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Abstract—This work describes a system that uses 

electromyography (EMG) signals obtained from muscle sensors and 
an Artificial Neural Network (ANN) for signal classification and 
pattern recognition that is used to control a small unmanned aerial 
vehicle using specific arm movements. The main objective of this 
endeavor is the development of an intelligent interface that allows the 
user to control the flight of a drone beyond direct manual control. The 
sensor used were the MyoWare Muscle sensor which contains two 
EMG electrodes used to collect signals from the posterior (extensor) 
and anterior (flexor) forearm, and the bicep. The collection of the raw 
signals from each sensor was performed using an Arduino Uno. Data 
processing algorithms were developed with the purpose of classifying 
the signals generated by the arm’s muscles when performing specific 
movements, namely: flexing, resting, and motion of the arm. With 
these arm motions roll control of the drone was achieved. MATLAB 
software was utilized to condition the signals and prepare them for the 
classification. To generate the input vector for the ANN and perform 
the classification, the root mean square and the standard deviation were 
processed for the signals from each electrode. The neuromuscular 
information was trained using an ANN with a single 10 neurons hidden 
layer to categorize the four targets. The result of the classification 
shows that an accuracy of 97.5% was obtained. Afterwards, 
classification results are used to generate the appropriate control 
signals from the computer to the drone through a Wi-Fi network 
connection. These procedures were successfully tested, where the 
drone responded successfully in real time to the commanded inputs. 
 

Keywords—Biosensors, electromyography, Artificial Neural 
Network, Arduino, drone flight control, machine learning. 

I. INTRODUCTION 

NTELLIGENT control of vehicles (drones, cars, robots, etc.) 
is required for many applications. In particular, the use of 

EMG devices used to collect neuromuscular-activated signals 
from human subjects and their use to generate commands to 
control different types of vehicles, ground and aerial, is 
becoming an emerging filed. Moreover, with the exponentially 
growing number of internet-connected devices, the need to 
develop a more natural human-machine interface arises. This 
paper discusses the development of an arm-movement based 
control system as a means of controlling a small-unmanned 
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aircraft system (sUAS).  
Reconnaissance unmanned aerial vehicles were first 

deployed on a large scale during the Vietnam War for military 
purposes because they did not expose the life of pilots in combat 
zones [1]. Nowadays, drones have become very common in 
civilian and commercial applications and anyone can have 
access to drones and use them for multiple purposes in different 
fields such as surveillance and security, package transportation, 
and photography.  

Drones are usually controlled using a joystick, smartphones 
or a tablet. However, using any of these devices has the problem 
that the hands are used to hold the device and this can be 
problematic for some users, especially for people with 
disabilities, which many times cannot have total control of their 
hands and arm movements. 

The main goal of this project is to present an alternative to 
drone control using surface electromyography (sEMG) signals 
which could help anyone, even people who are disabled, to take 
advantages of utilizing drones for multiple purposes. EMG is 
the study of muscle electrical signals. It has been 30 years since 
sEMG signals have been proposed to detect the hand motion of 
human subjects with applications to the control of prosthetic 
hands [2]. Classification methods to discriminate among 
different arm and finger movements have been proposed by 
many researchers [3]-[5].  

For EMG signals there are two ways to collect the data: 
invasive electrodes and non-invasive electrodes. The signal that 
is detected by the electrodes is a composite of the muscle action 
potentials directly under the skin. In order to obtain a response 
from one muscle specifically, an invasive electrode must be 
inserted under the skin into the muscle. The non-invasive 
electrode or better known as sEMG is a collection of muscle 
action potentials for a single motor unit action potential 
(MUAP). A simple equation for muscle action potential 
detection is shown in (1): 

 

𝑥 𝑛  ∑ ℎ 𝑟 𝑒 𝑛 𝑟 𝑤 𝑛     (1) 
 
In (1), the output x(n) is the modeled EMG signal, e(n) is the 
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point processed, h(r) is the MUAP, w(n) is the zero mean 
additive white Gaussian noise and N is the number of motor 
units firing [2]. Once the signal is acquired it must be amplified, 
noise must be removed, and unwanted motion signals must be 
eliminated. In order to obtain cleaner signals, additional 
hardware and computing units that can execute signal 
processing are used. Most applications are concerned only with 
the amplitude of the signal. The x(n) signal can be rectified and 
averaged to achieve this. 

EMG signals can be measured using sEMG probes which 
measure the muscle action potentials. These data can then be 
used to detect movement, fatigue, and muscle dystrophy [2]. 
EMG signals are widely used today for human computer 
interaction and Evolvable Hardware chips improvement. In 
order to be used for computer interfacing, the signals must be 
measured, denoised, amplified, and then classified. It is 
important to filter the EMG signals in order to reduce the signal 
to noise ratio (SNR) along with other factors to obtain reliable 
clean signals. After filtering and amplification, a feature 
extraction stage must be implemented. Then, signal processing 
algorithms are used to classify and identify the type of muscle 
motion that was performed. Machine learning is often used in 
order to best classify the EMG signals [3], [4]. 

II.  METHODS 

A. EMG Sensors 

In this work, MyoWare Muscle Sensors [6] were used in 
order to collect raw sEMG signal from human subjects. The 
MyoWare sensors have an input impedance of 110 GΩ, and are 
powered by two standard CR2032 coin cell batteries connected 
in parallel for extended capacity at a nominal 3.0 V. Connecting 
the MyoWare Muscle Sensor to battery power allows for a 
cleaner signal while eliminating the possibility of creating a 
dangerous current path to the power grid. Each MyoWare 
sensor has two muscle electrodes that are placed in the middle 
of the muscle body and should be aligned with the orientation 
of the muscle fibers. It has one reference electrode that is placed 
on a bony or nonadjacent muscular part near the targeted 
muscle. The MyoWare muscle sensors were placed to collect 
data from the posterior (extensor) and anterior (flexor) forearm, 
as well as data from the bicep (Fig. 1). 

The collected data (raw voltages) from each electrode were 
processed by an Arduino microcontroller and signal processing 
algorithms were developed with the purpose of interpreting the 
voltage signals given when performing the arm movements: 
flexing the arm and squeezing the hand at the same time 
(flexing-squeezing), and relaxing the arm. Each electrode 
collected data at a sample rate of 4 Hz over a 2-second period 
for the duration of one minute, per assessment. During each 2-
second interval the movements were alternating between a 
relaxing reference class, and an active motion class flexing-
squeezing. These movements of the arm were used to control 
the motion of the drone. The flexing-squeezing gesture was 
used to move the drone laterally to the left, and the relaxing 
gesture was used to move the drone laterally to the right. 
Moving the arm up, commanded the drone to take-off and hover 

at 1 m level from the floor. Moving the arm laterally right-to-
left commanded the drone to land. 

 

 

Fig. 1 MyoWare Muscle Sensors placed on forearm and bicep 

B.  Signal Processing and Feature Extraction 

The raw EMG signals were sent to the Arduino where the 
signals were captured and rectified. Then the processed signals 
were sent to a laptop computer to be filtered to reduce noise 
(Fig. 2). This stage was performed using MATLAB using a 
high pass filter with a cutoff frequency of 20 Hz, to reduce low-
frequency noise such as movement artifacts [7]. After the signal 
processing stage, features were extracted from the EMG 
signals. For the feature extraction stage, the signals from each 
electrode were trimmed to a length of one second, then the root 
mean square (RMS), and the average value rectifier (AVR) 
were computed. A database with four different arm movements 
(flexing-squeezing, relaxing, arm up, and arm laterally right-to-
left) was created. Once the feature extraction was completed, 
the data were used to train an ANN that classified the arm 
movement. 

 

 

Fig. 2 The MyoWare muscle sensors interfacing with the Arduino 
Uno and then communicating with a laptop computer to perform the 

signal processing and feature extraction 

C.  ANN Architecture 

ANNs are inspired by the human brain, mimicking the way 
that biological neurons signal to one another [8], [9]. The ANN 
was used to detect patterns in our data and differentiate the arm 
motions from each other. An input matrix containing the 
processed data was entered to the network and it returned an 
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output matrix that indicated which arm movement was being 
performed by the human subject. The dataset in this work 
consisted of 80 hand motions from one human subject. There 
were four classes selected: Class 1 – Relax position for roll 
control (move right); Class 2 – Flexing-squeezing arm motion 
for roll control (move left); Class 3 – Arm-up movement (take-
off); and Class 4 – Lateral-arm movement (landing). 

The ANN consisted of 8 input nodes, corresponding to 4 
electrodes (two sensors), and each electrode provided data in 
the form of RMS and AVG values. The output matrix (target 
classes) consisted of a column array 4x80. The ANN 
architecture used in this project was a feed-forward back-
propagation network with multi-layer perceptron, developed 
using the scaled conjugate gradient training function with 8 
neurons in the input layer, 4 neurons in the output layer, and 
one hidden layer. The hidden and output layer used tan-sigmoid 
activation functions. The number of hidden neurons were 
initially set between the number of input and output neurons 
and then adjusted for accuracy based on training results [3]. It 
was found that the network performed best with 10 neurons in 
the hidden layer. From the signals in the database, 70% were 
used for training, 15% for validation, and 15% for testing. 

Currently in our project we have trained the ANN to classify 
four arm movements: flexing-squeezing, the relax position, 
arm-up, and lateral-arm motion. The flexing and relax 
movements performed the roll control in the drone, this is, it 
moved the drone horizontally to the left or to the right. Each 
time a command was performed the drone moved horizontally 
in intervals of 0.2 meters. The arm-up motion was used for take 
off, and an arm lateral movement was used to command the 
drone to land. 

D. The DJI Ryze Tello Drone 

The sUAS received control commands via Wi-Fi. These 
commands were generated from the output of the ANN 
classification system. The sUAS used in this project was a DJI 
Ryze Tello Drone Model TLW004 (Fig. 3). Its dimensions are 
9.6 x 9.1 x 4.1 cm, it weighs 81.6 g which makes it easy to 
control and is very suitable to be tested indoors, its battery 
provides 13 min of flight time. 

 

 

Fig. 3 The DJI Ryze Tello Drone 
 

The output of the ANN classifier was used to control the 
drone in real time. The two EMG sensors were placed on the 
human subject’s arm (Fig. 1) and the subject first performed the 
take-off motion, followed by a series of flexing and relaxing 

arm motions. The output of the ANN classifier was sent via Wi-
Fi to the drone to control its roll, allowing it to move 
horizontally (right and left). Results demonstrated that the 
drone was able to be controlled with high accuracy in real time. 
Fig. 4 shows the flowchart of the drone commands. 

 

 

Fig. 4 Flowchart of the drone commands 

III. RESULTS 

The main objective of this project was to create a type of 
wearable control module that can be used for directly command 
a small unmanned aerial system. EMG sensors were selected to 
collect data from a human subject performing arm motions. In 
this project we were able to successfully control in real time the 
DJI Ryze Tello drone using arm motions. Two simple arm 
motions, flexing and relaxing, controlled the roll in the drone 
moving the drone horizontally to the right and to the left, in 
intervals of 0.2 meters. An arm-up movement was used to 
command take off, and a lateral-arm motion was used to 
command the drone to land. 

The performance of the ANN is shown in the confusion 
matrix in Fig. 5. This matrix shows the results of testing 80 
independent hand motion signals taken from one of the 
volunteers. This matrix shows that the arm movements used for 
the commands take off and land were very distinctive providing 
a 100% accuracy. Meanwhile, the arm movements used to 
control the roll of the drone yielded a 90% accuracy. The overall 
accuracy of the control system was 97.5%. 

Results of this type of systems may have uses in commercial, 
military, and recreational applications. EMG control is not 
limited to drones, as it was performed in this project, EMG 
control can be employed in broad variety of electronic devices. 
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Fig. 5 Results of training the ANN 

IV. CONCLUSIONS 

The implemented system performed well in real time with an 
overall accuracy of 95.7%. However, for this system to have 
more practical applications, more control motions need to be 
added. Besides the roll control, the current system is being 
expanded to include yaw, pitch, and throttle control.  

Currently, this work uses MATLAB software for the training 
and implementation of the ANN classifier; however, to make 
this type of systems more efficient and have faster response, 
other programming languages such as Python should be used.  
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