Search results for: text localization and extraction.
1444 An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation
Authors: Jagath Samarabandu, Xiaoqing Liu
Abstract:
Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.
Keywords: Landmarks, mobile robot navigation, scene text, text localization and extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29231443 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound (BB) method to simplify the texts.
Keywords: Extraction, Max-Prod, Fuzzy Relations, Text Mining, Memberships, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21841442 Journals Subheadlines Text Extraction Using Wavelet Thresholding and New Projection Profile
Authors: Davod Zaravi, Habib Rostami, Alireza Malahzaheh, S. S. Mortazavi
Abstract:
In this paper a new robust and efficient algorithm to automatic text extraction from colored book and journal cover sheets is proposed. First, we perform wavelet transform. Next for edge detecting from detail wavelet coefficient, we use dynamic threshold. By blurring approximate coefficients with alternative heuristic thresholding, achieve effective edge,. Afterward, with ROI technique get binary image. Finally text boxes would be extracted with new projection profile.
Keywords: Text extraction, colored cover sheet, wavelet threshold, region of interest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501441 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.
Keywords: Text detection, CNN, PZM, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631440 Iris Localization using Circle and Fuzzy Circle Detection Method
Authors: Marzieh. Savoj, S. Amirhassan. Monadjemi
Abstract:
Iris localization is a very important approach in biometric identification systems. Identification process usually is implemented in three levels: iris localization, feature extraction, and pattern matching finally. Accuracy of iris localization as the first step affects all other levels and this shows the importance of iris localization in an iris based biometric system. In this paper, we consider Daugman iris localization method as a standard method, propose a new method in this field and then analyze and compare the results of them on a standard set of iris images. The proposed method is based on the detection of circular edge of iris, and improved by fuzzy circles and surface energy difference contexts. Implementation of this method is so easy and compared to the other methods, have a rather high accuracy and speed. Test results show that the accuracy of our proposed method is about Daugman method and computation speed of it is 10 times faster.Keywords: Convolution, Edge detector filter, Fuzzy circle, Identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20351439 Indoor Localization by Pattern Matching Method Based On Extended Database
Authors: Gyumin Hwang, Jihong Lee
Abstract:
This paper studied the CSS-based indoor localization system which is easy to implement, inexpensive to compose the systems, additionally CSS-based indoor localization system covers larger area than other system. However, this system has problem which is affected by reflected distance data. This problem in localization is caused by the multi-path effect. Error caused by multi-path is difficult to be corrected because the indoor environment cannot be described. In this paper, in order to solve the problem by multi-path, we have supplemented the localization system by using pattern matching method based on extended database. Thereby, this method improves precision of estimated. Also this method is verified by experiments in gymnasium. Database was constructed by 1m intervals, and 16 sample data were collected from random position inside the region of DB points. As a result, this paper shows higher accuracy than existing method through graph and table.
Keywords: Chirp Spread Spectrum (CSS), Indoor Localization, Pattern-Matching, Time of Arrival (ToA), Multi-Path, Mahalanobis Distance, Reception Rate, Simultaneous Localization and Mapping (SLAM), Laser Range Finder (LRF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18911438 A Web Text Mining Flexible Architecture
Authors: M. Castellano, G. Mastronardi, A. Aprile, G. Tarricone
Abstract:
Text Mining is an important step of Knowledge Discovery process. It is used to extract hidden information from notstructured o semi-structured data. This aspect is fundamental because much of the Web information is semi-structured due to the nested structure of HTML code, much of the Web information is linked, much of the Web information is redundant. Web Text Mining helps whole knowledge mining process to mining, extraction and integration of useful data, information and knowledge from Web page contents. In this paper, we present a Web Text Mining process able to discover knowledge in a distributed and heterogeneous multiorganization environment. The Web Text Mining process is based on flexible architecture and is implemented by four steps able to examine web content and to extract useful hidden information through mining techniques. Our Web Text Mining prototype starts from the recovery of Web job offers in which, through a Text Mining process, useful information for fast classification of the same are drawn out, these information are, essentially, job offer place and skills.Keywords: Web text mining, flexible architecture, knowledgediscovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26631437 Event Information Extraction System (EIEE): FSM vs HMM
Authors: Shaukat Wasi, Zubair A. Shaikh, Sajid Qasmi, Hussain Sachwani, Rehman Lalani, Aamir Chagani
Abstract:
Automatic Extraction of Event information from social text stream (emails, social network sites, blogs etc) is a vital requirement for many applications like Event Planning and Management systems and security applications. The key information components needed from Event related text are Event title, location, participants, date and time. Emails have very unique distinctions over other social text streams from the perspective of layout and format and conversation style and are the most commonly used communication channel for broadcasting and planning events. Therefore we have chosen emails as our dataset. In our work, we have employed two statistical NLP methods, named as Finite State Machines (FSM) and Hidden Markov Model (HMM) for the extraction of event related contextual information. An application has been developed providing a comparison among the two methods over the event extraction task. It comprises of two modules, one for each method, and works for both bulk as well as direct user input. The results are evaluated using Precision, Recall and F-Score. Experiments show that both methods produce high performance and accuracy, however HMM was good enough over Title extraction and FSM proved to be better for Venue, Date, and time.Keywords: Emails, Event Extraction, Event Detection, Finite state machines, Hidden Markov Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23171436 Localization for Indoor Service Robot Using Natural Landmark on the Ceiling
Authors: Seung-Hun Kim, Changwoo Park
Abstract:
In this paper, we present a localization of a mobile robot with localization modules which have two ceiling-view cameras in indoor environments. We propose two kinds of localization method. The one is the localization in the local space; we use the line feature and the corner feature between the ceiling and wall. The other is the localization in the large space; we use the natural features such as bulbs, structures on the ceiling. These methods are installed on the embedded module able to mount on the robot. The embedded module has two cameras to be able to localize in both the local space and the large spaces. The experiment is practiced in our indoor test-bed and a government office. The proposed method is proved by the experimental results.
Keywords: Robot, Localization, Indoor, Ceiling vision, Local space, Large space, Complex space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21771435 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours
Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic
Abstract:
Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.
Keywords: player number, soccer video, HSV color space
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19861434 Enhanced Weighted Centroid Localization Algorithm for Indoor Environments
Authors: I. Nižetić Kosović, T. Jagušt
Abstract:
Lately, with the increasing number of location-based applications, demand for highly accurate and reliable indoor localization became urgent. This is a challenging problem, due to the measurement variance which is the consequence of various factors like obstacles, equipment properties and environmental changes in complex nature of indoor environments. In this paper we propose low-cost custom-setup infrastructure solution and localization algorithm based on the Weighted Centroid Localization (WCL) method. Localization accuracy is increased by several enhancements: calibration of RSSI values gained from wireless nodes, repetitive measurements of RSSI to exclude deviating values from the position estimation, and by considering orientation of the device according to the wireless nodes. We conducted several experiments to evaluate the proposed algorithm. High accuracy of ~1m was achieved.
Keywords: Indoor environment, received signal strength indicator, weighted centroid localization, wireless localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31031433 Extraction of Significant Phrases from Text
Authors: Yuan J. Lui
Abstract:
Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.
Keywords: classification, keyphrase extraction, machine learning, summarization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20501432 Neural Network Based Speech to Text in Malay Language
Authors: H. F. A. Abdul Ghani, R. R. Porle
Abstract:
Speech to text in Malay language is a system that converts Malay speech into text. The Malay language recognition system is still limited, thus, this paper aims to investigate the performance of ten Malay words obtained from the online Malay news. The methodology consists of three stages, which are preprocessing, feature extraction, and speech classification. In preprocessing stage, the speech samples are filtered using pre emphasis. After that, feature extraction method is applied to the samples using Mel Frequency Cepstrum Coefficient (MFCC). Lastly, speech classification is performed using Feedforward Neural Network (FFNN). The accuracy of the classification is further investigated based on the hidden layer size. From experimentation, the classifier with 40 hidden neurons shows the highest classification rate which is 94%.
Keywords: Feed-Forward Neural Network, FFNN, Malay speech recognition, Mel Frequency Cepstrum Coefficient, MFCC, speech-to-text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7451431 Bug Localization on Single-Line Bugs of Apache Commons Math Library
Authors: Cherry Oo, Hnin Min Oo
Abstract:
Software bug localization is one of the most costly tasks in program repair technique. Therefore, there is a high claim for automated bug localization techniques that can monitor programmers to the locations of bugs, with slight human arbitration. Spectrum-based bug localization aims to help software developers to discover bugs rapidly by investigating abstractions of the program traces to make a ranking list of most possible buggy modules. Using the Apache Commons Math library project, we study the diagnostic accuracy using our spectrum-based bug localization metric. Our outcomes show that the greater performance of a specific similarity coefficient, used to inspect the program spectra, is mostly effective on localizing of single line bugs.Keywords: Software testing, fault localization, program spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11461430 Estimating Localization Network Node Positions with a Multi-Robot System
Authors: Mikko Elomaa, Aarne Halme
Abstract:
A novel method using bearing-only SLAM to estimate node positions of a localization network is proposed. A group of simple robots are used to estimate the position of each node. Each node has a unique ID, which it can communicate to a robot close by. Initially the node IDs and positions are unknown. A case example using RFID technology in the localization network is introduced.
Keywords: Localization network, Multi-robot, RFID, SLAM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11271429 The Selection of the Nearest Anchor Using Received Signal Strength Indication (RSSI)
Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane
Abstract:
The localization information is crucial for the operation of WSN. There are principally two types of localization algorithms. The Range-based localization algorithm has strict requirements on hardware, thus is expensive to be implemented in practice. The Range-free localization algorithm reduces the hardware cost. However, it can only achieve high accuracy in ideal scenarios. In this paper, we locate unknown nodes by incorporating the advantages of these two types of methods. The proposed algorithm makes the unknown nodes select the nearest anchor using the Received Signal Strength Indicator (RSSI) and choose two other anchors which are the most accurate to achieve the estimated location. Our algorithm improves the localization accuracy compared with previous algorithms, which has been demonstrated by the simulating results.Keywords: WSN, localization, DV-hop, RSSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18151428 Opinion Mining Framework in the Education Domain
Authors: A. M. H. Elyasir, K. S. M. Anbananthen
Abstract:
The internet is growing larger and becoming the most popular platform for the people to share their opinion in different interests. We choose the education domain specifically comparing some Malaysian universities against each other. This comparison produces benchmark based on different criteria shared by the online users in various online resources including Twitter, Facebook and web pages. The comparison is accomplished using opinion mining framework to extract, process the unstructured text and classify the result to positive, negative or neutral (polarity). Hence, we divide our framework to three main stages; opinion collection (extraction), unstructured text processing and polarity classification. The extraction stage includes web crawling, HTML parsing, Sentence segmentation for punctuation classification, Part of Speech (POS) tagging, the second stage processes the unstructured text with stemming and stop words removal and finally prepare the raw text for classification using Named Entity Recognition (NER). Last phase is to classify the polarity and present overall result for the comparison among the Malaysian universities. The final result is useful for those who are interested to study in Malaysia, in which our final output declares clear winners based on the public opinions all over the web.
Keywords: Entity Recognition, Education Domain, Opinion Mining, Unstructured Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29651427 Minimizing of Target Localization Error using Multi-robot System and Particle Filters
Authors: Jana Puchyova
Abstract:
In recent years a number of applications with multirobot systems (MRS) is growing in various areas. But their design is in practice often difficult and algorithms are proposed for the theoretical background and do not consider errors and noise in real conditions, so they are not usable in real environment. These errors are visible also in task of target localization enough, when robots try to find and estimate the position of the target by the sensors. Localization of target is possible also with one robot but as it was examined target finding and localization with group of mobile robots can estimate the target position more accurately and faster. The accuracy of target position estimation is made by cooperation of MRS and particle filtering. Advantage of usage the MRS with particle filtering was tested on task of fixed target localization by group of mobile robots.Keywords: Multi-robot system, particle filter, position estimation, target localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671426 Robust Face Recognition using AAM and Gabor Features
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seoungseon Jeon, Jaemin Kim, Seongwon Cho
Abstract:
In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM.Keywords: Face Recognition, AAM, Gabor features, EBGM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051425 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features
Authors: Kyi Pyar Zaw, Zin Mar Kyu
Abstract:
Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.
Keywords: Chain code frequency, character recognition, feature extraction, features matching, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7531424 A Selective 3-Anchor DV-Hop Algorithm Based On the Nearest Anchor for Wireless Sensor Network
Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane
Abstract:
Information of nodes’ locations is an important criterion for lots of applications in Wireless Sensor Networks. In the hop-based range-free localization methods, anchors transmit the localization messages counting a hop count value to the whole network. Each node receives this message and calculates its own distance with anchor in hops and then approximates its own position. However the estimative distances can provoke large error, and affect the localization precision. To solve the problem, this paper proposes an algorithm, which makes the unknown nodes fix the nearest anchor as a reference and select two other anchors which are the most accurate to achieve the estimated location. Compared to the DV-Hop algorithm, experiment results illustrate that proposed algorithm has less average localization error and is more effective.
Keywords: Wireless Sensors Networks, Localization problem, localization average error, DV–Hop Algorithm, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29581423 On the Analysis of Localization Accuracy of Wireless Indoor Positioning Systems using Cramer's Rule
Authors: Kriangkrai Maneerat, Chutima Prommak
Abstract:
This paper presents an analysis of the localization accuracy of indoor positioning systems using Cramer-s rule via IEEE 802.15.4 wireless sensor networks. The objective is to study the impact of the methods used to convert the received signal strength into the distance that is used to compute the object location in the wireless indoor positioning system. Various methods were tested and the localization accuracy was analyzed. The experimental results show that the method based on the empirical data measured in the non line-of-sight (NLOS) environment yield the highest localization accuracy; with the minimum error distance less than 3 m.
Keywords: Indoor positioning systems, localization accuracy, wireless networks, Cramer's rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19681422 On Leak Localization in the Main Branched and Simple Inclined Gas Pipelines
Authors: T. Davitashvili, G. Gubelidze
Abstract:
In this paper two mathematical models for definition of gas accidental escape localization in the gas pipelines are suggested. The first model was created for leak localization in the horizontal branched pipeline and second one for leak detection in inclined section of the main gas pipeline. The algorithm of leak localization in the branched pipeline did not demand on knowledge of corresponding initial hydraulic parameters at entrance and ending points of each sections of pipeline. For detection of the damaged section and then leak localization in this section special functions and equations have been constructed. Some results of calculations for compound pipelines having two, four and five sections are presented. Also a method and formula for the leak localization in the simple inclined section of the main gas pipeline are suggested. Some results of numerical calculations defining localization of gas escape for the inclined pipeline are presented.
Keywords: Branched and inclined gas pipelines, leak detection, mathematical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19011421 Genetic Mining: Using Genetic Algorithm for Topic based on Concept Distribution
Authors: S. M. Khalessizadeh, R. Zaefarian, S.H. Nasseri, E. Ardil
Abstract:
Today, Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to text classification, summarization and information retrieval system in text mining process. This researches show a better performance due to the nature of Genetic Algorithm. In this paper a new algorithm for using Genetic Algorithm in concept weighting and topic identification, based on concept standard deviation will be explored.Keywords: Genetic Algorithm, Text Mining, Term Weighting, Concept Extraction, Concept Distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37131420 Continuous Text Translation Using Text Modeling in the Thetos System
Authors: Nina Suszczanska, Przemyslaw Szmal, Slawomir Kulikow
Abstract:
In the paper a method of modeling text for Polish is discussed. The method is aimed at transforming continuous input text into a text consisting of sentences in so called canonical form, whose characteristic is, among others, a complete structure as well as no anaphora or ellipses. The transformation is lossless as to the content of text being transformed. The modeling method has been worked out for the needs of the Thetos system, which translates Polish written texts into the Polish sign language. We believe that the method can be also used in various applications that deal with the natural language, e.g. in a text summary generator for Polish.Keywords: anaphora, machine translation, NLP, sign language, text syntax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551419 An Energy Efficient Protocol for Target Localization in Wireless Sensor Networks
Authors: Shun-Kai Yang, Kuo-Feng Ssu
Abstract:
Target tracking and localization are important applications in wireless sensor networks. In these applications, sensor nodes collectively monitor and track the movement of a target. They have limited energy supplied by batteries, so energy efficiency is essential for sensor networks. Most existing target tracking protocols need to wake up sensors periodically to perform tracking. Some unnecessary energy waste is thus introduced. In this paper, an energy efficient protocol for target localization is proposed. In order to preserve energy, the protocol fixes the number of sensors for target tracking, but it retains the quality of target localization in an acceptable level. By selecting a set of sensors for target localization, the other sensors can sleep rather than periodically wake up to track the target. Simulation results show that the proposed protocol saves a significant amount of energy and also prolongs the network lifetime.Keywords: Coverage, energy efficiency, target localization, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16071418 Improvement over DV-Hop Localization Algorithm for Wireless Sensor Networks
Authors: Shrawan Kumar, D. K. Lobiyal
Abstract:
In this paper, we propose improved versions of DVHop algorithm as QDV-Hop algorithm and UDV-Hop algorithm for better localization without the need for additional range measurement hardware. The proposed algorithm focuses on third step of DV-Hop, first error terms from estimated distances between unknown node and anchor nodes is separated and then minimized. In the QDV-Hop algorithm, quadratic programming is used to minimize the error to obtain better localization. However, quadratic programming requires a special optimization tool box that increases computational complexity. On the other hand, UDV-Hop algorithm achieves localization accuracy similar to that of QDV-Hop by solving unconstrained optimization problem that results in solving a system of linear equations without much increase in computational complexity. Simulation results show that the performance of our proposed schemes (QDV-Hop and UDV-Hop) is superior to DV-Hop and DV-Hop based algorithms in all considered scenarios.Keywords: Wireless sensor networks, Error term, DV-Hop algorithm, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22651417 Quantum Localization of Vibrational Mirror in Cavity Optomechanics
Authors: Madiha Tariq, Hena Rabbani
Abstract:
Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.
Keywords: Dynamical localization, cavity optomechanics, hamiltonian chaos, probe field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7781416 Range-Free Localization Schemes for Wireless Sensor Networks
Authors: R. Khadim, M. Erritali, A. Maaden
Abstract:
Localization of nodes is one of the key issues of Wireless Sensor Network (WSN) that gained a wide attention in recent years. The existing localization techniques can be generally categorized into two types: range-based and range-free. Compared with rang-based schemes, the range-free schemes are more costeffective, because no additional ranging devices are needed. As a result, we focus our research on the range-free schemes. In this paper we study three types of range-free location algorithms to compare the localization error and energy consumption of each one. Centroid algorithm requires a normal node has at least three neighbor anchors, while DV-hop algorithm doesn’t have this requirement. The third studied algorithm is the amorphous algorithm similar to DV-Hop algorithm, and the idea is to calculate the hop distance between two nodes instead of the linear distance between them. The simulation results show that the localization accuracy of the amorphous algorithm is higher than that of other algorithms and the energy consumption does not increase too much.Keywords: Wireless Sensor Networks, Node Localization, Centroid Algorithm, DV–Hop Algorithm, Amorphous Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26311415 Identifying Impact Factors in Technology Transfer with the Aim of Technology Localization
Authors: L.Tahmooresnejad, M.A.Shafia, R.Salami
Abstract:
Technology transfer is a common method for companies to acquire new technology and presents both challenges and substantial benefits. In some cases especially in developing countries, the mere possession of technology does not guarantee a competitive advantage if the appropriate infrastructure is not in place. In this paper, we identify the localization factors needed to provide a better understanding of the conditions necessary for localization in order to benefit from future technology developments. Our theoretical and empirical analyses allow us to identify several factors in the technology transfer process that affect localization and provide leverage in enhancing capabilities and absorptive capacity.The impact factors are categorized within different groups of government, firms, institutes and market, and are verified through the empirical survey of a technology transfer experience. Moreover, statistical analysis has allowed a deeper understanding of the importance of each factor and has enabled each group to prioritize their organizational policies to effectively localize their technology.Keywords: Absorption Capacity, Adaptation, Technology Transfer, Technology Localization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813