Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1039

Search results for: skew cyclic LCD codes

1039 A Characterization of Skew Cyclic Code with Complementary Dual

Authors: Eusebio Jr. Lina, Ederlina Nocon

Abstract:

Cyclic codes are a fundamental subclass of linear codes that enjoy a very interesting algebraic structure. The class of skew cyclic codes (or θ-cyclic codes) is a generalization of the notion of cyclic codes. This a very large class of linear codes which can be used to systematically search for codes with good properties. A linear code with complementary dual (LCD code) is a linear code C satisfying C ∩ C^⊥ = {0}. This subclass of linear codes provides an optimum linear coding solution for a two-user binary adder channel and plays an important role in countermeasures to passive and active side-channel analyses on embedded cryptosystems. This paper aims to identify LCD codes from the class of skew cyclic codes. Let F_q be a finite field of order q, and θ be an automorphism of F_q. Some conditions for a skew cyclic code to be LCD were given. To this end, the properties of a noncommutative skew polynomial ring F_q[x, θ] of automorphism type were revisited, and the algebraic structure of skew cyclic code using its skew polynomial representation was examined. Using the result that skew cyclic codes are left ideals of the ring F_q[x, θ]/〈x^n-1〉, a characterization of a skew cyclic LCD code of length n was derived. A necessary condition for a skew cyclic code to be LCD was also given.

Keywords: LCD cyclic codes, skew cyclic LCD codes, skew cyclic complementary dual codes, theta-cyclic codes with complementary duals

Procedia PDF Downloads 187
1038 Skew Cyclic Codes over Fq+uFq+…+uk-1Fq

Authors: Jing Li, Xiuli Li

Abstract:

This paper studies a special class of linear codes, called skew cyclic codes, over the ring R= Fq+uFq+…+uk-1Fq, where q is a prime power. A Gray map ɸ from R to Fq and a Gray map ɸ' from Rn to Fnq are defined, as well as an automorphism Θ over R. It is proved that the images of skew cyclic codes over R under map ɸ' and Θ are cyclic codes over Fq, and they still keep the dual relation.

Keywords: skew cyclic code, gray map, automorphism, cyclic code

Procedia PDF Downloads 142
1037 Jacobson Semisimple Skew Inverse Laurent Series Rings

Authors: Ahmad Moussavi

Abstract:

In this paper, we are concerned with the Jacobson semisimple skew inverse Laurent series rings R((x−1; α, δ)) and the skew Laurent power series rings R[[x, x−1; α]], where R is an associative ring equipped with an automorphism α and an α-derivation δ. Examples to illustrate and delimit the theory are provided.

Keywords: skew polynomial rings, Laurent series, skew inverse Laurent series rings

Procedia PDF Downloads 57
1036 Designing a Cyclic Redundancy Checker-8 for 32 Bit Input Using VHDL

Authors: Ankit Shai

Abstract:

CRC or Cyclic Redundancy Check is one of the most common, and one of the most powerful error-detecting codes implemented on modern computers. Most of the modern communication protocols use some error detection algorithms in digital networks and storage devices to detect accidental changes to raw data between transmission and reception. Cyclic Redundancy Check, or CRC, is the most popular one among these error detection codes. CRC properties are defined by the generator polynomial length and coefficients. The aim of this project is to implement an efficient FPGA based CRC-8 that accepts a 32 bit input, taking into consideration optimal chip area and high performance, using VHDL. The proposed architecture is implemented on Xilinx ISE Simulator. It is designed while keeping in mind the hardware design, complexity and cost factor.

Keywords: cyclic redundancy checker, CRC-8, 32-bit input, FPGA, VHDL, ModelSim, Xilinx

Procedia PDF Downloads 220
1035 Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes

Authors: Dmitry Dikarev, Ajit Nimbalker, Alexei Davydov

Abstract:

Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard.

Keywords: 5G New Radio, channel coding, cyclic redundancy check, list decoding, polar codes

Procedia PDF Downloads 126
1034 Investigations on the Seismic Performance of Hot-Finished Hollow Steel Sections

Authors: Paola Pannuzzo, Tak-Ming Chan

Abstract:

In seismic applications, hollow steel sections show, beyond undeniable esthetical appeal, promising structural advantages since, unlike open section counterparts, they are not susceptible to weak-axis and lateral-torsional buckling. In particular, hot-finished hollow steel sections have homogeneous material properties and favorable ductility but have been underutilized for cyclic bending. The main reason is that the parameters affecting their hysteretic behaviors are not yet well understood and, consequently, are not well exploited in existing codes of practice. Therefore, experimental investigations have been conducted on a wide range of hot-finished rectangular hollow section beams with the aim to providing basic knowledge for evaluating their seismic performance. The section geometry (width-to-thickness and depth-to-thickness ratios) and the type of loading (monotonic and cyclic) have been chosen as the key parameters to investigate the cyclic effect on the rotational capacity and to highlight the differences between monotonic and cyclic load conditions. The test results provide information on the parameters that affect the cyclic performance of hot-finished hollow steel beams and can be used to assess the design provisions stipulated in the current seismic codes of practice.

Keywords: bending, cyclic test, finite element modeling, hollow sections, hot-finished sections

Procedia PDF Downloads 58
1033 The Modality of Multivariate Skew Normal Mixture

Authors: Bader Alruwaili, Surajit Ray

Abstract:

Finite mixtures are a flexible and powerful tool that can be used for univariate and multivariate distributions, and a wide range of research analysis has been conducted based on the multivariate normal mixture and multivariate of a t-mixture. Determining the number of modes is an important activity that, in turn, allows one to determine the number of homogeneous groups in a population. Our work currently being carried out relates to the study of the modality of the skew normal distribution in the univariate and multivariate cases. For the skew normal distribution, the aims are associated with studying the modality of the skew normal distribution and providing the ridgeline, the ridgeline elevation function, the $\Pi$ function, and the curvature function, and this will be conducive to an exploration of the number and location of mode when mixing the two components of skew normal distribution. The subsequent objective is to apply these results to the application of real world data sets, such as flow cytometry data.

Keywords: mode, modality, multivariate skew normal, finite mixture, number of mode

Procedia PDF Downloads 404
1032 Tailoring the Parameters of the Quantum MDS Codes Constructed from Constacyclic Codes

Authors: Jaskarn Singh Bhullar, Divya Taneja, Manish Gupta, Rajesh Kumar Narula

Abstract:

The existence conditions of dual containing constacyclic codes have opened a new path for finding quantum maximum distance separable (MDS) codes. Using these conditions parameters of length n=(q²+1)/2 quantum MDS codes were improved. A class of quantum MDS codes of length n=(q²+q+1)/h, where h>1 is an odd prime, have also been constructed having large minimum distance and these codes are new in the sense as these are not available in the literature.

Keywords: hermitian construction, constacyclic codes, cyclotomic cosets, quantum MDS codes, singleton bound

Procedia PDF Downloads 269
1031 Performance Comparison of Non-Binary RA and QC-LDPC Codes

Authors: Ni Wenli, He Jing

Abstract:

Repeat–Accumulate (RA) codes are subclass of LDPC codes with fast encoder structures. In this paper, we consider a nonbinary extension of binary LDPC codes over GF(q) and construct a non-binary RA code and a non-binary QC-LDPC code over GF(2^4), we construct non-binary RA codes with linear encoding method and non-binary QC-LDPC codes with algebraic constructions method. And the BER performance of RA and QC-LDPC codes over GF(q) are compared with BP decoding and by simulation over the Additive White Gaussian Noise (AWGN) channels.

Keywords: non-binary RA codes, QC-LDPC codes, performance comparison, BP algorithm

Procedia PDF Downloads 280
1030 Comparative Study of Isothermal and Cyclic Oxidation on Titanium Alloys

Authors: Poonam Yadav, Dong Bok Lee

Abstract:

Isothermal oxidation at 800°C for 50h and Cyclic oxidation at 600°C and 800°C for 40h of Pure Ti and Ti64 were performed in a muffle furnace. In Cyclic oxidation, massive scale spallation occurred, and the oxide scale cracks and peels off were observed at high temperature, it represents oxide scale that formed during cyclic oxidation was spalled out owing to stresses due to thermal shock generated during repetitive oxidation and subsequent cooling. The thickness of scale is larger in cyclic oxidation than the isothermal case. This is due to inward diffusion of oxygen through oxide scales and/or pores and cracks in cyclic oxidation.

Keywords: cyclic, diffusion, isothermal, cyclic

Procedia PDF Downloads 415
1029 Contribution of Intermediate Diaphragms on LDFs of Straight and Skew Concrete Multicell Box-Girder Bridges

Authors: Iman Mohseni

Abstract:

Current studies indicate that neglecting the effect of intermediate diaphragms might lead to highly conservative values for bending moment distribution factors and result in non-economic designs for skew bridges. This paper reports on a parametric study performed on 160 prototypes of straight and skew concrete multicell box-girder bridges. The obtained results were used to develop practical expressions to account for the diaphragm effects on American Association of State Highway and Transportation Officials formulas for live load distribution factors. It was observed that decks with internal transverse diaphragms perpendicular to the longitudinal webs are the best arrangement for load distribution in skew bridges.

Keywords: box bridges, truck, distribution factor, diaphragm

Procedia PDF Downloads 190
1028 Modelling of Induction Motor Including Skew Effect Using MWFA for Performance Improvement

Authors: M. Harir, A. Bendiabdellah, A. Chaouch, N. Benouzza

Abstract:

This paper deals with the modelling and simulation of the squirrel cage induction motor by taking into account all space harmonic components, as well as the introduction of the bars skew, in the calculation of the linear evolution of the magnetomotive force (MMF) between the slots extremities. The model used is based on multiple coupled circuits and the modified winding function approach (MWFA). The effect of skewing is included in the calculation of motors inductances with an axial asymmetry in the rotor. The simulation results in both time and spectral domains show the effectiveness and merits of the model and the error that may be caused if the skew of the bars is neglected.

Keywords: modeling, MWFA, skew effect, squirrel cage induction motor, spectral domain

Procedia PDF Downloads 344
1027 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.

Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document

Procedia PDF Downloads 77
1026 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7

Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam

Abstract:

Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.

Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints

Procedia PDF Downloads 259
1025 Synthesis and Characterization of Cyclic PNC-28 Peptide, Residues 17–26 (ETFSDLWKLL), A Binding Domain of p53

Authors: Deepshikha Verma, V. N. Rajasekharan Pillai

Abstract:

The present study reports the synthesis of cyclic PNC-28 peptides with solid-phase peptide synthesis method. In the first step, we synthesize the linear PNC-28 Peptide and in the second step, we cyclize (N-to-C or head-to-tail cyclization) the linear PNC-28 peptide. The molecular formula of cyclic PNC-28 peptide is C64H88N12O16 and its m/z mass is ≈1233.64. Elemental analysis of cyclic PNC-28 is C, 59.99; H, 6.92; N, 13.12; O, 19.98. The characterization of LC-MS, CD, FT-IR, and 1HNMR has been done to confirm the successful synthesis and cyclization of linear PNC-28 peptides.

Keywords: CD, FTIR, 1HNMR, cyclic peptide

Procedia PDF Downloads 14
1024 The Extended Skew Gaussian Process for Regression

Authors: M. T. Alodat

Abstract:

In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.

Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model

Procedia PDF Downloads 417
1023 Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle

Authors: Raymond Yudhi Purba, Levy Olivia Nur, Radial Anwar

Abstract:

This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB.

Keywords: skew planar wheel, cloverleaf, first-person view, unmanned aerial vehicle, parameter sweep

Procedia PDF Downloads 62
1022 A Novel Way to Create Qudit Quantum Error Correction Codes

Authors: Arun Moorthy

Abstract:

Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes.

Keywords: qudit, error correction, quantum, qubit

Procedia PDF Downloads 55
1021 Low Density Parity Check Codes

Authors: Kassoul Ilyes

Abstract:

The field of error correcting codes has been revolutionized by the introduction of iteratively decoded codes. Among these, LDPC codes are now a preferred solution thanks to their remarkable performance and low complexity. The binary version of LDPC codes showed even better performance, although it’s decoding introduced greater complexity. This thesis studies the performance of binary LDPC codes using simplified weighted decisions. Information is transported between a transmitter and a receiver by digital transmission systems, either by propagating over a radio channel or also by using a transmission medium such as the transmission line. The purpose of the transmission system is then to carry the information from the transmitter to the receiver as reliably as possible. These codes have not generated enough interest within the coding theory community. This forgetfulness will last until the introduction of Turbo-codes and the iterative principle. Then it was proposed to adopt Pearl's Belief Propagation (BP) algorithm for decoding these codes. Subsequently, Luby introduced irregular LDPC codes characterized by a parity check matrix. And finally, we study simplifications on binary LDPC codes. Thus, we propose a method to make the exact calculation of the APP simpler. This method leads to simplifying the implementation of the system.

Keywords: LDPC, parity check matrix, 5G, BER, SNR

Procedia PDF Downloads 55
1020 Behaviour of Rc Column under Biaxial Cyclic Loading-State of the Art

Authors: L. Pavithra, R. Sharmila, Shivani Sridhar

Abstract:

Columns severe structural damage needs proportioning a significant portion of earthquake energy can be dissipated yielding in the beams. Presence of axial load along with cyclic loading has a significant influence on column. The objective of this paper is to present the analytical results of columns subjected to biaxial cyclic loading.

Keywords: RC column, Seismic behaviour, cyclic behaviour, biaxial testing, ductile behaviour

Procedia PDF Downloads 263
1019 Cyclic Liquefaction Resistance of Reinforced Sand

Authors: S. A. Naeini, Z. Eftekhari

Abstract:

Liquefaction phenomenon in sand is nowadays a classical soil mechanics subject. Using a cyclic triaxial test apparatus, we use non-woven geotextile reinforcement to improve the liquefaction resistance of sand. The layer configurations used are zero, one, two and three horizontal reinforcing layers in a triaxial test sample. The influences of the number of geotextile layers, and cyclic stress ratio (CSR) were studied and described. The results illustrated that the geotextile inclusion increases liquefaction resistance.

Keywords: liquefaction resistance, geotextile, sand, cyclic triaxial test, cyclic stress ratio

Procedia PDF Downloads 470
1018 Full-Field Estimation of Cyclic Threshold Shear Strain

Authors: E. E. S. Uy, T. Noda, K. Nakai, J. R. Dungca

Abstract:

Cyclic threshold shear strain is the cyclic shear strain amplitude that serves as the indicator of the development of pore water pressure. The parameter can be obtained by performing either cyclic triaxial test, shaking table test, cyclic simple shear or resonant column. In a cyclic triaxial test, other researchers install measuring devices in close proximity of the soil to measure the parameter. In this study, an attempt was made to estimate the cyclic threshold shear strain parameter using full-field measurement technique. The technique uses a camera to monitor and measure the movement of the soil. For this study, the technique was incorporated in a strain-controlled consolidated undrained cyclic triaxial test. Calibration of the camera was first performed to ensure that the camera can properly measure the deformation under cyclic loading. Its capacity to measure deformation was also investigated using a cylindrical rubber dummy. Two-dimensional image processing was implemented. Lucas and Kanade optical flow algorithm was applied to track the movement of the soil particles. Results from the full-field measurement technique were compared with the results from the linear variable displacement transducer. A range of values was determined from the estimation. This was due to the nonhomogeneous deformation of the soil observed during the cyclic loading. The minimum values were in the order of 10-2% in some areas of the specimen.

Keywords: cyclic loading, cyclic threshold shear strain, full-field measurement, optical flow

Procedia PDF Downloads 149
1017 On the Construction of Some Optimal Binary Linear Codes

Authors: Skezeer John B. Paz, Ederlina G. Nocon

Abstract:

Finding an optimal binary linear code is a central problem in coding theory. A binary linear code C = [n, k, d] is called optimal if there is no linear code with higher minimum distance d given the length n and the dimension k. There are bounds giving limits for the minimum distance d of a linear code of fixed length n and dimension k. The lower bound which can be taken by construction process tells that there is a known linear code having this minimum distance. The upper bound is given by theoretic results such as Griesmer bound. One way to find an optimal binary linear code is to make the lower bound of d equal to its higher bound. That is, to construct a binary linear code which achieves the highest possible value of its minimum distance d, given n and k. Some optimal binary linear codes were presented by Andries Brouwer in his published table on bounds of the minimum distance d of binary linear codes for 1 ≤ n ≤ 256 and k ≤ n. This was further improved by Markus Grassl by giving a detailed construction process for each code exhibiting the lower bound. In this paper, we construct new optimal binary linear codes by using some construction processes on existing binary linear codes. Particularly, we developed an algorithm applied to the codes already constructed to extend the list of optimal binary linear codes up to 257 ≤ n ≤ 300 for k ≤ 7.

Keywords: bounds of linear codes, Griesmer bound, construction of linear codes, optimal binary linear codes

Procedia PDF Downloads 486
1016 2D Structured Non-Cyclic Fuzzy Graphs

Authors: T. Pathinathan, M. Peter

Abstract:

Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.

Keywords: double layered fuzzy graph, double layered non–cyclic fuzzy graph, order, degree and size

Procedia PDF Downloads 275
1015 Kinematic Behavior of Geogrid Reinforcements during Earthquakes

Authors: Ahmed Hosny Abdel-Rahman, Mohamed Abdel-Moneim

Abstract:

Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented.

Keywords: geogrid, soil, interface, cyclic loading, pullout, large scale testing

Procedia PDF Downloads 516
1014 Maximum Distance Separable b-Symbol Repeated-Root γ-Constacylic Codes over a Finite Chain Ring of Length 2

Authors: Jamal Laaouine, Mohammed Elhassani Charkani

Abstract:

Let p be a prime and let b be an integer. MDS b-symbol codes are a direct generalization of MDS codes. The γ-constacyclic codes of length pˢ over the finite commutative chain ring Fₚm [u]/ < u² > had been classified into four distinct types, where is a nonzero element of the field Fₚm. Let C₃ be a code of Type 3. In this paper, we obtain the b-symbol distance db(C₃) of the code C₃. Using this result, necessary and sufficient conditions under which C₃ is an MDS b-symbol code are given.

Keywords: constacyclic code, repeated-root code, maximum distance separable, MDS codes, b-symbol distance, finite chain rings

Procedia PDF Downloads 44
1013 Generalized π-Armendariz Authentication Cryptosystem

Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi

Abstract:

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

Keywords: cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol

Procedia PDF Downloads 118
1012 Powered Two-Wheeler Rider’s Comfort over Road Sections with Skew Superelevation

Authors: Panagiotis Lemonakis, Nikolaos Moisiadis, Andromachi Gkoutzini, George Kaliabetsos, Nikos Eliou

Abstract:

The proper surface water drainage not only affects vehicle movement dynamics but also increases the likelihood of an accident due to the fact that inadequate drainage is associated with potential hydroplaning and splash and spray driving conditions. Nine solutions have been proposed to address hydroplaning in sections with inadequate drainage, e.g., augmented superelevation and longitudinal rates, reduction of runoff length, and skew superelevation. The latter has been extensively implemented in highways recently, enhancing the safety level in the applied road segments in regards to the effective drainage of the rainwater. However, the concept of the skew superelevation has raised concerns regarding the driver’s comfort when traveling over skew superelevation sections, particularly at high speeds. These concerns alleviated through the concept of the round-up skew superelevation, which reduces both the lateral and the vertical acceleration imposed to the drivers and hence, improves comfort and traffic safety. Various research studies aimed at investigating driving comfort by evaluating the lateral and vertical accelerations sustained by the road users and vehicles. These studies focused on the influence of the skew superelevation to passenger cars, buses and trucks, and the drivers themselves, traveling at a certain range of speeds either below or above the design speed. The outcome of these investigations which based on the use of simulations, revealed that the imposed accelerations did not exceed the statutory thresholds even when the travelling speed was significantly greater than the design speed. Nevertheless, the effect of the skew superelevation to other vehicle types for instance, motorcycles, has not been investigated so far. The present research study aims to bridge this gap by investigating the impact of skew superelevation on the motorcycle rider’s comfort. Power two-wheeler riders are susceptible to any changes on the pavement surface and therefore a comparison between the traditional superelevation practice and the skew superelevation concept is of paramount importance. The methodology based on the utilization of sophisticated software in order to design the model of the road for several values of the longitudinal slope. Based on the values of the slopes and the use of a mathematical equation, the accelerations imposed on the wheel of the motorcycle were calculated. Due to the fact that the final aim of the study is the influence of the skew superelevation to the rider, it was deemed necessary to convey the calculated accelerations from the wheel to the rider. That was accomplished by implementing the quarter car suspension model adjusted to the features of two-wheeler vehicles. Finally, the accelerations derived from this process evaluated according to specific thresholds originated from the International Organization for Standardization, which correspond to certain levels of comfort. The most important conclusion drawn is that the comfort of the riders is not dependent on the form of road gradient to a great extent due to the fact that the vertical acceleration imposed to the riders took similar values regardless of the value of the longitudinal slope.

Keywords: acceleration, comfort, motorcycle, safety, skew superelevation

Procedia PDF Downloads 77
1011 Effect of Fabrication Errors on High Frequency Filter Circuits

Authors: Wesam Ali

Abstract:

This paper provides useful guidelines to the circuit designers on the magnitude of fabrication errors in multilayer millimeter-wave components that are acceptable and presents data not previously reported in the literature. A particularly significant error that was quantified was that of skew between conductors on different layers, where it was found that a skew angle of only 0.1° resulted in very significant changes in bandwidth and insertion loss. The work was supported by a detailed investigation on a 35GHz, multilayer edge-coupled band-pass filter, which was fabricated on alumina substrates using photoimageable thick film process.

Keywords: fabrication errors, multilayer, high frequency band, photoimagable technology

Procedia PDF Downloads 338
1010 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections

Authors: N. Zhang, J. S. Kuang, S. Mogili

Abstract:

To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.

Keywords: large-scale tests, RC beam-column knee joints, seismic performance, shear strength

Procedia PDF Downloads 182