Search results for: chemical reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6278

Search results for: chemical reaction

6008 Comparison of Sensitivity and Specificity of Pap Smear and Polymerase Chain Reaction Methods for Detection of Human Papillomavirus: A Review of Literature

Authors: M. Malekian, M. E. Heydari, M. Irani Estyar

Abstract:

Human papillomavirus (HPV) is one of the most common sexually transmitted infection, which may lead to cervical cancer as the main cause of it. With early diagnosis and treatment in health care services, cervical cancer and its complications are considered to be preventable. This study was aimed to compare the efficiency, sensitivity, and specificity of Pap smear and polymerase chain reaction (PCR) in detecting HPV. A literature search was performed in Google Scholar, PubMed and SID databases using the keywords 'human papillomavirus', 'pap smear' and 'polymerase change reaction' to identify studies comparing Pap smear and PCR methods for the detection. No restrictions were considered.10 studies were included in this review. All samples that were positive by pop smear were also positive by PCR. However, there were positive samples detected by PCR which was negative by pop smear and in all studies, many positive samples were missed by pop smear technique. Although The Pap smear had high specificity, PCR based HPV detection was more sensitive method and had the highest sensitivity. In order to promote the quality of detection and high achievement of the maximum results, PCR diagnostic methods in addition to the Pap smear are needed and Pap smear method should be combined with PCR techniques according to the high error rate of Pap smear in detection.

Keywords: human papillomavirus, cervical cancer, pap smear, polymerase chain reaction

Procedia PDF Downloads 108
6007 Hierarchical Zeolites as Catalysts for Cyclohexene Epoxidation Reactions

Authors: Agnieszka Feliczak-Guzik, Paulina Szczyglewska, Izabela Nowak

Abstract:

A catalyst-assisted oxidation reaction is one of the key reactions exploited by various industries. Their conductivity yields essential compounds and intermediates, such as alcohols, epoxides, aldehydes, ketones, and organic acids. Researchers are devoting more and more attention to developing active and selective materials that find application in many catalytic reactions, such as cyclohexene epoxidation. This reaction yields 1,2-epoxycyclohexane and 1,2-diols as the main products. These compounds are widely used as intermediates in the perfume industry and synthesizing drugs and lubricants. Hence, our research aimed to use hierarchical zeolites modified with transition metal ions, e.g., Nb, V, and Ta, in the epoxidation reaction of cyclohexene using microwaveheating. Hierarchical zeolites are materials with secondary porosity, mainly in the mesoporous range, compared to microporous zeolites. In the course of the research, materials based on two commercial zeolites, with Faujasite (FAU) and Zeolite Socony Mobil-5 (ZSM-5) structures, were synthesized and characterized by various techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and low-temperature nitrogen adsorption/desorption isotherms. The materials obtained were then used in a cyclohexene epoxidation reaction, which was carried out as follows: catalyst (0.02 g), cyclohexene (0.1 cm3), acetonitrile (5 cm3) and dihydrogen peroxide (0.085 cm3) were placed in a suitable glass reaction vessel with a magnetic stirrer inside in a microwave reactor. Reactions were carried out at 45° C for 6 h (samples were taken every 1 h). The reaction mixtures were filtered to separate the liquid products from the solid catalyst and then transferred to 1.5 cm3 vials for chromatographic analysis. The test techniques confirmed the acquisition of additional secondary porosity while preserving the structure of the commercial zeolite (XRD and low-temperature nitrogen adsorption/desorption isotherms). The results of the activity of the hierarchical catalyst modified with niobium in the cyclohexene epoxidation reaction indicate that the conversion of cyclohexene, after 6 h of running the process, is about 70%. As the main product of the reaction, 2-cyclohexanediol was obtained (selectivity > 80%). In addition to the mentioned product, adipic acid, cyclohexanol, cyclohex-2-en-1-one, and 1,2-epoxycyclohexane were also obtained. Furthermore, in a blank test, no cyclohexene conversion was obtained after 6 h of reaction. Acknowledgments The work was carried out within the project “Advanced biocomposites for tomorrow’s economy BIOG-NET,” funded by the Foundation for Polish Science from the European Regional Development Fund (POIR.04.04.00-00-1792/18-00.

Keywords: epoxidation, oxidation reactions, hierarchical zeolites, synthesis

Procedia PDF Downloads 48
6006 Monitoring Synthesis of Biodiesel through Online Density Measurements

Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino

Abstract:

The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.

Keywords: biodiesel, density measurements, online continuous monitoring, synthesis

Procedia PDF Downloads 553
6005 Cu3SbS3 as Anode Material for Sodium Batteries

Authors: Atef Y. Shenouda, Fei Xu

Abstract:

Cu₃SbS₃ (CAS) was synthesized by direct solid-state reaction from elementary Cu, Sb, & S and hydrothermal reaction using thioacetamide (TAM). Crystal structure and morphology for the prepared phases of Cu₃SbS₃ were studied via X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The band gap energies are 2 and 2.2 eV for the prepared samples. The two samples are as anode for Na ion storage. They show high initial capacity to 490 mAh/g. Na cell prepared from TAM sample shows 280 mAh/g after 25 cycles vs. 60 mAh/g for elemental sample.

Keywords: Cu3SbS3, sodium batteries, thioacetamide, sulphur sources

Procedia PDF Downloads 36
6004 Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth

Authors: Rajiv Arora

Abstract:

Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished.

Keywords: biodiesel, esterification, free fatty acids, residual oil, spent bleaching earth, transesterification

Procedia PDF Downloads 155
6003 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas

Authors: Thulane Paepae, Tumisang Seodigeng

Abstract:

This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.

Keywords: attainable regions, dimethyl ether, optimal reaction network, GH Space

Procedia PDF Downloads 218
6002 Vegetable Oil-Based Anticorrosive Coatings for Metals Protection

Authors: Brindusa Balanuca, Raluca Stan, Cristina Ott, Matei Raicopol

Abstract:

The current study aims to develop anti corrosive coatings using vegetable oil (VO)-based polymers. Due to their chemical versatility, reduced costs and more important, higher hydrophobicity, VO’s are great candidates in the field of anti-corrosive materials. Lignin (Ln) derivatives were also used in this research study in order to achieve performant hydrophobic anti-corrosion layers. Methods Through a rational functionalization pathway, the selected VO (linseed oil) is converted to more reactive monomer – methacrylate linseed oil (noted MLO). The synthesized MLO cover the metals surface in a thin layer and through different polymerization techniques (using visible radiation or temperature, respectively) and well-established reaction conditions, is converted to a hydrophobic coating capable to protect the metals against corrosive factors. In order to increase the anti-corrosion protection, lignin (Ln) was selected to be used together with MLO macromonomer. Thus, super hydrophobic protective coatings will be formulated. Results The selected synthetic strategy to convert the VO in more reactive compounds – MLO – has led to a functionalization degree of greater than 80%. The obtained monomers were characterized through NMR and FT-IR by monitoring the characteristic signals after each synthesis step. Using H-NMR data, the functionalization degrees were established. VO-based and also VO-Ln anti corrosion formulations were both photochemical and thermal polymerized in specific reaction conditions (initiators, temperature range, reaction time) and were tested as anticorrosive coatings. Complete and advances characterization of the synthesized materials will be presented in terms of thermal, mechanical and morphological properties. The anticorrosive properties were also evaluated and will be presented. Conclusions Through the design strategy briefly presented, new composite materials for metal corrosion protection were successfully developed, using natural derivatives: vegetable oils and lignin, respectively.

Keywords: anticorrosion protection, hydrophobe layers, lignin, methacrylates, vegetable oil

Procedia PDF Downloads 150
6001 Evaluating the Prominence of Chemical Phenomena in Chemistry Courses

Authors: Vanessa R. Ralph, Leah J. Scharlott, Megan Y. Deshaye, Ryan L. Stowe

Abstract:

Given the traditions of chemistry teaching, one may not question whether chemical phenomena play a prominent role. Yet, the role of chemical phenomena in an introductory chemistry course may define the extent to which the course is introductory, chemistry, and equitable. Picture, for example, the classic Ideal Gas Law problem. If one envisions a prompt wherein students are tasked with calculating a missing variable, then one envisions a prompt that relies on chemical phenomena as a context rather than as a model to understand the natural world. Consider a prompt wherein students are tasked with applying molecular models of gases to explain why the vapor pressure of a gaseous solution of water differs from that of carbon dioxide. Here, the chemical phenomenon is not only the context but also the subject of the prompt. Deliveries of general and organic chemistry were identified as ranging wildly in the integration of chemical phenomena. The more incorporated the phenomena, the more equitable the assessment task was for students of varying access to pre-college math and science preparation. How chemical phenomena are integrated may very well define whether courses are chemistry, are introductory, and are equitable. Educators of chemistry are invited colleagues to discuss the role of chemical phenomena in their courses and consider the long-lasting impacts of replicating tradition for tradition’s sake.

Keywords: equitable educational practices, chemistry curriculum, content organization, assessment design

Procedia PDF Downloads 172
6000 Stereoselective Glycosylation and Functionalization of Unbiased Site of Sweet System via Dual-Catalytic Transition Metal Systems/Wittig Reaction

Authors: Mukul R. Gupta, Rajkumar Gandhi, Rajitha Sachan, Naveen K. Khare

Abstract:

The field of glycoscience has burgeoned in the last several decades, leading to the identification of many glycosides which could serve critical roles in a wide range of biological processes. This has prompted a resurgence in synthetic interest, with a particular focus on new approaches to construct the selective glycosidic bond. Despite the numerous elegant strategies and methods developed for the formation of glycosidic bonds, stereoselective construction of glycosides remains challenging. Here, we have recently developed the novel Hexafluoroisopropanol (HFIP) catalyzed stereoselective glycosylation methods by using KDN imidate glycosyl donor and a variety of alcohols in excellent yield. This method is broadly applicable to a wide range of substrates and with excellent selectivity of glycoside. Also, herein we are reporting the functionalization of the unbiased side of newly formed glycosides by dual-catalytic transition metal systems (Ru- or Fe-). We are using the innovative Reverse & Catalyst strategy, i.e., a reversible activation reaction by one catalyst with a functionalization reaction by another catalyst, together with enabling functionalization of substrates at their inherently unreactive sites. As well, we are targeting the diSia derivative synthesis by Wittig reaction. This synthetic method is applicable in mild conditions, functional group tolerance of the dual-catalytic systems and also highlights the potential of the multicatalytic approach to address challenging transformations to avoid multistep procedures in carbohydrate synthesis.

Keywords: KDN, stereoselective glycosylation, dual-catalytic functionalization, Wittig reaction

Procedia PDF Downloads 166
5999 Gaze Behaviour of Individuals with and without Intellectual Disability for Nonaccidental and Metric Shape Properties

Authors: S. Haider, B. Bhushan

Abstract:

Eye Gaze behaviour of individuals with and without intellectual disability are investigated in an eye tracking study in terms of sensitivity to Nonaccidental (NAPs) and Metric (MPs) shape properties. Total fixation time is used as an indirect measure of attention allocation. Studies have found Mean reaction times for non accidental properties (NAPs) to be shorter than for metric (MPs) when the MP and NAP differences were equalized. METHODS: Twenty-five individuals with intellectual disability (mild and moderate level of Mental Retardation) and twenty-seven normal individuals were compared on mean total fixation duration, accuracy level and mean reaction time for mild NAPs, extreme NAPs and metric properties of images. 2D images of cylinders were adapted and made into forced choice match-to-sample tasks. Tobii TX300 Eye Tracker was used to record total fixation duration and data obtained from the Areas of Interest (AOI). Variable trial duration (total reaction time of each participant) and fixed trail duration (data taken at each second from one to fifteen seconds) data were used for analyses. Both groups did not differ in terms of fixation times (fixed as well as variable) across any of the three image manipulations but differed in terms of reaction time and accuracy. Normal individuals had longer reaction time compared to individuals with intellectual disability across all types of images. Both the groups differed significantly on accuracy measure across all image types. Normal individuals performed better across all three types of images. Mild NAPs vs. Metric differences: There was significant difference between mild NAPs and metric properties of images in terms of reaction times. Mild NAPs images had significantly longer reaction time compared to metric for normal individuals but this difference was not found for individuals with intellectual disability. Mild NAPs images had significantly better accuracy level compared to metric for both the groups. In conclusion, type of image manipulations did not result in differences in attention allocation for individuals with and without intellectual disability. Mild Nonaccidental properties facilitate better accuracy level compared to metric in both the groups but this advantage is seen only for normal group in terms of mean reaction time.

Keywords: eye gaze fixations, eye movements, intellectual disability, stimulus properties

Procedia PDF Downloads 531
5998 Single Cu‒N₄ Sites Enable Atomic Fe Clusters with High-Performance Oxygen Reduction Reaction

Authors: Shuwen Wu, Zhi LI

Abstract:

Atomically dispersed Fe‒N₄ catalysts are proven as promising alternatives to commercial Pt/C for the oxygen reduction reaction. Most reported Fe‒N₄ catalysts suffer from inferior O‒O bond-breaking capability due to superoxo-like O₂ adsorption, though the isolated dual-atomic metal sites strategy is extensively adopted. Atomic Fe clusters hold greater promise for promoting O‒O bond cleavage by forming peroxo-like O₂ adsorption. However, the excessively strong binding strength between Fe clusters and oxygenated intermediates sacrifices the activity. Here, we first report a Fex/Cu‒N@CF catalyst with atomic Fe clusters functionalized by adjacent single Cu‒N₄ sites anchoring on a porous carbon nanofiber membrane. The theoretical calculation indicates that the single Cu‒N₄ sites can modulate the electronic configuration of Fe clusters to reduce O₂* protonation reaction free energy, which ultimately enhances the electrocatalytic performance. Particularly, the Cu‒N₄ sites can increase the overlaps between the d orbitals of Fe and p orbitals of O to accelerate O‒O cleavage in OOH*. As a result, this unique atomic catalyst exhibits a half potential (E1/2) of 0.944 V in an alkaline medium exceeding that of commercial Pt/C, whereas acidic performance E1/2 = 0.815 V is comparable to Pt/C. This work shows the great potential of single atoms for improvements in atomic cluster catalysts.

Keywords: Hierarchical porous fibers, atomic Fe clusters, Cu single atoms, oxygen reduction reaction; O-O bond cleavage

Procedia PDF Downloads 81
5997 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study

Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung

Abstract:

Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.

Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification

Procedia PDF Downloads 275
5996 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications

Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong

Abstract:

High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.

Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition

Procedia PDF Downloads 101
5995 The Effectiveness of Pretreatment Methods on COD and Ammonia Removal from Landfill Leachate

Authors: M. Poveda, S. Lozecznik, J. Oleszkiewicz, Q. Yuan

Abstract:

The goal of this experiment is to evaluate the effectiveness of different leachate pre-treatment options in terms of COD and ammonia removal. This research focused on the evaluation of physical-chemical methods for pre-treatment of leachate that would be effective and rapid in order to satisfy the requirements of the sewer discharge by-laws. The four pre-treatment options evaluated were: air stripping, chemical coagulation, electro-coagulation and advanced oxidation with sodium ferrate. Chemical coagulation reported the best COD removal rate at 43%, compared to 18 % for both air stripping and electro-coagulation, and 20 % for oxidation with sodium ferrate. On the other hand, air stripping was far superior to the other treatment options in terms of ammonia removal with 86 %. Oxidation with sodium ferrate reached only 16 %, while chemical coagulation and electro-coagulation removed less than 10 %. When combined, air stripping and chemical coagulation removed up to 50 % COD and 85 % ammonia.

Keywords: leachate pretreatment, air stripping, chemical coagulation, electro-coagulation, oxidation

Procedia PDF Downloads 806
5994 One Step Synthesis of Molybdenum Carbide Nanoparticles for Efficient Hydrogen Evolution Reaction

Authors: Sanjay Upadhyay, Om Prakash Pandey

Abstract:

Hydrogen has been promoted as an alternative source of energy, which is renewable, cost-effective, and nature-friendly. Hydrogen evolution reaction (HER) can be used for mass production of hydrogen at a very low cost through electrochemical water splitting. An active and efficient electrocatalyst is required to perform this reaction. Till date, platinum (Pt) is a stable and efficient electrocatalyst towards HER. But its high cost and low abundance hiders its large scale uses. Molybdenum carbide having a similar electronic structure to platinum can be a great alternative to costly platinum. In this study, pure phase molybdenum carbide (Mo₂C) has been synthesized in a single step. Synthesis temperature and holding time have been optimized to obtain pure phases of Mo₂C. The surface, structural and morphological properties of as-synthesized compounds have been studied. The HER activity of as-synthesized compounds has been explored in detail.

Keywords: capacitance, hydrogen fuel, molybdenum carbide, nanoparticles

Procedia PDF Downloads 175
5993 Preparation and Characterization of Nanocrystalline Cellulose from Acacia mangium

Authors: Samira Gharehkhani, Seyed Farid Seyed Shirazi, Abdolreza Gharehkhani, Hooman Yarmand, Ahmad Badarudin, Rushdan Ibrahim, Salim Newaz Kazi

Abstract:

Nanocrystalline cellulose (NCC) were prepared by acid hydrolysis and ultrasound treatment of bleached Acacia mangium fibers. The obtained rod-shaped nanocrystals showed a uniform size. The results showed that NCC with high crystallinity can be obtained using 64 wt% sulfuric acid. The effect of synthesis condition was investigated. Different reaction times were examined to produce the NCC and the results revealed that an optimum reaction time has to be used for preparing the NCC. Morphological investigation was performed using the transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) were performed. X-ray diffraction (XRD) analysis revealed that the crystallinity increased with successive treatments. The NCC suspension was homogeneous and stable and no sedimentation was observed for a long time.

Keywords: acid hydrolysis, nanocrystalline cellulose, nano material, reaction time

Procedia PDF Downloads 482
5992 A Study on the Synthesis of Boron Nitride Microtubes

Authors: Pervaiz Ahmad, Mayeen Uddin Khandaker, Yusoff Mohd Amin

Abstract:

A unique cone-like morphologies of boron nitride microtubes with larger internal space and thin walls structure are synthesized in a dual zone quartz tube furnace at 1200 ° C with ammonia as a reaction atmosphere. The synthesized microtubes are found to have diameter in the range of 1 to ̴ 2 μm with walls thickness estimated from 10 – 100 nm. XPS survey shows N 1s and B 1s peaks at 398.7 eV and 191 eV that represent h-BN in the sample. Raman spectroscopy indicates a high intensity peak at 1372.53 (cm-1) that corresponds to the E2g mode of h-BN.

Keywords: BNMTs, synthesis, reaction atmosphere, growth

Procedia PDF Downloads 354
5991 Effect of Minerals in Middlings on the Reactivity of Gasification-Coke by Blending a Large Proportion of Long Flame Coal

Authors: Jianjun Wu, Fanhui Guo, Yixin Zhang

Abstract:

In this study, gasification-coke were produced by blending the middlings (MC), and coking coal (CC) and a large proportion of long flame coal (Shenfu coal, SC), the effects of blending ratio were investigated. Mineral evolution and crystalline order obtained by XRD methods were reproduced within reasonable accuracy. Structure characteristics of partially gasification-coke such as surface area and porosity were determined using the N₂ adsorption and mercury porosimetry. Experimental data of gasification-coke was dominated by the TGA results provided trend, reactivity differences between gasification-cokes are discussed in terms of structure characteristic, crystallinity, and alkali index (AI). The first-order reaction equation was suitable for the gasification reaction kinetics of CO₂ atmosphere which was represented by the volumetric reaction model with linear correlation coefficient above 0.985. The differences in the microporous structure of gasification-coke and catalysis caused by the minerals in parent coals were supposed to be the main factors which affect its reactivity. The addition of MC made the samples enriched with a large amount of ash causing a higher surface area and a lower crystalline order to gasification-coke which was beneficial to gasification reaction. The higher SiO₂ and Al₂O₃ contents, causing a decreasing AI value and increasing activation energy, which reduced the gasification reaction activity. It was found that the increasing amount of MC got a better performance on the coke gasification reactivity by blending > 30% SC with this coking process.

Keywords: low-rank coal, middlings, structure characteristic, mineral evolution, alkali index, gasification-coke, gasification kinetics

Procedia PDF Downloads 139
5990 FT-IR Investigation of the Influence of Acid-Base Sites on Cr-Incorporated MCM-41 Nanoparticle in C-C Bond Formation

Authors: Dilip K. Paul

Abstract:

The most popular mesoporous molecular sieves, Mobil Composition of Matter (MCM) are keenly studied by researchers because of these materials possess amorphous silica wall and have a long range of ordered framework with uniform mesopores. These materials also possess large surface area, which can be up to more than 1000 m2g−1. Herein the investigation is focused upon the synthesis and characterization of chromium and aluminum doped MCM-41 using XRD and FTIR. Acid-base properties of Cr-Al-MCM 41 was investigated by molecularly sensitive transmission FT-IR spectroscopy by adsorbing pyridine. In addition, these MCM nanomaterial was used to catalyze C-C bond formation from acetaldehyde adsorption. The assignment of all infrared peaks during adsorption of pyridine provided detail information on the presence of acid-base sites which in turn helped us to explain the roles of these in the condensation reaction of aldehyde. Reaction mechanisms of C-C bond formation is therefore explored to shed some light on this elusive reaction detail.

Keywords: mesoporous nanomaterial, MCM 41, FTIR studies, acid-base studies

Procedia PDF Downloads 420
5989 Autism Awareness Among School Students and the Violent Reaction of the Autist Toward Society in Egypt

Authors: Naglaa Baskhroun Thabet Wasef

Abstract:

Specific education services for students with Autism remains in its early developmental stages in Egypt. In spite of many more children with autism are attending schools since The Egyptian government introduced the Education Provision for Students with Disabilities Act in 2010, the services students with autism and their families receive are generally not enough. This pointed study used Attitude and Reaction to Teach Students with Autism Scale to investigate 50 primary school teachers’ attitude and reaction to teach students with autism in the general education classroom. Statistical analysis of the data found that student behavior was the most noticeable factor in building teachers’ wrong attitudes students with autism. The minority of teachers also indicated that their service education did not prepare them to meet the learning needs of children with autism in special, those who are non-vocal. The study is descriptive and provides direction for increasing teacher awareness for inclusivity in Egypt.

Keywords: attitude, autism, teachers, sports activates, movement skills, motor skills, autism attitude

Procedia PDF Downloads 35
5988 Surface Modified Nano-Diamond/Polyimide Hybrid Composites

Authors: Hati̇ce Bi̇rtane, Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman

Abstract:

Polyimide (PI) is one of the most important super-engineering materials because of its mechanical properties and its thermal stability. Electronic industry is the typical extensive applications of polyimides including interlayer insulation films, buffer coating, films, alpha-ray shielding films, and alignment films for liquid crystal displays. The mechanical and thermal properties of polymers are generally improved by the addition of inorganic additives. The challenges in this area of high-performance organic/inorganic hybrid materials are to obtain significant improvements in the interfacial adhesion between the polymer matrix and the reinforcing material since the organic matrix is relatively incompatible with the inorganic phase. In this study, modified nanodiamond was prepared from the reaction of nanodiamond and (3-Mercaptopropyl)trimethoxysilane. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide/modified nanodiamond hybrids were prepared by blending of poly(amic acid) and organically modified nanodiamond. The morphology of the Polyimide/ modified nanodiamond hybrids was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and Polyimide/modified nanodiamond hybrids was characterized by FTIR. FTIR results showed that the Polyimide/modified nanodiamond hybrids were successfully prepared. A thermal property of the Polyimide/modified nanodiamond hybrids was characterized by thermogravimetric analysis (TGA).

Keywords: hybrid materials, nanodiamond, polyimide, polymer

Procedia PDF Downloads 218
5987 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties

Authors: Niharul Alam

Abstract:

The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.

Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis

Procedia PDF Downloads 404
5986 Phenomena-Based Approach for Automated Generation of Process Options and Process Models

Authors: Parminder Kaur Heer, Alexei Lapkin

Abstract:

Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature.

Keywords: Phenomena, Process intensification, Process models , Process options

Procedia PDF Downloads 208
5985 Lithium Ion Supported on TiO2 Mixed Metal Oxides as a Heterogeneous Catalyst for Biodiesel Production from Canola Oil

Authors: Mariam Alsharifi, Hussein Znad, Ming Ang

Abstract:

Considering the environmental issues and the shortage in the conventional fossil fuel sources, biodiesel has gained a promising solution to shift away from fossil based fuel as one of the sustainable and renewable energy. It is synthesized by transesterification of vegetable oils or animal fats with alcohol (methanol or ethanol) in the presence of a catalyst. This study focuses on synthesizing a high efficient Li/TiO2 heterogeneous catalyst for biodiesel production from canola oil. In this work, lithium immobilized onto TiO2 by the simple impregnation method. The catalyst was evaluated by transesterification reaction in a batch reactor under moderate reaction conditions. To study the effect of Li concentrations, a series of LiNO3 concentrations (20, 30, 40 wt. %) at different calcination temperatures (450, 600, 750 ºC) were evaluated. The Li/TiO2 catalysts are characterized by several spectroscopic and analytical techniques such as XRD, FT-IR, BET, TG-DSC and FESEM. The optimum values of impregnated Lithium nitrate on TiO2 and calcination temperature are 30 wt. % and 600 ºC, respectively, along with a high conversion to be 98 %. The XRD study revealed that the insertion of Li improved the catalyst efficiency without any alteration in structure of TiO2 The best performance of the catalyst was achieved when using a methanol to oil ratio of 24:1, 5 wt. % of catalyst loading, at 65◦C reaction temperature for 3 hours of reaction time. Moreover, the experimental kinetic data were compatible with the pseudo-first order model and the activation energy was (39.366) kJ/mol. The synthesized catalyst Li/TiO2 was applied to trans- esterify used cooking oil and exhibited a 91.73% conversion. The prepared catalyst has shown a high catalytic activity to produce biodiesel from fresh and used oil within mild reaction conditions.

Keywords: biodiesel, canola oil, environment, heterogeneous catalyst, impregnation method, renewable energy, transesterification

Procedia PDF Downloads 152
5984 Laboratory Investigation of Fly Ash Based Geopolymer Stabilized Recycled Asphalt Pavement as a Base Material

Authors: Menglim Hoy, Suksun Horpibulsuk, Arul Arulrajah

Abstract:

The results of laboratory investigation of recycled asphalt pavement (RAP) – fly ash (FA) based geopolymer as a base material is presented in this paper. An alkaline activator, the mixture of NaOH and Na₂SiO₃, is used to synthesis RAP-FA based geopolymer. RAP-FA with water (RAP-FA blend) prepared as a control material. The strength develops and the strength against wet-dry was determined by the unconfined compression strength (UCS) test, then the microstructural properties were examined by scanning electron microscopy (SEM) and X-ray Diffraction (XRD) analysis. The toxicity characteristic leaching procedure (TCLP) test is conducted to measure its leachability of heavy metal. The results show both the RAP-FA blend and geopolymer can be used as a base course as its UCS values meet the minimum strength requirement specified by the Department of Highway, Thailand. The durability test results show the UCS of these materials increases with increasing the number of wet-dry cycles, reaching its peak at six wet-dry cycles. The XRD and SEM analyses indicate strength development of the RAP-FA blend occurs due to chemical reaction between a high Calcium in RAP with a high Silica and Alumina in FA led to producing calcium aluminate hydrate formation. The strength development of the RAP-FA geopolymer occurred resulted from the polymerization reaction. The TCLP results demonstrate there is no environmental risk of these stabilized materials. Furthermore, FA based geopolymer can reduce the leachability of heavy metal in the RAP-FA blend.

Keywords: recycled asphalt pavement, geopolymer, heavy metal, microstructure

Procedia PDF Downloads 81
5983 Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand

Authors: Sisuwan Kaseamsawat, Sivapan Choo-In

Abstract:

A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn.

Keywords: heavy metal, orchard, pollution and monitoring, sediment

Procedia PDF Downloads 357
5982 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method

Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, S. Piskin, N. Tugrul

Abstract:

Zinc borate is an important inorganic hydrate borate material, which can be use as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame reterdant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2•(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2•(OH)6 : H3BO3). After the zinc borate synthesis, the products analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 (Zn5(CO3)2•(OH)6:H3BO3) is determined for the synthesis of zinc borates with ultrasonic method.

Keywords: borate, ultrasonic method, zinc borate, zinc borate synthesis

Procedia PDF Downloads 369
5981 Development of an Integrated Reaction Design for the Enzymatic Production of Lactulose

Authors: Natan C. G. Silva, Carlos A. C. Girao Neto, Marcele M. S. Vasconcelos, Luciana R. B. Goncalves, Maria Valderez P. Rocha

Abstract:

Galactooligosaccharides (GOS) are sugars with prebiotic function that can be synthesized chemically or enzymatically, and this last one can be promoted by the action of β-galactosidases. In addition to favoring the transgalactosylation reaction to form GOS, these enzymes can also catalyze the hydrolysis of lactose. A highly studied type of GOS is lactulose because it presents therapeutic properties and is a health promoter. Among the different raw materials that can be used to produce lactulose, whey stands out as the main by-product of cheese manufacturing, and its discarded is harmful to the environment due to the residual lactose present. Therefore, its use is a promising alternative to solve this environmental problem. Thus, lactose from whey is hydrolyzed into glucose and galactose by β-galactosidases. However, in order to favor the transgalactosylation reaction, the medium must contain fructose, due this sugar reacts with galactose to produce lactulose. Then, the glucose-isomerase enzyme can be used for this purpose, since it promotes the isomerization of glucose into fructose. In this scenario, the aim of the present work was first to develop β-galactosidase biocatalysts of Kluyveromyces lactis and to apply it in the integrated reactions of hydrolysis, isomerization (with the glucose-isomerase from Streptomyces murinus) and transgalactosylation reaction, using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% glutaraldehyde was evaluated using different enzymatic loads (2, 5, 7, 10, and 12 mg/g). Subsequently, the hydrolysis and transgalactosylation reactions were studied and conducted at 50°C, 120 RPM for 20 minutes. In parallel, the isomerization of glucose into fructose was evaluated under conditions of 70°C, 750 RPM for 90 min. After, the integration of the three processes for the production of lactulose was investigated. Among the evaluated loads, 7 mg/g was chosen because the best activity of the derivative (44.3 U/g) was obtained, being this parameter determinant for the reaction stages. The other parameters of immobilization yield (87.58%) and recovered activity (46.47%) were also satisfactory compared to the other conditions. Regarding the integrated process, 94.96% of lactose was converted, achieving 37.56 g/L and 37.97 g/L of glucose and galactose, respectively. In the isomerization step, conversion of 38.40% of glucose was observed, obtaining a concentration of 12.47 g/L fructose. In the transgalactosylation reaction was produced 13.15 g/L lactulose after 5 min. However, in the integrated process, there was no formation of lactulose, but it was produced other GOS at the same time. The high galactose concentration in the medium probably favored the reaction of synthesis of these other GOS. Therefore, the integrated process proved feasible for possible production of prebiotics. In addition, this process can be economically viable due to the use of an industrial residue as a substrate, but it is necessary a more detailed investigation of the transgalactosilation reaction.

Keywords: beta-galactosidase, glucose-isomerase, galactooligosaccharides, lactulose, whey

Procedia PDF Downloads 114
5980 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion

Authors: Shangerganesh Lingeshwaran

Abstract:

In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.

Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method

Procedia PDF Downloads 206
5979 Surface Functionalization of Chemical Vapor Deposition Grown Graphene Film

Authors: Prashanta Dhoj Adhikari

Abstract:

We report the introduction of the active surface functionalization group on chemical vapor deposition (CVD) grown graphene film by wet deposition method. The activity of surface functionalized group was tested with surface modified carbon nanotubes (CNTs) and found that both materials were amalgamated by chemical bonding. The introduction of functional group on the graphene film surface and its vigorous role to bind CNTs with the present technique could provide an efficient, novel route to device fabrication.

Keywords: chemical vapor deposition, graphene film, surface functionalization

Procedia PDF Downloads 438