymer binders like sodium carboxy-methyl cellulose (CMC-Na), styrene butadiene rubber (SBR), poly(acrylic acid), and other variants like mussel inspired binders have been investigated to overcome these drawbacks.1 However, there are only a few reports that mention the attempt of addressing all the drawbacks associated with silicon anodes effectively using a single novel functional polymer system as a binder. In this regard, here, we report a novel highly robust n-type bisiminoacenaphthenequinone (BIAN)-paraphenylene-based crosslinked polymer as a binder for Si anodes in lithium-ion batteries (Fig. 1). On its application, crosslinked-BIAN binder was evaluated to provide mechanical robustness to the large volume expansion of Si particles, maintain electrical conductivity within the electrode laminate, and facilitate in the formation of a thin SEI by restricting the extent of electrolyte decomposition on the surface of anode. The fabricated anodic half-cells were evaluated electrochemically for their rate capability, cyclability, and discharge capacity. Experimental: The polymerized BIAN (P-BIAN) copolymer was synthesized as per the procedure reported by our group.2 The synthesis of crosslinked P-BIAN: a solution of P-BIAN copolymer (1.497 g, 10 mmol) in N-methylpyrrolidone (NMP) (150 ml) was set-up to stir under reflux in nitrogen atmosphere. To this, 1,6-dibromohexane (5 mmol, 0.77 ml) was added dropwise. The resultant reaction mixture was stirred and refluxed at 150 °C for 24 hours followed by refrigeration for 3 hours at 5 °C. The product was obtained by evaporating the NMP solvent under reduced pressure and drying under vacuum at 120 °C for 12 hours. The obtained product was a black colored sticky compound. It was characterized by 1H-NMR, XPS, and FT-IR techniques. Results and Discussion: The N 1s XPS spectrum of the crosslinked BIAN polymer showed two characteristic peaks corresponding to the sp2 hybridized nitrogen (-C=N-) at 399.6 eV of the diimine backbone in the BP and quaternary nitrogen at 400.7 eV corresponding to the crosslinking of BP via dibromohexane. The DFT evaluation of the crosslinked BIAN binder showed that it has a low lying lowest unoccupied molecular orbital (LUMO) that enables it to get doped in the reducing environment and influence the formation of a thin (SEI). Therefore, due to the mechanically robust crosslinked matrices as well as its influence on the formation of a thin SEI, the crosslinked BIAN binder stabilized the Si anode-based half-cell for over 1000 cycles with a reversible capacity of ~2500 mAhg-1 and ~99% capacity retention as shown in Fig. 2. The dynamic electrochemical impedance spectroscopy (DEIS) characterization of crosslinked BIAN-based anodic half-cell confirmed that the SEI formed was thin in comparison with the conventional binder-based anodes. Acknowledgement: We are thankful to the financial support provided by JST-Mirai Program, Grant Number: JP18077239Keywords: self-healing binder, n-type binder, thin solid-electrolyte interphase (SEI), high-capacity silicon anodes, low-LUMO
Procedia PDF Downloads 1761106 Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods
Authors: Pınar Karbuz, A. Seyhun Kıpcak, Mehmet B. Piskin, Emek Derun, Nurcan Tugrul
Abstract:
Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels.Keywords: mandarin peel, lemon peel, pectin, ultrasound, microwave, extraction
Procedia PDF Downloads 2361105 Cryoinjuries in Sperm Cells: Effect of Adaptation of Steps in Cryopreservation Protocol for Boar Semen upon Post-Thaw Sperm Quality
Authors: Aftab Ali
Abstract:
Cryopreservation of semen is one of the key factors for a successful breeding business along with other factors. To achieve high fertility in boar, one should know about spermatozoa response to different treatments proceeds during cryopreservation. The running project is highly focused on cryopreservation and its effects on sperm quality parameters in both boar and bull semen. Semen sample from A, B, C, and D, were subjected to different thawing conditions and were analyzed upon different treatments in the study. Parameters like sperm cell motility, viability, acrosome, DNA integrity, and phospholipase C zeta were detected by different established methods. Different techniques were used to assess different parameters. Motility was detected using computer assisted sperm analysis, phospholipase C zeta using luminometry while viability, acrosome integrity, and DNA integrity were analyzed using flow cytometry. Thawing conditions were noted to have an effect on sperm quality parameters with motility being the most critical parameter. The results further indicated that the most critical step during cryopreservation of boar semen is when sperm cells are subjected to freezing and thawing. The findings of the present study provide insight that; boar semen cryopreservation is still suboptimal in comparison to bull semen cryopreservation. Thus, there is a need to conduct more research to improve the fertilizing potential of cryopreserved boar semen.Keywords: cryopreservation, computer assisted sperm, flow cytometry, luminometry
Procedia PDF Downloads 1521104 The Influence of Physical Activity and Health Literacy on Depression Level of First and Second Turkish Generation Living in Germany
Authors: Ceren Akyüz, Ingo Froboese
Abstract:
Health literacy has gained importance with the further spread of the coronavirus disease (COVID-19) worldwide and has been associated with health status in various chronic diseases. Many studies indicate that mental health can be improved by low- or moderate-intensity activity, and several studies have been proposed to explain the relationship between physical activity and mental health. The aim of the present study is to investigate the levels of physical activity, health literacy, and depression in first- and- second generation Turkish people in Germany. The research consists of 434 participants (255 females, 179 males; age 38.09 ± 13.73). 40.8 % of participants are married, and 59.2 % of participants are single. Education levels are mostly at university level (54.8 %), and graduate level is 18.9 %. While 24.9 % of the participants are second generation, 75.1 % of participants are first generation. All analyses were stratified on gender, marital status, education, generation and income status, and five age categories: 18–30, 31–40, 41–50, 51–60, and 61–79, which were defined to account for age-specific trends while maintaining sufficient cell size for statistical analysis. A correlation of depression with physical activity and health literacy levels between first- and- second generation Turks in Germany was evaluated in order to find out whether there are significant differences between the two populations and demographic variables (gender, marital status, education, generation, income status) with carrying out questionnaires which are European Health Literacy Survey Questionnaire (HLS-EU-Q47), International Physical Activity Questionnaire ( IPAQ) and the Patient Health Questionnaire-9 (PHQ-9).Keywords: health literacy, turks in germany, migrants, depression, physical activity
Procedia PDF Downloads 871103 Anti-inflammatory Effect of Wild Indigo (Baptisia tinctoria) Root on Raw 264.7 Cells with Stimulated Lipopolysaccharide
Authors: Akhmadjon Sultanov, Eun-Ho Lee, Hye-Jin Park, Young-Je Cho
Abstract:
This study tested the anti-inflammatory effect of wild indigo (Baptisia tinctoria) root in Raw 264.7 cells. We prepared two extracts of B. tinctoria; one in water and the other in 50% ethanol. Then we evaluated the toxicities of the B. tinctoria root extracts at 10 to 100 mg mL-1 concentrations in raw 264.7 cells and observed 80% cell viability. The anti-inflammatory effect of B. tinctoria root extract in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were observed with concentrations at 10, 30, and 50 μg mL-1. The results showed that 77.27-66.82% of nitric oxide (NO) production was inhibited by 50 μg mL-1 B. tinctoria root extract. The protein expression of Inducible NO synthase (iNOS) expression dramatically decreased by 93.14% and 52.65% in raw 264.7 cells treated with water and ethanol extracts of B. tinctoria root, respectively. Moreover, cyclooxygenase-2 (COX-2) protein expression decreased by 42.85% and 69.70% in raw 264.7 cells treated with water and ethanol extracts of B. tinctoria root, respectively. Furthermore, the mRNA expression of pro-inflammatory markers, such as tumor necrosis factor-alpha, interleukin-1β, interleukin-6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2, was significantly suppressed in a concentration-dependent manner. Additionally, the B. tinctoria root extracts effectively inhibited enzymes involved in physiological activities. The B. tinctoria root extracts showed excellent anti-inflammatory effects and can be used as a functional material for biological activities.Keywords: cytokine, macrophage, pro-inflammatory, protein expression, real-time PCR
Procedia PDF Downloads 751102 Electrolyte Loaded Hexagonal Boron Nitride/Polyacrylonitrile Nanofibers for Lithium Ion Battery Application
Authors: Umran Kurtan, Hamide Aydin, Sevim Unugur Celik, Ayhan Bozkurt
Abstract:
In the present work, novel hBN/polyacrylonitrile composite nanofibers were produced via electrospinning approach and loaded with the electrolyte for rechargeable lithium-ion battery applications. The electrospun nanofibers comprising various hBN contents were characterized by using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The influence of hBN/PAN ratios onto the properties of the porous composite system, such as fiber diameter, porosity, and the liquid electrolyte uptake capability were systematically studied. Ionic conductivities and electrochemical characterizations were evaluated after loading electrospun hBN/PAN composite nanofiber with liquid electrolyte, i.e., 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). The electrolyte loaded nanofiber has a highest ionic conductivity of 10−3 S cm⁻¹ at room temperature. According to cyclic voltammetry (CV) results it exhibited a high electrochemical stability window up to 4.7 V versus Li+/Li. Li//10 wt% hBN/PAN//LiCO₂ cell was produced which delivered high discharge capacity of 144 mAhg⁻¹ and capacity retention of 92.4%. Considering high safety and low cost properties of the resulting hBN/PAN fiber electrolytes, these materials can be suggested as potential separator materials for lithium-ion batteries.Keywords: hexagonal boron nitride, polyacrylonitrile, electrospinning, lithium ion battery
Procedia PDF Downloads 1491101 Burkholderia Cepacia ST 767 Causing a Three Years Nosocomial Outbreak in a Hemodialysis Unit
Authors: Gousilin Leandra Rocha Da Silva, Stéfani T. A. Dantas, Bruna F. Rossi, Erika R. Bonsaglia, Ivana G. Castilho, Terue Sadatsune, Ary Fernandes Júnior, Vera l. M. Rall
Abstract:
Kidney failure causes decreased diuresis and accumulation of nitrogenous substances in the body. To increase patient survival, hemodialysis is used as a partial substitute for renal function. However, contamination of the water used in this treatment, causing bacteremia in patients, is a worldwide concern. The Burkholderia cepacia complex (Bcc), a group of bacteria with more than 20 species, is frequently isolated from hemodialysis water samples and comprises opportunistic bacteria, affecting immunosuppressed patients, due to its wide variety of virulence factors, in addition to innate resistance to several antimicrobial agents, contributing to the permanence in the hospital environment and to the pathogenesis in the host. The objective of the present work was to characterize molecularly and phenotypically Bcc isolates collected from the water and dialysate of the Hemodialysis Unit and from the blood of patients at a Public Hospital in Botucatu, São Paulo, Brazil, between 2019 and 2021. We used 33 Bcc isolates, previously obtained from blood cultures from patients with bacteremia undergoing hemodialysis treatment (2019-2021) and 24 isolates obtained from water and dialysate samples in a Hemodialysis Unit (same period). The recA gene was sequenced to identify the specific species among the Bcc group. All isolates were tested for the presence of some genes that encode virulence factors such as cblA, esmR, zmpA and zmpB. Considering the epidemiology of the outbreak, the Bcc isolates were molecularly characterized by Multi Locus Sequence Type (MLST) and by pulsed-field gel electrophoresis (PFGE). The verification and quantification of biofilm in a polystyrene microplate were performed by submitting the isolates to different incubation temperatures (20°C, average water temperature and 35°C, optimal temperature for group growth). The antibiogram was performed with disc diffusion tests on agar, using discs impregnated with cefepime (30µg), ceftazidime (30µg), ciprofloxacin (5µg), gentamicin (10µg), imipenem (10µg), amikacin 30µg), sulfametazol/trimethoprim (23.75/1.25µg) and ampicillin/sulbactam (10/10µg). The presence of ZmpB was identified in all isolates, while ZmpA was observed in 96.5% of the isolates, while none of them presented the cblA and esmR genes. The antibiogram of the 33 human isolates indicated that all were resistant to gentamicin, colistin, ampicillin/sulbactam and imipenem. 16 (48.5%) isolates were resistant to amikacin and lower rates of resistance were observed for meropenem, ceftazidime, cefepime, ciprofloxacin and piperacycline/tazobactam (6.1%). All isolates were sensitive to sulfametazol/trimethoprim, levofloxacin and tigecycline. As for the water isolates, resistance was observed only to gentamicin (34.8%) and imipenem (17.4%). According to PFGE results, all isolates obtained from humans and water belonged to the same pulsotype (1), which was identified by recA sequencing as B. cepacia¸, belonging to sequence type ST-767. By observing a single pulse type over three years, one can observe the persistence of this isolate in the pipeline, contaminating patients undergoing hemodialysis, despite the routine disinfection of water with peracetic acid. This persistence is probably due to the production of biofilm, which protects bacteria from disinfectants and, making this scenario more critical, several isolates proved to be multidrug-resistant (resistance to at least three groups of antimicrobials), turning the patient care even more difficult.Keywords: hemodialysis, burkholderia cepacia, PFGE, MLST, multi drug resistance
Procedia PDF Downloads 1041100 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels
Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen
Abstract:
Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.Keywords: CFD, coupling, discrete phase, parcel
Procedia PDF Downloads 2691099 Isolation and Identification of Cytotoxic Compounds from Fruticose Lichen Roccella montagnei, and It’s in Silico Docking Study against CDK-10
Authors: Tripti Mishra, Shipra Shukla, Sanjeev Meena, , Ruchi Singh, Mahesh Pal, D. K. Upreti, Dipak Datta
Abstract:
Roccella montagnei belongs to lichen family Roccelleceae growing luxuriantly along the coastal regions of India. As Roccella has been shown to be bioactive, we prepared methanolic extract and assessed its anticancer potential. The methanolic extract showed significant in vitro cytotoxic activity against four human cancer cell lines such as Colon (DLD-1, SW-620), Breast (MCF-7), Head and Neck (FaDu). This prompted us to isolate bioactive compounds through column chromatography. Two compounds Roccellic acid and Everninic acid have been isolated, out of which Everninic acid is reported for the first time. Both the compounds have been tested for in vitro cytotoxic activity in which Roccellic acid showed strong anticancer activity as compared to the Everninic acid. CDK-10 (Cyclin-dependent kinase) contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases, therefore, constitute biomarkers of proliferation and attractive pharmacological targets for the development of anticancer therapeutics. Therefore both the isolated compounds were tested for in silico molecular docking study against CDK-10 isomer enzyme to support the cytotoxic activity.Keywords: cytotoxic activity, everninic acid, roccellic acid, R. montagnei
Procedia PDF Downloads 3281098 Perceived Benefits of Technology Enhanced Learning by Learners in Uganda: Three Band Benefits
Authors: Kafuko M. Maria, Namisango Fatuma, Byomire Gorretti
Abstract:
Mobile learning (m-learning) is steadily growing and has undoubtedly derived benefits to learners and tutors in different learning environments. This paper investigates the variation in benefits derived from enhanced classroom learning through use of m-learning platforms in the context of a developing country owing to the fact that it is still in its initial stages. The study focused on how basic technology-enhanced pedagogic innovation like cell phone-based learning is enhancing classroom learning from the learners’ perspective. The paper explicitly indicates the opportunities presented by enhanced learning to a conventional learning environment like a physical classroom. The findings were obtained through a survey of two universities in Uganda in which data was quantitatively collected, analyzed and presented in a three banded diagram depicting the variation in the obtainable benefits. Learners indicated that a smartphone is the most commonly used device. Learners also indicate that straight lectures, student to student plus student to lecturer communication, accessing learning material and assignments are core activities. In a TEL environment support by smartphones, learners indicated that they conveniently achieve the prior activities plus discussions and group work. Learners seemed not attracted to the possibility of using TEL environment to take lectures, as well as make class presentations. The less attractiveness of these two factors may be due to the teacher centered approach commonly applied in the country’s education system.Keywords: technology enhanced learning, m-learning, classroom learning, perceived benefits
Procedia PDF Downloads 2331097 Safety Risks of Gaseous Toxic Compounds Released from Li Batteries
Authors: Jan Karl, Ondrej Suchy, Eliska Fiserova, Milan Ruzicka
Abstract:
The evolving electromobility and all the electronics also bring an increase of danger with used Li-batteries. Li-batteries have been used in many industries, and currently many types of the batteries are available. Batteries have different compositions that affect their behavior. In the field of Li-battery safety, there are some areas of little discussion, such as extinguishing of fires caused by Li-batteries as well as toxicity of gaseous compounds released from Li batteries, transport or storage. Technical Institute of Fire Protection, which is a part of Fire Brigades of the Czech Republic, is dealing with the safety of Li batteries. That is the reason why we are dealing with toxicity of gaseous compounds released under conditions of fire, mechanical damage, overcharging and other emergencies that may occur. This is necessary for protection of intervening of fire brigade units, people in the vicinity and other envirnomental consequences. In this work, different types of batteries (Li-ion, Li-Po, LTO, LFP) with different kind of damage were tested, and the toxicity and total amount of released gases were studied. These values were evaluated according to their environmental hazard. FTIR spectroscopy was used for the evaluation of toxicity. We used a FTIR gas cell for continuous measurement. The total amount of released gases was determined by collecting the total gas phase through the absorbers and then determining the toxicants absorbed into the solutions. Based on the obtained results, it is possible to determine the protective equipment necessary for the event of an emergency with a Li-battery, to define the environmental load and the immediate danger in an emergency.Keywords: Li-battery, toxicity, gaseous toxic compounds, FTIR spectroscopy
Procedia PDF Downloads 1561096 Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline
Authors: Ikram Kamal, Mohamed Blaghen
Abstract:
Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified.Keywords: biosurfactants, Mannheimia haemolytica, biodegradability, Burkholderia cepacia, Serratia ficaria
Procedia PDF Downloads 2611095 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds
Authors: Hassan Mohammadi Khujin
Abstract:
Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis
Procedia PDF Downloads 811094 Luminescence and Local Environment: Identification of Thermal History
Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues
Abstract:
Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.Keywords: emission, thermal sensing, transition metal, rare eath element
Procedia PDF Downloads 3881093 Solvent Effects on Anticancer Activities of Medicinal Plants
Authors: Jawad Alzeer
Abstract:
Natural products are well recognized as sources of drugs in several human ailments. To investigate the impact of variable extraction techniques on the cytotoxic effects of medicinal plant extracts, 5 well-known medicinal plants from Palestine were extracted with 90% ethanol, 80% methanol, acetone, coconut water, apple vinegar, grape vinegar or 5% acetic acid. The resulting extracts were screened for cytotoxic activities against three different cancer cell lines (B16F10, MCF-7, and HeLa) using a standard resazurin-based cytotoxicity assay and Nile Blue A as the positive control. Highly variable toxicities and tissue sensitivity were observed, depending upon the solvent used for extraction. Acetone consistently gave lower extraction yields but higher cytotoxicity, whereas other solvent systems gave much higher extraction yields with lower cytotoxicity. Interestingly, coconut water was found to offer a potential alternative to classical organic solvents; it gave consistently highest extraction yields, and in the case of S. officinalis L., highly toxic extracts towards MCF-7 cells derived from human breast cancer. These results demonstrate how the cytotoxicity of plant extracts can be inversely proportional to the yield, and that solvent selection plays an important role in both factors.Keywords: plant extract, natural products, anti cancer drug, cytotoxicity
Procedia PDF Downloads 4591092 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study
Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi
Abstract:
The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations
Procedia PDF Downloads 1821091 Epigenetics Regulation Play Role in the Pathogenesis of Adipose Tissue Disorder, Lipedema
Authors: Musarat Ishaq, Tara Karnezis, Ramin Shayan
Abstract:
Lipedema, a poorly understood chronic disease of adipose hyper-deposition, is often mistaken for obesity and causes significant impairment to mobility and quality-of-life. To identify molecular mechanisms underpinning lipedema, we employed comprehensive omics-based comparative analyses of whole tissue, adipocyte precursors (adipose-derived stem cells (ADSCs)), and adipocytes from patients with or without lipedema. Transcriptional profiling revealed significant differences in lipedema tissue, adipocytes, and ADSCs, with altered levels of mRNAs involved inproliferation and cell adhesion. One highly up-regulated gene in lipedema adipose tissue, adipocytes and ADSCs, ZIC4, encodes Zinc Finger Protein ZIC 4, a class of transcription factor which may be involved in regulating metabolism and adipogenesis. ZIC4 inhibition impaired the adipogenesis of ADSCs into mature adipocytes. Epigenetic regulation study revealed overexpression of ZIC4 is involved in decreased promoter DNA methylation and subsequent decrease in adipogenesis. These epigenetic modifications can alter adipocytes microenvironment and adipocytes differentiation. Our study show that epigenetic events regulate the ability of ADSCs to commit and differentiate into mature adipocytes by modulating ZIC4.Keywords: lipedema, adipose-derived stem cells, adipose tisue, adipocytes, zinc finger protein, epigenetic
Procedia PDF Downloads 1791090 An Open-Label Phase I Clinical Study: Safety, Tolerability and Pharmacodynamics of Mutant Collagenase Injection in Adults for Localized Fat Reduction
Authors: Yong Cang
Abstract:
RJV001 is a subcutaneous injection containing mutated recombinant Collagenase H (ColH), leading to disruption of collagen matrix in adipose tissue and programmed cell death of adipocytes. Here we reported our clinical investigation of the safety, tolerance and pharmacodynamics of localized RJV001 injection into healthy human abdominal fat tissues (NCT04821648, Arizona Research Center). Investigate the safety, tolerance and clinical pharmacodynamics of subcutaneous RJV001 in humans. In the dose-escalating study, 18 subjects completed the study, 100% female, 78% white, with a mean age of 42[±9.9]. All three tested dose (0.05, 0.075 and 0.15 mg/injection), up to 30 injections, were safe and well-tolerated. Bruising and tenderness to palpation, mild to moderate, were the most frequent local skin reactions but nearly all resolved within 30 days. Additionally, physician-monitored ultrasound measurement showed that a reduction in abdominal fat tissue thickness was consistently observed in Cohort C (0.075, 0.15 mg/injection, 30injections), with a mean reduction of 7.37 [± 2.020] mm. Based on this clinical study, RJV001 has been advanced to phase II clinical studies. In the dose-escalating study, subcutaneously administered RJV001 was safe and well-tolerated in healthy adults up to 0.15 mg/injection, 30 injections. Fat reduction and adipocytolysis were observed by ultrasound measurements and histological analysis for exploratory purposes.Keywords: fat reduction, mutant collagenase, clinical trial, subcutaneous injection
Procedia PDF Downloads 1131089 The Role of Vitamin D Supplementation in Augmenting IFN-γ Production in Response to Mycobacterium Tuberculosis Infection: A Randomized Controlled Trial
Authors: Muhammad Imran Hussain, Ramisha Ibtisam, Tayyaba Fatima, Huba Khalid, Ayesha Aziz, Khansa, Adan Sitara, Anam Shahzad, Aymen Jabeen
Abstract:
Vitamin D supports the immune system fight TB by inhibiting Interferon-gamma (IFN-γ) and lowering host inflammation. The purpose of the research was to see if giving the vitamin D supplements to TB patients affected their prognosis. A randomized placebo control study of 200 TB patients was performed among which 106 received 400,000 IU of injectable vitamin D3 and 94 received placebo for 2 doses. Assessment was carried out at the end of every month for 3 months. IFN-γ responses to whole blood stimulation generated by the Mycobacterium tuberculosis sonicate (MTBs) antigen and early secreted and T cell activated 6 kDa (ESAT6) were assessed at 0 and 12 weeks. The statistical analysis used descriptive statistics (mean and standard deviation), Friedman's test and Fisher's test. The vitamin D group gained significantly more weight (+3.90 pounds) and had less persistent lung disease on imaging (1.33 zones vs. 1.84 zones). They also had a 50% decrease in cavity size. Additionally, patients with low baseline serum concentrations of 25-(OH)D had a significant increase in MTB-induced IFN-γ production after taking vitamin D supplements. Vitamin D administration in large amounts can hasten the recovery of TB patients. The findings point is a therapeutically useful activity of Vitamin D's in the management for tuberculosis.Keywords: tuberculosis, vitamin D, interferon gamma, protein, infection
Procedia PDF Downloads 581088 Differential Proteomic Profile and Terpenoid Production in Somatic Embryos of Jatropha curcas
Authors: Anamarel Medina-Hernandez, Teresa Ponce-Noyola, Ileana Vera-Reyes, Ana C. Ramos-Valdivia
Abstract:
Somatic embryos reproduce original seed characteristics and could be implemented in biotechnological studies. Jatropha curcas L. is an important plant for biodiesel production, but also is used in traditional medicine. Seeds from J. curcas are toxic because contain diterpenoids called phorbol esters, but in Mexico exist a non-toxic variety. Therefore, somatic embryos suspension cultures from non-toxic J. curcas variety were induced. In order to investigate the characteristics of somatic embryos, a differential proteomic analysis was made between pre-globular and globular stages by 2-D gel electrophoresis. 108 spots were differentially expressed (p<0.02), and 20 spots from globular somatic embryos were sequenced by MALDI-TOF-TOF mass spectrometry. A comparative analysis of terpenoids production between the two stages was made by RP-18 TLC plates. The sequenced proteins were related to energy production (68%), protein destination and storage (9%), secondary metabolism (9%), signal transduction (5%), cell structure (5%) and aminoacid metabolism (4%). Regarding terpenoid production, in pre-globular and globular somatic embryos were identified sterols and triterpenes of pharmacological interest (alpha-amyrin and betulinic acid) but also it was found compounds that were unique to each stage. The results of this work are the basis to characterize at different levels the J. curcas somatic embryos so that this system can be used efficiently in biotechnological processes.Keywords: Jatropha curcas, proteomics, somatic embryo, terpenoids
Procedia PDF Downloads 2601087 Relationship between Exercise Activity with Incidence of Overweight-Obesity in Medical Students
Authors: Randy M. Fitratullah, Afriwardi, Nurhayati
Abstract:
Overweight-obesity caused by exercise. The objective of this research is to analyze the relation between exercise with the incidence of overweight-obesity of medical students of medical faculty of Andalas Univesity batch 2013. This is an analytical observational research with case-control method. This research conducted in FK Unand on September-October 2015. The population of this research is medical students batch 2013. 26 samples (13 samples were case, 13 samples were control) were taken by purposive sampling technique and analysed using statistical univariate and bivariate analysis. Exercise questionnaire was used as research instruments. Based on the interview with questionnaire, anaerobic exercise was majority in case group and aerobic exercise was majority in control group. The case and control group have a rare category in exercise. Less category was majority in exercise duration of case and enough category was majority in control group. Bivariate analysis is using chi-square test with cell combining to 2x2 table, obtained p-value=0.097 in sort of exercise, p-value=1,000 in the frequency of exercise, and p-value=0,112 in duration of exercise, which means statistically unsignificant. There is no relation between exercise with the incidence of overweight-obesity of medical students of FK Unand batch 2013. For medical students suffers overweight-obesity is suggested for increase the frequency of exercise.Keywords: overweight-obesity, exercise, aerobic, anaerobic, frequency, duration
Procedia PDF Downloads 2661086 Effect of On-Road Vehicular Traffic on Noise Pollution in Bhubaneswar City, Eastern India
Authors: Dudam Bharath Kumar, Harsh Kumar, Naveed Ahmed
Abstract:
Vehicular traffic on the road-side plays a significant role in affecting the noise pollution in most of the cities over the world. To assess the correlation of the road-traffic on noise pollution in the city environment, continuous measurements were carried out in an entire daytime starting from 8:00 AM IST to 6:00 PM IST at a single point for each 5 minutes (8:00-8:05, 9:00-9:05, 10:00-10:05 AM, ...) near the KIIT University campus road. Noise levels were observed using a mobile operated app of android cell phone and a handheld noise meter. Calibration analysis shows high correlation about 0.89 for the study location for the day time period. Results show diurnal variability of atmospheric noise pollution levels go hand-in and with the vehicular number which pass through a point of observation. The range of noise pollution levels in the daytime period is observed as 55 to 75 dB(A). As a day starts, sudden upsurge of noise levels is observed from 65 to 71 dB(A) in the early morning, 64 dB(A) in late morning, regains the same quantity 68-71 dB(A) in the afternoon, and rises 70 dB(A) in the early evening. Vehicular number of the corresponding noise levels exhibits 115-120, 150-160, and 140-160, respectively. However, this preliminary study suggests the importance of vehicular traffic on noise pollution levels in the urban environment and further to study population exposed to noise levels. Innovative approaches help curb the noise pollution through modelling the traffic noise pollution spatially and temporally over the city environments.Keywords: noise pollution, vehicular traffic, urban environment, noise meter
Procedia PDF Downloads 3001085 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption
Authors: Hadis Pouyafar, D. Matin Alaghmandan
Abstract:
Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells
Procedia PDF Downloads 1011084 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight
Procedia PDF Downloads 1541083 Role of mHealth in Effective Response to Disaster
Authors: Mohammad H. Yarmohamadian, Reza Safdari, Nahid Tavakoli
Abstract:
In recent years, many countries have suffered various natural disasters. Disaster response continues to face the challenges in health care sector in all countries. Information and communication management is a significant challenge in disaster scene. During the last decades, rapid advances in information technology have led to manage information effectively and improve communication in health care setting. Information technology is a vital solution for effective response to disasters and emergencies so that if an efficient ICT-based health information system is available, it will be highly valuable in such situation. Of that, mobile technology represents a nearly computing technology infrastructure that is accessible, convenient, inexpensive and easy to use. Most projects have not yet reached the deployment stage, but evaluation exercises show that mHealth should allow faster processing and transport of patients, improved accuracy of triage and better monitoring of unattended patients at a disaster scene. Since there is a high prevalence of cell phones among world population, it is expected the health care providers and managers to take measures for applying this technology for improvement patient safety and public health in disasters. At present there are challenges in the utilization of mhealth in disasters such as lack of structural and financial issues in our country. In this paper we will discuss about benefits and challenges of mhealth technology in disaster setting considering connectivity, usability, intelligibility, communication and teaching for implementing this technology for disaster response.Keywords: information technology, mhealth, disaster, effective response
Procedia PDF Downloads 4461082 DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease
Authors: Rasha M. Hussein, Reem M. Hashem, Laila A. Rashed
Abstract:
Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism.Keywords: Aβ, Alzheimer’s disease, chaperone, DNAJB6, aggregation
Procedia PDF Downloads 5191081 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance
Authors: Yasser Aldali
Abstract:
The scope of this paper is to evaluate and compare the potential of LS-PV (Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148 GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system. The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55 km2 for a stationary PV field constituted by HIT PV arrays and approx. 91 MW/km2. In case of a tracker PV field, the required ground area amounts approx. 2.4k m2 and approx. 20.5 MW/km2.Keywords: large scale photovoltaic power plant, two-axis tracking system, stationary system, landscape impact
Procedia PDF Downloads 4541080 Sun Protection Factor (SPF) Determination of Sericin Cream and Niosomal Gel
Authors: Farzad Doostishoar, Abbas Pardakhty, Abdolreza Hassanzadeh, Sudeh salarpour, Elham Sharif
Abstract:
Background: Sericin is a protein extracted from silk and has antioxidant, antimicrobial, antineoplastic, wound healing and moisturizing properties. Different cosmetic formulation of sericin is available in different countries such as Japan and the other south-eastern Asian countries. We formulated and evaluated the sunscreen properties of topical formulations of sericin by an in vitro method. Method: Niosomes composed of sorbitan palmitate (Span 40), polysorbate 40 (Tween 40) and cholesterol (300 µmol, 3.5:3.5:3 molar ratio) were prepared by film hydration technique. Sericin was dissolved in normal saline and the lipid hydration was carried out at 60°C and the niosomes were incorporated in a Carbomer gel base. A W/O cream was also prepared and the release of sericin was evaluated by using Franz diffusion cell. Particle size analysis, sericin encapsulation efficiency measurement, morphological studies and stability evaluation were done in niosomal formulations. SPF was calculated by using Transpore tape in vitro method for both formulations. Results: Niosomes had high stability during 6 months storage at 4-8°C. The mean volume diameter of niosomes was less than 7 µm which is ideal for sustained release of drugs in topical formulations. The SPF of niosomal gel was 25 and higher than sericin cream with a diffusion based release pattern of active material. Conclusion: Sericin can be successfully entrapped in niosomes with sustained release pattern and relatively high SPF.Keywords: sericin, niosomes, sun protection factor, cream, gel
Procedia PDF Downloads 5051079 Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium
Authors: Shyam Ranjan Kumar, Shashikant Rajpal
Abstract:
Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case.Keywords: annealing, electrodeposition, optical properties, thin film, XRD, ZnTe
Procedia PDF Downloads 196