Search results for: Deep Jyoti Singh
3235 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides
Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney
Abstract:
Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis
Procedia PDF Downloads 3283234 Slurry Erosion Behaviour of Cryotreated SS316L Impeller Steel Used for Irrigation Pumps
Authors: Jagtar Singh, Kulwinder Singh
Abstract:
Slurry erosion is a type of erosion wherein material is removed from the target surface due to impingement of solid particles entrained in liquid medium. Slurry erosion performance of deep cryogenic treatment on impeller steel SS 316 L has been investigated. Slurry collected from an actual irrigation pump used as the abrasive media in an erosion test rig. An attempt has been made to study the effect of velocity of fluid and impingement angle by constant concentration (ppm) on the slurry erosion behavior of these cryotreated steels under different experimental conditions. The slurry erosion wear analysis of cryotreated and untreated steels was done. The slurry erosion performance of cryotreated SS 316L impeller steel has been found to superior to that of untreated steel. Metallurgical investigation, hardness as well as %age of carbide in both types of steel was also investigated.Keywords: deep cryogenic treatment, impeller, Irrigation pumps SS316L, slurry erosion
Procedia PDF Downloads 3923233 Effect of Fiber Inclusion on the Geotechnical Parameters of Clayey Soil Subjected to Freeze-Thaw Cycles
Authors: Arun Prasad, P. B. Ramudu, Deep Shikha, Deep Jyoti Singh
Abstract:
A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive soils.Freezing and thawing of soil affects the strength, durability and permeability of soil adversely. Experiments were carried out in order to investigate the effect of inclusion of randomly distributed polypropylene fibers on the strength, hydraulic conductivity and durability of local soil (CL) subjected to freeze–thaw cycles. For evaluating the change in strength of soil, a series of unconfined compression tests as well as tri-axial tests were carried out on reinforced and unreinforced soil samples. All the samples were subjected to seven cycles of freezing and thawing. Freezing was carried out at a temperature of - 15 to -18 °C; and thawing was carried out by keeping the samples at room temperature. The reinforcement of soil samples was done by mixing with polypropylene fibers, 12 mm long and with an aspect ratio of 240. The content of fibers was varied from 0.25 to 1% by dry weight of soil. The maximum strength of soil was found in samples having a fiber content of 0.75% for all the samples that were prepared at optimum moisture content (OMC), and if the OMC was increased (+2% OMC) or decreased (-2% OMC), the maximum strength observed at 0.5% fiber inclusion. The effect of fiber inclusion and freeze–thaw on the hydraulic conductivity was studied increased from around 25 times to 300 times that of the unreinforced soil, without subjected to any freeze-thaw cycles. For studying the increased durability of soil, mass loss after each freeze-thaw cycle was calculated and it was found that samples reinforced with polypropylene fibers show 50-60% less loss in weight than that of the unreinforced soil.Keywords: fiber reinforcement, freezingand thawing, hydraulic conductivity, unconfined compressive strength
Procedia PDF Downloads 4013232 Time-Course Lipid Accumulation and Transcript Analyses of Lipid Biosynthesis Gene of Chlorella sp.3 under Nitrogen Limited Condition
Authors: Jyoti Singh, Swati Dubey, Mukta Singh, R. P. Singh
Abstract:
The freshwater microalgae Chlorella sp. is alluring considerable interest as a source for biofuel production due to its fast growth rate and high lipid content. Under nitrogen limited conditions, they can accumulate significant amounts of lipids. Thus, it is important to gain insight into the molecular mechanism of their lipid metabolism. In this study under nitrogen limited conditions, regular pattern of growth characteristics lipid accumulation and gene expression analysis of key regulatory genes of lipid biosynthetic pathway were carried out in microalgae Chlorella sp 3. Our results indicated that under nitrogen limited conditions there is a significant increase in the lipid content and lipid productivity, achieving 44.21±2.64 % and 39.34±0.66 mg/l/d at the end of the cultivation, respectively. Time-course transcript patterns of lipid biosynthesis genes i.e. acetyl coA carboxylase (accD) and diacylglycerol acyltransferase (dgat) showed that during late log phase of microalgae Chlorella sp.3 both the genes were significantly up regulated as compared to early log phase. Moreover, the transcript level of the dgat gene is two-fold higher than the accD gene. The results suggested that both the genes responded sensitively to the nitrogen limited conditions during the late log stage, which proposed their close relevance to lipid biosynthesis. Further, this transcriptome data will be useful for engineering microalgae species by targeting these genes for genetic modification to improve microalgal biofuel quality and production.Keywords: biofuel, gene, lipid, microalgae
Procedia PDF Downloads 3103231 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste
Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh
Abstract:
The outstanding mechanical properties of Carbon Nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of Multiwall Carbon Nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28, and 35 days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.Keywords: carbon nanotubes, Portland cement, composite, compressive strength
Procedia PDF Downloads 4223230 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network
Authors: Pawan Kumar Mishra, Ganesh Singh Bisht
Abstract:
Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.Keywords: resolution, deep-learning, neural network, de-blurring
Procedia PDF Downloads 5183229 Investigation on Behavior of Fixed-Ended Reinforced Concrete Deep Beams
Authors: Y. Heyrani Birak, R. Hizaji, J. Shahkarami
Abstract:
Reinforced Concrete (RC) deep beams are special structural elements because of their geometry and behavior under loads. For example, assumption of strain- stress distribution is not linear in the cross section. These types of beams may have simple supports or fixed supports. A lot of research works have been conducted on simply supported deep beams, but little study has been done in the fixed-end RC deep beams behavior. Recently, using of fixed-ended deep beams has been widely increased in structures. In this study, the behavior of fixed-ended deep beams is investigated, and the important parameters in capacity of this type of beams are mentioned.Keywords: deep beam, capacity, reinforced concrete, fixed-ended
Procedia PDF Downloads 3343228 Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load
Authors: A. Aarabzadeh, R. Hizaji
Abstract:
Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads.Keywords: deep beam, cyclic load, reinforced concrete, fixed-ended
Procedia PDF Downloads 3613227 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: cellular automata, neural cellular automata, deep learning, classification
Procedia PDF Downloads 1993226 A Comparative Study of Deep Learning Methods for COVID-19 Detection
Authors: Aishrith Rao
Abstract:
COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks
Procedia PDF Downloads 1613225 The Tendon Reflexes on the Performance of Flanker Task in the Subjects of Cerebrovascular Accidents
Authors: Harshdeep Singh, Kuljeet Singh Anand
Abstract:
Background: Cerebrovascular Accidents (CVA) cause abnormal or asymmetrical tendon reflexes contributing to motor impairments. Since the tendon reflexes are mediated by the spinal cord, their effects on cognitive performances are overlooked. This study aims to find the contributions of tendon reflexes on the performance of the Flanker task. Methods: A total population of 46 mixed subjects with movement disorders were recruited for the study. Deep tendon reflexes (DTR) of the biceps, triceps and brachioradialis were assessed for both upper extremities. Later, the Flanker task was performed on all the subjects, and the mean Reaction Time (RT) along with both the congruent and incongruent stimuli were evaluated. For the final analysis, the Kruskal Wallis test was performed to see the difference between the DTR and the performance of the Flanker Task. Results: The Kruskal Wallis test results showed a significant difference between the DTR scores, X²(2) = 11.328, p= 0.023 with the mean RT of the flanker task and X²(2) = 9.531, p= 0.049 with mean RT of the Incongruent Stimuli. Whereas the result found a non-significant difference in the mean RT of the Congruent Stimuli. Conclusion: Each DTR score is distributed differently with the mean RT of the flanker task and for the incongruent stimuli as well. Therefore, the tendon reflexes in PD may be contributing to the performance of the Flanker Task and may be an indicator of abnormal cognitive performance. Further research is needed to evaluate how the RTs are distributed with each DTR score.Keywords: cerebrovascular accidents, deep tendon reflexes, flanker task, reaction time, congruent stimuli, incongruent stimuli
Procedia PDF Downloads 1043224 Building a Lean Construction Body of Knowledge
Authors: Jyoti Singh, Ahmed Stifi, Sascha Gentes
Abstract:
The process of construction significantly contributes to high level of risks, complexity and uncertainties leading to cost and time overrun, customer dissatisfaction etc. lean construction is important as it is a comprehensive system of tools and concepts focusing on moving closer to customer satisfaction by understanding the process, identifying the waste and eliminating it. The proposed work includes identification of knowledge areas from lean perspective, lean tools/concepts used in lean construction and establishing a relationship matrix between knowledge areas and lean tools/concepts, thus developing and building up a lean construction body of knowledge (LCBOK), i.e. a guide to lean construction, aiming to provide guidelines to manage individual projects and also helping construction industry to minimise waste and maximize value to the customer. In this study, we identified 8 knowledge areas and 62 lean tools/concepts from lean perspective and also one tool can help to manage two or more knowledge areas.Keywords: knowledge areas, lean body matrix, lean construction, lean tools
Procedia PDF Downloads 4373223 Effect of Different Oils on Quality of Deep-fried Dough Stick
Authors: Nuntaporn Aukkanit
Abstract:
The aim of this study was to determine the effect of oils on chemical, physical, and sensory properties of deep-fried dough stick. Five kinds of vegetable oil which were used for addition and frying consist of: palm oil, soybean oil, sunflower oil, rice bran oil, and canola oil. The results of this study showed that using different kinds of oil made significant difference in the quality of deep-fried dough stick. Deep-fried dough stick fried with the rice bran oil had the lowest moisture loss and oil absorption (p≤0.05), but it had some unsatisfactory physical properties (color, specific volume, density, and texture) and sensory characteristics. Nonetheless, deep-fried dough stick fried with the sunflower oil had moisture loss and oil absorption slightly more than the rice bran oil, but it had almost higher physical and sensory properties. Deep-fried dough sticks together with the sunflower oil did not have different sensory score from the palm oil, commonly used for production of deep-fried dough stick. These results indicated that addition and frying with the sunflower oil are appropriate for the production of deep-fried dough stick.Keywords: deep-fried dough stick, palm oil, sunflower oil, rice bran oil
Procedia PDF Downloads 2813222 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4
Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh
Abstract:
Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.Keywords: ZnO, nanorods, hydrothermal, KMnO4
Procedia PDF Downloads 4023221 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks
Procedia PDF Downloads 3383220 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease
Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena
Abstract:
Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics
Procedia PDF Downloads 983219 Facial Emotion Recognition Using Deep Learning
Authors: Ashutosh Mishra, Nikhil Goyal
Abstract:
A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.Keywords: facial recognition, computational intelligence, convolutional neural network, depth map
Procedia PDF Downloads 2313218 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1163217 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 423216 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1783215 Deep Learning for Recommender System: Principles, Methods and Evaluation
Authors: Basiliyos Tilahun Betru, Charles Awono Onana, Bernabe Batchakui
Abstract:
Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.Keywords: big data, decision making, deep learning, recommender system
Procedia PDF Downloads 4803214 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations
Authors: M. Abdallah
Abstract:
Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.Keywords: deep excavation, ground anchors, interaction soil-structure, struts
Procedia PDF Downloads 4163213 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 2123212 Discovering User Behaviour Patterns from Web Log Analysis to Enhance the Accessibility and Usability of Website
Authors: Harpreet Singh
Abstract:
Finding relevant information on the World Wide Web is becoming highly challenging day by day. Web usage mining is used for the extraction of relevant and useful knowledge, such as user behaviour patterns, from web access log records. Web access log records all the requests for individual files that the users have requested from the website. Web usage mining is important for Customer Relationship Management (CRM), as it can ensure customer satisfaction as far as the interaction between the customer and the organization is concerned. Web usage mining is helpful in improving website structure or design as per the user’s requirement by analyzing the access log file of a website through a log analyzer tool. The focus of this paper is to enhance the accessibility and usability of a guitar selling web site by analyzing their access log through Deep Log Analyzer tool. The results show that the maximum number of users is from the United States and that they use Opera 9.8 web browser and the Windows XP operating system.Keywords: web usage mining, web mining, log file, data mining, deep log analyzer
Procedia PDF Downloads 2493211 Leveraging Deep Q Networks in Portfolio Optimization
Authors: Peng Liu
Abstract:
Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization
Procedia PDF Downloads 353210 Studies on Corrosion Resistant Composite Coating for Metallic Surfaces
Authors: Navneetinder Singh, Harprabhjot Singh, Harpreet Singh, Supreet Singh
Abstract:
Many materials are known to mankind that is widely used for synthesis of corrosion resistant hydrophobic coatings. In the current work, novel hydrophobic composite was synthesized by mixing polytetrafluoroethylene (PTFE) and 20 weight% ceria particles followed by sintering. This composite had same hydrophobic behavior as PTFE. Moreover, composite showed better scratch resistance than virgin PTFE. Pits of plasma sprayed Ni₃Al coating were exploited to hold PTFE composite on the substrate as Superni-75 alloy surface through sintering process. Plasma sprayed surface showed good adhesion with the composite coating during scratch test. Potentiodynamic corrosion test showed 100 fold decreases in corrosion rate of coated sample this may be attributed to inert and hydrophobic nature of PTFE and ceria.Keywords: polytetrafluoroethylene, PTFE, ceria, coating, corrosion
Procedia PDF Downloads 3843209 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection
Authors: Jiaqi Huang, Yuheng Wang
Abstract:
Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning
Procedia PDF Downloads 1843208 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer
Authors: Mannal Tariq
Abstract:
Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.Keywords: CFRP, deep beams, openings in deep beams, strut and tie modal, shear behaviour
Procedia PDF Downloads 3043207 Effect of Deep Mixing Columns and Geogrid on Embankment Settlement on the Soft Soil
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Embankment settlement on soft clays has always been problematic due to the high compaction and low shear strength of the soil. Deep soil mixing and geosynthetics are two soil improvement methods in such fields. Here, a numerical study is conducted on the embankment performance on the soft ground improved by deep soil mixing columns and geosynthetics based on the data of a real project. For this purpose, the finite element method is used in the Plaxis 2D software. The Soft Soil Creep model considers the creep phenomenon in the soft clay layer while the Mohr-Columb model simulates other soil layers. Results are verified using the data of an experimental embankment built on deep mixing columns. The effect of depth and diameter of deep mixing columns and the stiffness of geogrid on the vertical and horizontal movements of embankment on clay subsoil will be investigated in the following.Keywords: PLAXIS 2D, embankment settlement, horizontal movement, deep soil mixing column, geogrid
Procedia PDF Downloads 1753206 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma
Authors: Jyoti Wadhwa, Arvinder Singh
Abstract:
This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.
Procedia PDF Downloads 181