Search results for: skew inverse Laurent series rings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3363

Search results for: skew inverse Laurent series rings

3363 Jacobson Semisimple Skew Inverse Laurent Series Rings

Authors: Ahmad Moussavi

Abstract:

In this paper, we are concerned with the Jacobson semisimple skew inverse Laurent series rings R((x−1; α, δ)) and the skew Laurent power series rings R[[x, x−1; α]], where R is an associative ring equipped with an automorphism α and an α-derivation δ. Examples to illustrate and delimit the theory are provided.

Keywords: skew polynomial rings, Laurent series, skew inverse Laurent series rings

Procedia PDF Downloads 165
3362 Generalized π-Armendariz Authentication Cryptosystem

Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi

Abstract:

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

Keywords: cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol

Procedia PDF Downloads 217
3361 A Characterization of Skew Cyclic Code with Complementary Dual

Authors: Eusebio Jr. Lina, Ederlina Nocon

Abstract:

Cyclic codes are a fundamental subclass of linear codes that enjoy a very interesting algebraic structure. The class of skew cyclic codes (or θ-cyclic codes) is a generalization of the notion of cyclic codes. This a very large class of linear codes which can be used to systematically search for codes with good properties. A linear code with complementary dual (LCD code) is a linear code C satisfying C ∩ C^⊥ = {0}. This subclass of linear codes provides an optimum linear coding solution for a two-user binary adder channel and plays an important role in countermeasures to passive and active side-channel analyses on embedded cryptosystems. This paper aims to identify LCD codes from the class of skew cyclic codes. Let F_q be a finite field of order q, and θ be an automorphism of F_q. Some conditions for a skew cyclic code to be LCD were given. To this end, the properties of a noncommutative skew polynomial ring F_q[x, θ] of automorphism type were revisited, and the algebraic structure of skew cyclic code using its skew polynomial representation was examined. Using the result that skew cyclic codes are left ideals of the ring F_q[x, θ]/〈x^n-1〉, a characterization of a skew cyclic LCD code of length n was derived. A necessary condition for a skew cyclic code to be LCD was also given.

Keywords: LCD cyclic codes, skew cyclic LCD codes, skew cyclic complementary dual codes, theta-cyclic codes with complementary duals

Procedia PDF Downloads 345
3360 Skew Cyclic Codes over Fq+uFq+…+uk-1Fq

Authors: Jing Li, Xiuli Li

Abstract:

This paper studies a special class of linear codes, called skew cyclic codes, over the ring R= Fq+uFq+…+uk-1Fq, where q is a prime power. A Gray map ɸ from R to Fq and a Gray map ɸ' from Rn to Fnq are defined, as well as an automorphism Θ over R. It is proved that the images of skew cyclic codes over R under map ɸ' and Θ are cyclic codes over Fq, and they still keep the dual relation.

Keywords: skew cyclic code, gray map, automorphism, cyclic code

Procedia PDF Downloads 297
3359 Some Properties in Jordan Ideal on 3-Prime Near-Rings

Authors: Abdelkarim Boua, Abdelhakim Chillali

Abstract:

The study of non-associative structures in algebraic structures has become a separate entity; for, in the case of groups, their corresponding non-associative structure i.e. loops is dealt with separately. Similarly there is vast amount of research on the nonassociative structures of semigroups i.e. groupoids and that of rings i.e. nonassociative rings. However it is unfortunate that we do not have a parallel notions or study of non-associative near-rings. In this work we shall attempt to generalize a few known results and study the commutativity of Jordan ideal in 3-prime near-rings satisfying certain identities involving the Jordan ideal. We study the derivations satisfying certain differential identities on Jordan ideals of 3-prime near-rings. Moreover, we provide examples to show that hypothesis of our results are necessary. We give some new results and examples concerning the existence of Jordan ideal and derivations in near-rings. These near-rings can be used to build a new codes.

Keywords: 3-prime near-rings, near-rings, Jordan ideal, derivations

Procedia PDF Downloads 306
3358 The Modality of Multivariate Skew Normal Mixture

Authors: Bader Alruwaili, Surajit Ray

Abstract:

Finite mixtures are a flexible and powerful tool that can be used for univariate and multivariate distributions, and a wide range of research analysis has been conducted based on the multivariate normal mixture and multivariate of a t-mixture. Determining the number of modes is an important activity that, in turn, allows one to determine the number of homogeneous groups in a population. Our work currently being carried out relates to the study of the modality of the skew normal distribution in the univariate and multivariate cases. For the skew normal distribution, the aims are associated with studying the modality of the skew normal distribution and providing the ridgeline, the ridgeline elevation function, the $\Pi$ function, and the curvature function, and this will be conducive to an exploration of the number and location of mode when mixing the two components of skew normal distribution. The subsequent objective is to apply these results to the application of real world data sets, such as flow cytometry data.

Keywords: mode, modality, multivariate skew normal, finite mixture, number of mode

Procedia PDF Downloads 488
3357 A Study on Weddernburn – Artin Theorem for Rings

Authors: Fahad Suleiman, Sammani Abdullahi

Abstract:

The study depicts that a Wedderburn Artin – theorem for rings is considered to be a semisimple ring R which is isomorphic to a product of finitely many mi by mi matrix rings over division rings Di, for some integers n_i, both of which are uniquely determined up to permutation of the index i. It has been concluded that when R is simple the Wedderburn – Artin theorem is known as Wedderburn’s theorem.

Keywords: Commutativity, Wedderburn theorem, Semisimple ring, R module

Procedia PDF Downloads 164
3356 Prime Graphs of Polynomials and Power Series Over Non-Commutative Rings

Authors: Walaa Obaidallah Alqarafi, Wafaa Mohammed Fakieh, Alaa Abdallah Altassan

Abstract:

Algebraic graph theory is defined as a bridge between algebraic structures and graphs. It has several uses in many fields, including chemistry, physics, and computer science. The prime graph is a type of graph associated with a ring R, where the vertex set is the whole ring R, and two vertices x and y are adjacent if either xRy=0 or yRx=0. However, the investigation of the prime graph over rings remains relatively limited. The behavior of this graph in extended rings, like R[x] and R[[x]], where R is a non-commutative ring, deserves more attention because of the wider applicability in algebra and other mathematical fields. To study the prime graphs over polynomials and power series rings, we used a combination of ring-theoretic and graph-theoretic techniques. This paper focuses on two invariants: the diameter and the girth of these graphs. Furthermore, the work discusses how the graph structures change when passing from R to R[x] and R[[x]]. In our study, we found that the set of strong zero-divisors of ring R represents the set of vertices in prime graphs. Based on this discovery, we redefined the vertices of prime graphs using the definition of strong zero divisors. Additionally, our results show that although the prime graphs of R[x] and R[[x]] are comparable to the graph of R, they have different combinatorial characteristics since these extensions contain new strong zero-divisors. In particular, we find conditions in which the diameter and girth of the graphs, as they expand from R to R[x] and R[[x]], do not change or do change. In conclusion, this study shows how extending a non-commutative ring R to R[x] and R[[x]] affects the structure of their prime graphs, particularly in terms of diameter and girth. These findings enhance the understanding of the relationship between ring extensions and graph properties.

Keywords: prime graph, diameter, girth, polynomial ring, power series ring

Procedia PDF Downloads 18
3355 Contribution of Intermediate Diaphragms on LDFs of Straight and Skew Concrete Multicell Box-Girder Bridges

Authors: Iman Mohseni

Abstract:

Current studies indicate that neglecting the effect of intermediate diaphragms might lead to highly conservative values for bending moment distribution factors and result in non-economic designs for skew bridges. This paper reports on a parametric study performed on 160 prototypes of straight and skew concrete multicell box-girder bridges. The obtained results were used to develop practical expressions to account for the diaphragm effects on American Association of State Highway and Transportation Officials formulas for live load distribution factors. It was observed that decks with internal transverse diaphragms perpendicular to the longitudinal webs are the best arrangement for load distribution in skew bridges.

Keywords: box bridges, truck, distribution factor, diaphragm

Procedia PDF Downloads 380
3354 Modelling of Induction Motor Including Skew Effect Using MWFA for Performance Improvement

Authors: M. Harir, A. Bendiabdellah, A. Chaouch, N. Benouzza

Abstract:

This paper deals with the modelling and simulation of the squirrel cage induction motor by taking into account all space harmonic components, as well as the introduction of the bars skew, in the calculation of the linear evolution of the magnetomotive force (MMF) between the slots extremities. The model used is based on multiple coupled circuits and the modified winding function approach (MWFA). The effect of skewing is included in the calculation of motors inductances with an axial asymmetry in the rotor. The simulation results in both time and spectral domains show the effectiveness and merits of the model and the error that may be caused if the skew of the bars is neglected.

Keywords: modeling, MWFA, skew effect, squirrel cage induction motor, spectral domain

Procedia PDF Downloads 439
3353 Application of Soft Sets to Non-Associative Rings

Authors: Inayatur Rehman

Abstract:

Molodtstove developed the theory of soft sets which can be seen as an effective tool to deal with uncertainties. Since the introduction of this concept, the application of soft sets has been restricted to associative algebraic structures (groups, semi groups, associative rings, semi-rings etc.). Acceptably, though the study of soft sets, where the base set of parameters is a commutative structure, has attracted the attention of many researchers for more than one decade. But on the other hand there are many sets which are naturally endowed by two compatible binary operations forming a non-associative ring and we may dig out examples which investigate a non-associative structure in the context of soft sets. Thus it seems natural to apply the concept of soft sets to non-commutative and non-associative structures. In present paper, we make a new approach to apply Molodtsoves notion of soft sets to LA-ring (a class of non-associative ring). We extend the study of soft commutative rings from theoretical aspect.

Keywords: soft sets, LA-rings, soft LA-rings, soft ideals, soft prime ideals, idealistic soft LA-rings, LA-ring homomorphism

Procedia PDF Downloads 463
3352 The Analogue of a Property of Pisot Numbers in Fields of Formal Power Series

Authors: Wiem Gadri

Abstract:

This study delves into the intriguing properties of Pisot and Salem numbers within the framework of formal Laurent series over finite fields, a domain where these numbers’ spectral charac-teristics, Λm(β) and lm(β), have yet to be fully explored. Utilizing a methodological approach that combines algebraic number theory with the analysis of power series, we extend the foundational work of Erdos, Joo, and Komornik to this new setting. Our research uncovers bounds for lm(β), revealing how these depend on the degree of the minimal polynomial of β and thus offering a novel characterization of Pisot and Salem formal power series. The findings significantly contribute to our understanding of these numbers, highlighting their distribution and properties in the context of formal power series. This investigation not only bridges number theory with formal power series analysis but also sets the stage for further interdisciplinary research in these areas.

Keywords: Pisot numbers, Salem numbers, formal power series, over a finite field

Procedia PDF Downloads 51
3351 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.

Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document

Procedia PDF Downloads 158
3350 Solution for Rider Ring Wear Problem in Boil off Gas Reciprocating Compressor: A Case Study

Authors: Hessam Mortezaei, Saeid Joudakian

Abstract:

In this paper, the wear problem on rider rings of boil off gas compressor has been studied. This kind of oil free double acting compressor has free floating piston (FFP) technology and as a result of that it should have the lowest possible wear on its rider rings. But a design problem had caused a complete wear of rider rings after one month of continuous operation. In this case study, the source of this problem was recognized and solved.

Keywords: piston rider, rings, gas distribution, pressure wear

Procedia PDF Downloads 366
3349 On Modules over Dedekind Prime Rings

Authors: Elvira Kusniyanti, Hanni Garminia, Pudji Astuti

Abstract:

This research studies an interconnection between finitely generated uniform modules and Dedekind prime rings. The characterization of modules over Dedekind prime rings that will be investigated is an adoption of Noetherian and hereditary concept. Dedekind prime rings are Noetherian and hereditary rings. This property of Dedekind prime rings is a background of the idea of adopting arises. In Noetherian area, it was known that a ring R is Noetherian ring if and only if every finitely generated R-module is a Noetherian module. Similar to that result, a characterization of the hereditary ring is related to its projective modules. That is, a ring R is hereditary ring if and only if every projective R-module is a hereditary module. Due to the above two results, we suppose that characterization of a Dedekind prime ring can be analyzed from finitely generated modules over it. We propose a conjecture: a ring R is a Dedekind prime ring if and only if every finitely generated uniform R-module is a Dedekind module. In this article, we will generalize a concept of the Dedekind module for non-commutative ring case and present a part of the above conjecture.

Keywords: dedekind domains, dedekind prime rings, dedekind modules, uniform modules

Procedia PDF Downloads 441
3348 Evaluation of Hydrocarbons in Tissues of Bivalve Mollusks from the Red Sea Coast

Authors: Asma Ahmed Aljohani, Mohammed Orif

Abstract:

The concentration of polycyclic aromatic hydrocarbons (PAH) in clam (A. glabrata) was examined in samples collected from Alseef Beach, 30 km south of Jeddah city. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the 14 PAHs. The concentration of total PAHs was found to range from 11.521 to 40.149 ng/gdw with a mean concentration of 21.857 ng/gdw, which is lower compared to similar studies. The lower molecular weight PAHs with three rings comprised 18.14% of the total PAH concentrations in the clams, while the high molecular weight PAHs with four rings, five rings, and six rings account for 81.86%. Diagnostic ratios for PAH source distinction suggested pyrogenic or anthropogenic sources.

Keywords: bivalves, biomonitoring, hydrocarbons, PAHs

Procedia PDF Downloads 98
3347 On Direct Matrix Factored Inversion via Broyden's Updates

Authors: Adel Mohsen

Abstract:

A direct method based on the good Broyden's updates for evaluating the inverse of a nonsingular square matrix of full rank and solving related system of linear algebraic equations is studied. For a matrix A of order n whose LU-decomposition is A = LU, the multiplication count is O (n3). This includes the evaluation of the LU-decompositions of the inverse, the lower triangular decomposition of A as well as a “reduced matrix inverse”. If an explicit value of the inverse is not needed the order reduces to O (n3/2) to compute to compute inv(U) and the reduced inverse. For a symmetric matrix only O (n3/3) operations are required to compute inv(L) and the reduced inverse. An example is presented to demonstrate the capability of using the reduced matrix inverse in treating ill-conditioned systems. Besides the simplicity of Broyden's update, the method provides a mean to exploit the possible sparsity in the matrix and to derive a suitable preconditioner.

Keywords: Broyden's updates, matrix inverse, inverse factorization, solution of linear algebraic equations, ill-conditioned matrices, preconditioning

Procedia PDF Downloads 479
3346 The Extended Skew Gaussian Process for Regression

Authors: M. T. Alodat

Abstract:

In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.

Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model

Procedia PDF Downloads 553
3345 Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle

Authors: Raymond Yudhi Purba, Levy Olivia Nur, Radial Anwar

Abstract:

This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB.

Keywords: skew planar wheel, cloverleaf, first-person view, unmanned aerial vehicle, parameter sweep

Procedia PDF Downloads 216
3344 An Approach to Solving Some Inverse Problems for Parabolic Equations

Authors: Bolatbek Rysbaiuly, Aliya S. Azhibekova

Abstract:

Problems concerning the interpretation of the well testing results belong to the class of inverse problems of subsurface hydromechanics. The distinctive feature of such problems is that additional information is depending on the capabilities of oilfield experiments. Another factor that should not be overlooked is the existence of errors in the test data. To determine reservoir properties, some inverse problems for parabolic equations were investigated. An approach to solving the inverse problems based on the method of regularization is proposed.

Keywords: iterative approach, inverse problem, parabolic equation, reservoir properties

Procedia PDF Downloads 428
3343 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: computational fluid dynamics, shock-wave, unsteady jet, vortex ring

Procedia PDF Downloads 470
3342 3D Interferometric Imaging Using Compressive Hardware Technique

Authors: Mor Diama L. O., Matthieu Davy, Laurent Ferro-Famil

Abstract:

In this article, inverse synthetic aperture radar (ISAR) is combined with compressive imaging techniques in order to perform 3D interferometric imaging. Interferometric ISAR (InISAR) imaging relies on a two-dimensional antenna array providing diversities in the elevation and azimuth directions. However, the signals measured over several antennas must be acquired by coherent receivers resulting in costly and complex hardware. This paper proposes to use a chaotic cavity as a compressive device to encode the signals arising from several antennas into a single output port. These signals are then reconstructed by solving an inverse problem. Our approach is demonstrated experimentally with a 3-elements L-shape array connected to a metallic compressive enclosure. The interferometric phases estimated from a unique broadband signal are used to jointly estimate the target’s effective rotation rate and the height of the dominant scattering centers of our target. Our experimental results show that the use of the compressive device does not adversely affect the performance of our imaging process. This study opens new perspectives to reduce the hardware complexity of high-resolution ISAR systems.

Keywords: interferometric imaging, inverse synthetic aperture radar, compressive device, computational imaging

Procedia PDF Downloads 160
3341 Congruences Induced by Certain Relations on Ag**-Groupoids

Authors: Faisal Yousafzai, Murad-ul-Islam Khan, Kar Ping Shum

Abstract:

We introduce the concept of partially inverse AG**-groupoids which is almost parallel to the concepts of E-inversive semigroups and E-inversive E-semigroups. Some characterization problems are provided on partially inverse AG**-groupoids. We give necessary and sufficient conditions for a partially inverse AG**-subgroupoid E to be a rectangular band. Furthermore, we determine the unitary congruence η on a partially inverse AG**-groupoid and show that each partially inverse AG**-groupoid possesses an idempotent separating congruence μ. We also study anti-separative commutative image of a locally associative AG**-groupoid. Finally, we give the concept of completely N-inverse AG**-groupoid and characterize a maximum idempotent separating congruence.

Keywords: AG**-groupoids, congruences, inverses, rectangular band

Procedia PDF Downloads 341
3340 Uncontrollable Inaccuracy in Inverse Problems

Authors: Yu Menshikov

Abstract:

In this paper the influence of errors of function derivatives in initial time which have been obtained by experiment (uncontrollable inaccuracy) to the results of inverse problem solution was investigated. It was shown that these errors distort the inverse problem solution as a rule near the beginning of interval where the solution are analyzed. Several methods for remove the influence of uncontrollable inaccuracy have been suggested.

Keywords: inverse problems, filtration, uncontrollable inaccuracy

Procedia PDF Downloads 505
3339 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index

Authors: Funda Kul, İsmail Gür

Abstract:

Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.

Keywords: mortality, forecasting, lee-carter model, normal inverse gaussian distribution

Procedia PDF Downloads 360
3338 Inverse Matrix in the Theory of Dynamical Systems

Authors: Renata Masarova, Bohuslava Juhasova, Martin Juhas, Zuzana Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: dynamic system, transfer matrix, inverse matrix, modeling

Procedia PDF Downloads 515
3337 Inverse Scattering for a Second-Order Discrete System via Transmission Eigenvalues

Authors: Abdon Choque-Rivero

Abstract:

The Jacobi system with the Dirichlet boundary condition is considered on a half-line lattice when the coefficients are real valued. The inverse problem of recovery of the coefficients from various data sets containing the so-called transmission eigenvalues is analyzed. The Marchenko method is utilized to solve the corresponding inverse problem.

Keywords: inverse scattering, discrete system, transmission eigenvalues, Marchenko method

Procedia PDF Downloads 144
3336 Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution

Authors: Gabriel I. Loaiza Ossa, Carlos A. Cadavid Moreno, Juan C. Arango Parra

Abstract:

It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family.

Keywords: base of changes, information geometry, inverse Gaussian distribution, inverse q-Gaussian distribution, statistical manifolds

Procedia PDF Downloads 244
3335 Study of Climate Change Process on Hyrcanian Forests Using Dendroclimatology Indicators (Case Study of Guilan Province)

Authors: Farzad Shirzad, Bohlol Alijani, Mehry Akbary, Mohammad Saligheh

Abstract:

Climate change and global warming are very important issues today. The process of climate change, especially changes in temperature and precipitation, is the most important issue in the environmental sciences. Climate change means changing the averages in the long run. Iran is located in arid and semi-arid regions due to its proximity to the equator and its location in the subtropical high pressure zone. In this respect, the Hyrcanian forest is a green necklace between the Caspian Sea and the south of the Alborz mountain range. In the forty-third session of UNESCO, it was registered as the second natural heritage of Iran. Beech is one of the most important tree species and the most industrial species of Hyrcanian forests. In this research, using dendroclimatology, the width of the tree ring, and climatic data of temperature and precipitation from Shanderman meteorological station located in the study area, And non-parametric Mann-Kendall statistical method to investigate the trend of climate change over a time series of 202 years of growth ringsAnd Pearson statistical method was used to correlate the growth of "ring" growth rings of beech trees with climatic variables in the region. The results obtained from the time series of beech growth rings showed that the changes in beech growth rings had a downward and negative trend and were significant at the level of 5% and climate change occurred. The average minimum, medium, and maximum temperatures and evaporation in the growing season had an increasing trend, and the annual precipitation had a decreasing trend. Using Pearson method during fitting the correlation of diameter of growth rings with temperature, for the average in July, August, and September, the correlation is negative, and the average temperature in July, August, and September is negative, and for the average The average maximum temperature in February was correlation-positive and at the level of 95% was significant, and with precipitation, in June the correlation was at the level of 95% positive and significant.

Keywords: climate change, dendroclimatology, hyrcanian forest, beech

Procedia PDF Downloads 104
3334 Powered Two-Wheeler Rider’s Comfort over Road Sections with Skew Superelevation

Authors: Panagiotis Lemonakis, Nikolaos Moisiadis, Andromachi Gkoutzini, George Kaliabetsos, Nikos Eliou

Abstract:

The proper surface water drainage not only affects vehicle movement dynamics but also increases the likelihood of an accident due to the fact that inadequate drainage is associated with potential hydroplaning and splash and spray driving conditions. Nine solutions have been proposed to address hydroplaning in sections with inadequate drainage, e.g., augmented superelevation and longitudinal rates, reduction of runoff length, and skew superelevation. The latter has been extensively implemented in highways recently, enhancing the safety level in the applied road segments in regards to the effective drainage of the rainwater. However, the concept of the skew superelevation has raised concerns regarding the driver’s comfort when traveling over skew superelevation sections, particularly at high speeds. These concerns alleviated through the concept of the round-up skew superelevation, which reduces both the lateral and the vertical acceleration imposed to the drivers and hence, improves comfort and traffic safety. Various research studies aimed at investigating driving comfort by evaluating the lateral and vertical accelerations sustained by the road users and vehicles. These studies focused on the influence of the skew superelevation to passenger cars, buses and trucks, and the drivers themselves, traveling at a certain range of speeds either below or above the design speed. The outcome of these investigations which based on the use of simulations, revealed that the imposed accelerations did not exceed the statutory thresholds even when the travelling speed was significantly greater than the design speed. Nevertheless, the effect of the skew superelevation to other vehicle types for instance, motorcycles, has not been investigated so far. The present research study aims to bridge this gap by investigating the impact of skew superelevation on the motorcycle rider’s comfort. Power two-wheeler riders are susceptible to any changes on the pavement surface and therefore a comparison between the traditional superelevation practice and the skew superelevation concept is of paramount importance. The methodology based on the utilization of sophisticated software in order to design the model of the road for several values of the longitudinal slope. Based on the values of the slopes and the use of a mathematical equation, the accelerations imposed on the wheel of the motorcycle were calculated. Due to the fact that the final aim of the study is the influence of the skew superelevation to the rider, it was deemed necessary to convey the calculated accelerations from the wheel to the rider. That was accomplished by implementing the quarter car suspension model adjusted to the features of two-wheeler vehicles. Finally, the accelerations derived from this process evaluated according to specific thresholds originated from the International Organization for Standardization, which correspond to certain levels of comfort. The most important conclusion drawn is that the comfort of the riders is not dependent on the form of road gradient to a great extent due to the fact that the vertical acceleration imposed to the riders took similar values regardless of the value of the longitudinal slope.

Keywords: acceleration, comfort, motorcycle, safety, skew superelevation

Procedia PDF Downloads 152