Identification of an Unstable Nonlinear System: Quadrotor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Identification of an Unstable Nonlinear System: Quadrotor

Authors: Mauricio Pe˜na, Adriana Luna, Carol Rodr´ıguez

Abstract:

In the following article we begin from a multi-parameter unstable nonlinear model of a Quadrotor. We design a control to stabilize and assure the attitude of the device, starting off a linearized system at the equilibrium point of the null angles of Euler (hover), which provides us a control with limited capacities at small angles of rotation of the vehicle in three dimensions. In order to clear this obstacle, we propose the identification of models in different angles by means of simulations and the design of a controller specifically implemented for the identification task, that in future works will allow the development of controllers according to fast and agile angles of Euler for Quadrotor.

Keywords: Quadrotor, model, control, identification.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1090755

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2748

References:


[1] Ingenieria de control moderno. Pearson, 1994.
[2] Modelling of Dynamic Systems. Prentice Hall PTR, 1994.
[3] Feedback Systems: An introduction for Scientists and engineers. Princeton univ, 2006.
[4] System Control toolbox. Mathworks, 2006.
[5] J.P. Mahony R. Altug, E. Ostrowski. Control of a quadrotor helicopter using visual feedback. In IEEE, editor, Proceedings of the International Conference on Robotics and Automation, volume 1, pages 72–77. IEEE, August 2002.
[6] J.P. Mahony R. Altug, E. Ostrowski. Quadrotor control using dual camera visual feedback. In IEEE, editor, Proceedings of the International Conference on Robotics and Automation, volume 3, pages 4294–4299. IEEE, September 2003.
[7] P. Siegwart R. Bouabdallah, S. Murrieri. Design and control of an indoor micro quadrotor. In IEEE, editor, Proceedings of the International Conference on Intelligent Robots and Systems, volume 5, pages 4393–4398, April 2004b.
[8] P. Siegwart R. Bouabdallah, S. Murrieri. Pid vs lq control techniques applied to an indoor micro quadrotor. In IEEE, editor, Proceedings of the International Conference on Intelligent Robots and Systems, volume 3, pages 2451– 2456, September 2004c.
[9] P. Siegwart R. Bouabdallah, S. Murrieri. Backstepping and slidingmode techniques applied to an indoor micro quadrotor. In IEEE, editor, Proceedings of the International Conference on Robotics and Automation, pages 2247– 2252, April 2005a.
[10] S. Bouabdallah. Design and control of quadrotors with application to autonomous flying. PhD thesis, Ecole Polytechnique Federale de Lausanne, 2004a.
[11] Pierpaolo Murrieri Bouabdallah S. and Roland Siegwart. Towards autonomous indoor micro vtol. Autonomous Robots, 18(2):171–183, March 2005b.
[12] Dzul A. Lozano R. Castillo, P. Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Transactions on Control Systems Technology, 12(4), 2004.
[13] J. Cycon D. Murphy. Applications for mini vtol uav for law enforcement. In SPIE Proc. 3577: Sensors, C3I, Information, and Training Technologies for Law Enforcement, November 1998.
[14] M. Labonte G. Dunfied, J. Tarbouchi. Neural network based control of a four rotor helicopter. In IEEE International Conference on Industrial Technology, 2004.
[15] Lagoa C.M. Wang Q. Ray A. Horn J.F., Tolani D.K. Probabilistic robust control of rotorcraft. Control Engineering Practice 13, 2005.
[16] Wu C.J. Lai L.C., Yang C.C. Time-optimal control of a hovering quadrotor helicopter. Journal of Intelligent and Robotic Systems, 2006.
[17] P McKerrow. Modelling the draganflyer four-rotor helicopter. In IEEE International Conference On Robotics And Automation, 2004.
[18] Mauricio Vladimir Pe na. Modelamiento, simulaci´on y hallazgo de modelos linealizados a partir de t´ecnicas de identificaci´on de un cuatrirrotor. Master’s thesis, National University of Colombia, 2009.
[19] Ramirez R Pe˜na G, Sofrony J. Dynamic model of a four rotor flying vehicle. In 11th Pan-American Congress of Applied Mechanics - PACAM XI, volume 1, Foz de Iguacu, Brazil, 2009.
[20] Rodr´ıguez C. Pe˜na G Mauricio, Vivas C. Modeling and lqr control of a quadrotor. Revista Avances, 2010.
[21] Rodr´ıguez F Carol Pe˜na G Mauricio, Vivas G Carlos. Simulation of the quadrotor controlled with lqr with integral effect. In Proceedings of the COBEM 2011 - 21st International Congress of Mechanical Engineering, October 2011.
[22] Corke P. Pounds P., Mahony R. Modelling and control of a quad-rotor robot. Australian National University, 2002.
[23] P Hynes J Roberts Pounds P., R Mahony. Design of a four-rotor aerial robot. In Proceedings of the 2002 Australasian Conference on Robotics, pages 145–150, November 2002b.
[24] S.E. Dunagan R.G. Higgins D.V. Sullivan J. Zheng B.M. Lobitz J.G. Leung B.A. Gallmeyer M. Aoyagi R.E. Slye d J.A. Brass S.R. Herwitz, L.F. Johnson. Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. In Computers and Electronics in Agriculture, volume 44, 2004.
[25] H. Wang H.O. Tanaka, K. Ohtake. A practical design approach to stabilization of a 3-dof rc helicopter. IEEE Transactions on Control Systems Technology, 2004.
[26] JP How E Feron Tournier, M Valenti. Estimation and control of a quadrotor vehicle using monocular vision and moire patterns. In AIAA Guidance, editor, Navigation and Control Conference, 2006.
[27] Holger Voos. Nonlinear and neural network-based control of a small four-rotor aerial robot. IEEE Transactions on Control Systems Technology, 12(4), 2007.
[28] Schlaile C. Trommer G. F. Wendel J., Meister O. An integrated gps/mems-imu navigation system for an autonomous helicopter. In Aerospace Science and Technology, 2006.