Search results for: vehicle control.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4103

Search results for: vehicle control.

4013 Vehicle Type Classification with Geometric and Appearance Attributes

Authors: Ghada S. Moussa

Abstract:

With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management.

This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.

Keywords: Appearance attributes, Geometric attributes, Support vector machine, Vehicle classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4212
4012 Numerical Investigation of Aerodynamic Analysis on Passenger Vehicle

Authors: Cafer Görkem Pınar, İlker Coşar, Serkan Uzun, Atahan Çelebi, Mehmet Ali Ersoy, Ali Pınarbaşı

Abstract:

In this study, it was numerically investigated that a 1:1 scale model of the Renault Clio MK4 SW brand vehicle aerodynamic analysis was performed in the commercial computational fluid dynamics (CFD) package program of ANSYS CFX 2021 R1 under steady, subsonic, and 3-D conditions. The model of vehicle used for the analysis was made independent of the number of mesh elements and the k-epsilon turbulence model was applied during the analysis. Results were interpreted as streamlines, pressure gradient, and turbulent kinetic energy contours around the vehicle at 50 km/h and 100 km/h speeds. In addition, the validity of the analysis was decided by comparing the drag coefficient of the vehicle with the values in the literature. As a result, the pressure gradient contours of the taillight of the Renault Clio MK4 SW vehicle were examined and the behavior of the total force at speeds of 50 km/h and 100 km/h was interpreted.

Keywords: CFD, k-epsilon, aerodynamics, drag coefficient, taillight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370
4011 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: Fault diagnostics, communication network, connected vehicles, packet drop out, platoon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
4010 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-by-Wire ECU Development

Authors: A. Ukaew, C. Chauypen

Abstract:

Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual driveby- wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.

Keywords: Drive-by-wire ECU, in-the-loop testing, modelbased design, real-time embedded system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
4009 A United Nations Safety Compliant Urban Vehicle Design

Authors: Marcelo R. G. Duarte, Marcilio Alves

Abstract:

Pedestrians are the fourth group among road traffic users that most suffer accidents. Their death rate is even higher than the motorcyclists group. This gives motivation for the development of an urban vehicle capable of complying with the United Nations Economic Commission for Europe pedestrian regulations. The conceptual vehicle is capable of transporting two passengers and small parcels for 100 km at a maximum speed of 90 km/h. This paper presents the design of this vehicle using the finite element method specially in connection with frontal crash test and car to pedestrian collision. The simulation is based in a human body FE.

Keywords: Electric urban vehicle, finite element method, global human body model, pedestrian safety, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
4008 Vehicle Position Estimation for Driver Assistance System

Authors: Hyun-Koo Kim, Sangmoon Lee, Ho-Youl Jung, Ju H. Park

Abstract:

We present a system that finds road boundaries and constructs the virtual lane based on fusion data from a laser and a monocular sensor, and detects forward vehicle position even in no lane markers or bad environmental conditions. When the road environment is dark or a lot of vehicles are parked on the both sides of the road, it is difficult to detect lane and road boundary. For this reason we use fusion of laser and vision sensor to extract road boundary to acquire three dimensional data. We use parabolic road model to calculate road boundaries which is based on vehicle and sensors state parameters and construct virtual lane. And then we distinguish vehicle position in each lane.

Keywords: Vehicle Detection, Adaboost, Haar-like Feature, Road Boundary Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
4007 Control of Braking Force under Loaded and Empty Conditions on Two Wheeler

Authors: M. S. Manikandan, K. V. Nithish Kumar, M. Krishnamoorthi, V. Ganesh

Abstract:

The Automobile Braking System has a crucial role for safety of the passenger and riding quality of the vehicle. The braking force mainly depends on normal reaction on the wheel and the co-efficient of friction between the tire and the road surface. Whenever a vehicle is loaded, the normal reaction on the rear wheel is increased. Thus the amount of braking force required to halt the vehicle with minimum stopping distance, is based on the pillion load on the vehicle. In this work, in order to vary the braking force in two wheelers, the mechanical leverage which operates the master cylinder is varied based on the pillion load. Thus the amount of braking force developed between ground and tire is varied. This optimum braking force on the disc brake helps in attaining the minimum vehicle stopping distance. In addition to that, it also helps in preventing sliding. Thus the system results in reducing the stopping distance of the two wheelers and providing a better braking efficiency than the conventional braking system.

Keywords: Braking force, Master cylinder, Mechanical leverage, Minimum stopping distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6142
4006 Optimum Replacement Policies for Kuwait Passenger Transport Company Busses: Case Study

Authors: Hilal A. Abdelwali, Elsayed E.M. Ellaimony, Ahmad E.M. Murad, Jasem M.S. Al-Rajhi

Abstract:

Due to the excess of a vehicle operation through its life, some elements may face failure and deteriorate with time. This leads us to carry out maintenance, repair, tune up or full overhaul. After a certain period, the vehicle elements deteriorations increase with time which causes a very high increase of doing the maintenance operations and their costs. However, the logic decision at this point is to replace the current vehicle by a new one with minimum failure and maximum income. The importance of studying vehicle replacement problems come from the increase of stopping days due to many deteriorations in the vehicle parts. These deteriorations increase year after year causing an increase of operating costs and decrease the vehicle income. Vehicle replacement aims to determine the optimum time to keep, maintain, overhaul, renew and replace vehicles. This leads to an improvement in vehicle income, total operating costs, maintenance cost, fuel and oil costs, ton-kilometers, vehicle and engine performance, vehicle noise, vibration, and pollution. The aim of this paper is to find the optimum replacement policies of Kuwait Passenger Transport Company (KPTCP) fleet of busses. The objective of these policies is to maximize the busses pure profits. The dynamic programming (D.P.) technique is used to generate the busses optimal replacement policies

Keywords: Replacement Problem, Automotive Replacement, Dynamic Programming, Equipment Replacement, K.P.T.C.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
4005 Effect of Architecture and Operating Conditions of Vehicle on Bulb Lifetime in Automotive

Authors: Hatice Özbek, Caner Çil, Ahmet Rodoplu

Abstract:

Automotive lighting is the leading function in the configuration of vehicle architecture. Especially headlights and taillights from external lighting functions are among the structures that determine the stylistic character of the vehicle. At the same time, the fact that lighting functions are related to many other functions brings along difficulties in design. Customers expect maximum quality from the vehicle. In these circumstances, it is necessary to make designs that aim to keep the performance of bulbs with limited working lives at the highest level. With this study, the factors that influence the working lives of filament lamps were examined and bulb explosions that can occur sooner than anticipated in the future were prevented while the vehicle was still in the design phase by determining the relations with electrical, dynamical and static variables. Especially the filaments of the bulbs used in the front lighting of the vehicle are deformed in a shorter time due to the high voltage requirement. In addition to this, rear lighting lamps vibrate as a result of the tailgate opening and closing and cause the filaments to be exposed to high stress. With this study, the findings that cause bulb explosions were evaluated. Among the most important findings: 1. The structure of the cables to the lighting functions of the vehicle and the effect of the voltage values are drawn; 2. The effect of the vibration to bulb throughout the life of the vehicle; 3 The effect of the loads carried to bulb while the vehicle doors are opened and closed. At the end of the study, the maximum performance was established in the bulb lifetimes with the optimum changes made in the vehicle architecture based on the findings obtained.

Keywords: Vehicle architecture, automotive lighting functions, filament lamps, bulb lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
4004 Development Techniques of Multi-Agents Based Autonomous Railway Vehicles Control Systems

Authors: M. Saleem Khan, Khaled Benkrid

Abstract:

This paper presents the development techniques for a complete autonomous design model of an advanced train control system and gives a new approach for the implementation of multi-agents based system. This research work proposes to develop a novel control system to enhance the efficiency of the vehicles under constraints of various conditions, and contributes in stability and controllability issues, considering relevant safety and operational requirements with command control communication and various sensors to avoid accidents. The approach of speed scheduling, management and control in local and distributed environment is given to fulfill the dire needs of modern trend and enhance the vehicles control systems in automation. These techniques suggest the state of the art microelectronic technology with accuracy and stability as forefront goals.

Keywords: Multi-agents, Railway vehicle control system, autonomous design, Train management, Speed scheduling andcontrol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
4003 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu

Abstract:

This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.

Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
4002 Vibration Induced Fatigue Assessment in Vehicle Development Process

Authors: Fatih Kagnici

Abstract:

Improvement in CAE methods has an important role for shortening of the vehicle product development time. It is provided that validation of the design and improvements in terms of durability can be done without hardware prototype production. In recent years, several different methods have been developed in order to investigate fatigue damage of the vehicle. The intended goal among these methods is prediction of fatigue damage in a short time with reduced costs. This study developed a new fatigue damage prediction method in the automotive sector using power spectrum densities of accelerations. This study also confirmed that the weak region in vehicle can be easily detected with the method developed in this study which results were compared with conventional method.

Keywords: Fatigue damage, Power spectrum density, Vibration induced fatigue, Vehicle development

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084
4001 Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC

Authors: C. W. Hsu, C. N. Liang, L. Y. Ke, F. Y. Huang

Abstract:

Many accidents were happened because of fast driving, habitual working overtime or tired spirit. This paper presents a solution of remote warning for vehicles collision avoidance using vehicular communication. The development system integrates dedicated short range communication (DSRC) and global position system (GPS) with embedded system into a powerful remote warning system. To transmit the vehicular information and broadcast vehicle position; DSRC communication technology is adopt as the bridge. The proposed system is divided into two parts of the positioning andvehicular units in a vehicle. The positioning unit is used to provide the position and heading information from GPS module, and furthermore the vehicular unit is used to receive the break, throttle, and othersignals via controller area network (CAN) interface connected to each mechanism. The mobile hardware are built with an embedded system using X86 processor in Linux system. A vehicle is communicated with other vehicles via DSRC in non-addressed protocol with wireless access in vehicular environments (WAVE) short message protocol. From the position data and vehicular information, this paper provided a conflict detection algorithm to do time separation and remote warning with error bubble consideration. And the warning information is on-line displayed in the screen. This system is able to enhance driver assistance service and realize critical safety by using vehicular information from the neighbor vehicles.KeywordsDedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Keywords: Dedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
4000 Validation of Automotive Centrals Using Hardware in the Loop-Body Control Unit and Lights

Authors: Marley Rosa Luciano, Rodney Rezende Saldanha

Abstract:

The race for electrification and the need for innovation to attract customers has led the automotive industry to do something different with vehicles. New emissions control challenges and efficient technological availability are the pillars of creation. The growing demand to upgrade industrial manufacturing systems creates actions that directly impact vehicle production. With this comes the search for new prototyping methods and virtual tools for component testing and validation, and vehicle systems have established themselves. The demand for Electronic Control Units (ECU) is increasing due to the availability of intelligence and safety in today's vehicles, directly affecting their development, performance, and functional testing. In order to keep up with global changes, the automotive industry uses different virtual environments to produce, verify and validate their vehicles and test prototypes used during development. Therefore, in this paper, integration and validation were performed using the Hardware in the Loop (HIL) test platform, focusing on the ECU Body Control Module (BCM). Then, a brief commentary reviews other test medium platforms, such as the Plywood Buck (PWB), and examines the reliability, flexibility, installation time, and cost of the three test platforms, software in the loop (SIL), Model in the loop (MIL), and HIL, to review their benefits, challenges, and issues in use and information to optimize the use of each platform and test medium.

Keywords: Automotive, Electronic Central Unit, xIL, Hardware in the loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232
3999 A Multi Objective Optimization Approach to Optimize Vehicle Ride and Handling Characteristics

Authors: Mehrdad N. Khajavi, Bahram Notghi, Golamhassan Paygane

Abstract:

Vehicle suspension design must fulfill some conflicting criteria. Among those is ride comfort which is attained by minimizing the acceleration transmitted to the sprung mass, via suspension spring and damper. Also good handling of a vehicle is a desirable property which requires stiff suspension and therefore is in contrast with a vehicle with good ride. Among the other desirable features of a suspension is the minimization of the maximum travel of suspension. This travel which is called suspension working space in vehicle dynamics literature is also a design constraint and it favors good ride. In this research a full car 8 degrees of freedom model has been developed and the three above mentioned criteria, namely: ride, handling and working space has been adopted as objective functions. The Multi Objective Programming (MOP) discipline has been used to find the Pareto Front and some reasoning used to chose a design point between these non dominated points of Pareto Front.

Keywords: Vehicle, Ride, Handling, Suspension, Working Space, Multi Objective Programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
3998 Measurement of Real Time Drive Cycle for Indian Roads and Estimation of Component Sizing for HEV using LABVIEW

Authors: Varsha Shah, Patel Pritesh, Patel Sagar, PrasantaKundu, RanjanMaheshwari

Abstract:

Performance of vehicle depends on driving patterns and vehicle drive train configuration. Driving patterns depends on traffic condition, road condition and driver behavior. HEV design is carried out under certain constrain like vehicle operating range, acceleration, decelerations, maximum speed and road grades which are directly related to the driving patterns. Therefore the detailed study on HEV performance over a different drive cycle is required for selection and sizing of HEV components. A simple hardware is design to measured velocity v/s time profile of the vehicle by operating vehicle on Indian roads under real traffic conditions. To size the HEV components, a detailed dynamic model of the vehicle is developed considering the effect of inertia of rotating components like wheels, drive chain, engine and electric motor. Using vehicle model and different Indian drive cycles data, total tractive power demanded by vehicle and power supplied by individual components has been calculated.Using above information selection and estimation of component sizing for HEV is carried out so that HEV performs efficiently under hostile driving condition. Complete analysis is carried out in LABVIEW.

Keywords: BLDC motor, Driving cycle, LABVIEW Ultracapacitors, Vehicle Dynamics,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3847
3997 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: Adaptive Cruise Control, Centralized Server, Networked Model Predictive Control, String Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
3996 Smart Trust Management for Vehicular Networks

Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel

Abstract:

Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.

Keywords: Component, active vehicle, cooperation, petri nets, trust management, VANET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081
3995 Modeling of a Vehicle Wheel System Having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

Authors: Barenten Suciu

Abstract:

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

Keywords: Built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
3994 High Gain Circularly Polarized Wire Antenna for DSRC Applications

Authors: Mohammad J. Almalkawi

Abstract:

In this communication, a low-cost circularly polarized wire antenna exhibiting improved gain performance for Dedicated Short Range Communications (DSRC), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications is presented. The proposed antenna comprises a Y-shaped quarterwavelength monopole antenna surrounded by two iterations of eight conductive arched walls acting as parasitic elements to enhance the overall antenna gain and to shape the radiation pattern in the H-plane. A hemispherical radome shell is added to protect the antenna structure and its effect on the antenna performance is discussed. The designed antenna demonstrates antenna gain of 8.2 dB with omnidirectional far-field radiation pattern in the H-plane. The gain of the proposed antenna is also compared with the characteristic of the stand-alone Y-shaped monopole to highlight the advantages of the proposed approach.

Keywords: Circularly polarized, dedicated short-range communication, omnidirectional pattern, vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), Y-shaped wire monopole antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
3993 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car

Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee

Abstract:

Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.

Keywords: Numerical study, computational fluid dynamics, air dam, tuning parts, drag, lift force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
3992 Design and Fabrication of a Miniature Railway Vehicle

Authors: Max Ti-Kuang Hou, Hui-Mei Shen, Chiang-Ni Lu, I-Jen Hsu

Abstract:

We present design, fabrication, and characterization of a small (12 mm × 12 mm × 8 mm) movable railway vehicle for sensor carrying. The miniature railway vehicle (MRV) was mainly composed of a vibrational structure and three legs. A railway was designed and fabricated to power and guide the MRV. It also transmits the sensed data from the MRV to the signal processing unit. The MRV with legs on the railway was moving due to its high-frequency vibration. A model was derived to describe the motion. Besides, FEM simulations were performed to design the legs. Then, the MRV and the railway were fabricated by precision machining. Finally, an infrared sensor was carried and tested. The result shows that the MRV without loading was moving along the railway and its maximum speed was 12.2 mm/s. Moreover, the testing signal was sensed by the MRV.

Keywords: Locomotion, Micro-Robot, Miniature Railway Vehicle, Stick-Slip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
3991 Slip Suppression Sliding Mode Control with Various Chattering Functions

Authors: Shun Horikoshi, Tohru Kawabe

Abstract:

This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.

Keywords: Sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
3990 Vehicle Tracking and Disabling Using WIMAX

Authors: B.Gokulnath

Abstract:

We see in the present day scenario that the Global positioning system (GPS) has been an effective tool to track the vehicle. However the adverse part of it is that it can only track a vehicle-s position. Our present work provides a better platform to track and disable a vehicle using wireless technology. In our system we embed a microcomputer which monitors the series of automotive systems like engine, fuel and braking system. The external USB modem is connected with the microcomputer to provide 24 x 7 internet accesses. The microcomputer is synchronized with the owner-s multimedia mobile by means of a software tool “REMOTE DESKTOP". A unique username and password is provided to the software tool, so that the owner can only access the microcomputer through the internet on owner-s mobile. The key fact is that our design is placed such that it is known only to the owner.

Keywords: GPS, Microcomputer, Multimedia Phone, REMOTEDESKTOP, USB Modem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
3989 Identification of an Unstable Nonlinear System: Quadrotor

Authors: Mauricio Pe˜na, Adriana Luna, Carol Rodr´ıguez

Abstract:

In the following article we begin from a multi-parameter unstable nonlinear model of a Quadrotor. We design a control to stabilize and assure the attitude of the device, starting off a linearized system at the equilibrium point of the null angles of Euler (hover), which provides us a control with limited capacities at small angles of rotation of the vehicle in three dimensions. In order to clear this obstacle, we propose the identification of models in different angles by means of simulations and the design of a controller specifically implemented for the identification task, that in future works will allow the development of controllers according to fast and agile angles of Euler for Quadrotor.

Keywords: Quadrotor, model, control, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
3988 Investigation of Adaptable Winglets for Improved UAV Control and Performance

Authors: E. Kaygan, A. Gatto

Abstract:

An investigation of adaptable winglets for morphing aircraft control and performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centred on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance controllability and the aerodynamic efficiency of a small unmanned aerial vehicle. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist, swept, and dihedral angle considered. The results from this work indicate that if adaptable winglets were employed on small scale UAV’s improvements in both aircraft control and performance could be achieved.

Keywords: Aircraft, rolling, wing, winglet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
3987 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS

Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao

Abstract:

The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.

Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
3986 A Real-time Computer Vision System for VehicleTracking and Collision Detection

Authors: Mustafa Kisa, Fatih Mehmet Botsali

Abstract:

Recent developments in automotive technology are focused on economy, comfort and safety. Vehicle tracking and collision detection systems are attracting attention of many investigators focused on safety of driving in the field of automotive mechatronics. In this paper, a vision-based vehicle detection system is presented. Developed system is intended to be used in collision detection and driver alert. The system uses RGB images captured by a camera in a car driven in the highway. Images captured by the moving camera are used to detect the moving vehicles in the image. A vehicle ahead of the camera is detected in daylight conditions. The proposed method detects moving vehicles by subtracting successive images. Plate height of the vehicle is determined by using a plate recognition algorithm. Distance of the moving object is calculated by using the plate height. After determination of the distance of the moving vehicle relative speed of the vehicle and Time-to-Collision are calculated by using distances measured in successive images. Results obtained in road tests are discussed in order to validate the use of the proposed method.

Keywords: Image possessing, vehicle tracking, license plate detection, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054
3985 A Numerical Study on Rear-spoiler of Passenger Vehicle

Authors: Xu-xia Hu, Eric T. T. Wong

Abstract:

The simulation of external aerodynamics is one of the most challenging and important automotive CFD applications. With the rapid developments of digital computers, CFD is used as a practical tool in modern fluid dynamics research. It integrates fluid mechanics disciplines, mathematics and computer science. In this study, two different types of simulations were made, one for the flow around a simplified high speed passenger car with a rear-spoiler and the other for the flow without a rear-spoiler. The standard k-ε model is selected to numerically simulate the external flow field of the simplified Camry model with or without a rear-spoiler. Through an analysis of the simulation results, a new rear spoiler is designed and it shows a mild reduction of the vehicle aerodynamics drag. This leads to less vehicle fuel consumption on the road.

Keywords: CFD, vehicle rear-spoiler design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4853
3984 Forward Simulation of a Parallel Hybrid Vehicle and Fuzzy Controller Design for Driving/Regenerative Propose

Authors: Peyman Naderi, Ali Farhadi, S. Mohammad Taghi Bathaee

Abstract:

One of the best ways for achievement of conventional vehicle changing to hybrid case is trustworthy simulation result and using of driving realities. For this object, in this paper, at first sevendegree- of-freedom dynamical model of vehicle will be shown. Then by using of statically model of engine, gear box, clutch, differential, electrical machine and battery, the hybrid automobile modeling will be down and forward simulation of vehicle for pedals to wheels power transformation will be obtained. Then by design of a fuzzy controller and using the proper rule base, fuel economy and regenerative braking will be marked. Finally a series of MATLAB/SIMULINK simulation results will be proved the effectiveness of proposed structure.

Keywords: Hybrid, Driving, Fuzzy, Regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431