Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound (BB) method to simplify the texts.
Keywords: Extraction, Max-Prod, Fuzzy Relations, Text Mining, Memberships, Classification.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099130
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190References:
[1] S. Vashishtha, and Y. Kumar, ”Efficient Retrieval of Text for Biomedical Domain using Expectation Maximization Algorithm”. IJCSI International Journal of Computer Science. Issues, Vol. 8, Issue 6, No 1, 2011.
[2] F. Hogenboom, F. Frasincar, U. Kaymak, and F. Jong F, ”An Overview of Event Extraction from Text. Proceedings of Detection”. Representation and Workshop on Detection, Representation, and Exploitation of Events in the Semantic Web (DeRiVE 2011) at Tenth International Semantic Web Conference (ISWC 2011), Volume 779, pp. 48–57, CEUR-WS.org, Bonn, 2011.
[3] B. Alex, C. Grover, B. Haddow, M. Kabadjov, E. Klein, M. Matthews, S. Roebuck, R. Tobin, And X. Wang, ”Assisted Curation: Does Text Mining Really Help?”. Pacific Symposium on Biocomputing 13, pp. 556–567. PSB, Island of Hawaii, 2008.
[4] V. Kanagavalli, and K. Raja, ”Detecting and resolving spatial ambiguity in text using named entity extraction and self learning fuzzy logic techniques”. National Conference on Recent Trends in Data Mining and Distributed Systems, SBN 978-81-909042-5-4, pp. 71–76. NCT2DS, 2011.
[5] D. MacKinnon, L. Goldberg, G. Clarke, D. Elliot, J. Cheong, A. Lapin, E. Moe, and J. Krull, ”Mediating Mechanisms in a Program to Reduce Intentions to Use Anabolic Steroids and Improve Exercise Self-Efficacy and Dietary Behavior”. Prevention Science, Vol. 2, No. 1, pp. 15–28. PS Press, 2001.
[6] Y. Garten, ”Text Mining of the Scientific Literature to Identify Pharmacogenomic Interactions”. Stanford University, 2010.
[7] I Donaldson, J. Martin, B. de Bruijn, C. Wolting, V. Lay, B. Tuekam, S. Zhang, B. Baskin, G.D. Bader, k. Michalickova, T. Pawson, and C.W.V. Hogue, ”PreBIND and Textomy - mining the biomedical literature for protein-protein interactions using a support vector machine”. BMC Bioinformatics, Vol. 4, pp. 11. Springer, 2003.
[8] N. Karamanis, I. Lewin, R. Seal, R. Drysdale, and E. Briscoe, ”Integrating natural language processing with FlyBase curation”. In Proceedings of PSB 2007, pp 245-256. PSB Press, Maui, Hawaii, 2007.
[9] T. Murphy, T. McIntosh, and J. Curran, ”In Australian Language Technology Workshop”, pp. 59-66. ALTW Press, 2006.
[10] S. Samarawickrama, L. Jayaratne, ”Focused Web Crawling Using Named Entity Recognition For Narrow Domains”. IJRET, http://www. ijret.org/ 2012.
[11] R. Lau, D. Song, Y. Li, T. Cheung, and J. Hao, ”Toward a Fuzzy Domain Ontology Extraction Method for Adaptive e-Learning”. IEEE Transactions On Knowledge And Data Engineering, VOL. 21, NO. 6, pp. 800–813. IEEE, 2009.
[12] M. Abulaish, and L. Dey, ”Biological relation extraction and query answering from MEDLINE abstracts using ontology-based text mining”. Data & Knowledge Engineering Journal, Volume 61, Issue 2, pp. 228-262, 2007.
[13] A. Prasad, S. Ramakrishna, D. Kumar, and B. Padmaja, ”Extraction of Radiology Reports using Text mining”. (IJCSE) International Journal on Computer Science and Engineering, Vol. 02, No. 05, pp. 1558–1562. IJCSE Press, 2010.
[14] M. Rodrigues, and L. Sacks, ”A Scalable Hierarchical Fuzzy Clustering Algorithm for Text Mining”. In Proceedings of the 5th International Conference on Recent Advances in Soft Computing. pp. 269–274. Nottingham, 2004.
[15] S. Jusoh, and H. Alfawareh H, ”Techniques, Applications and Challenging Issue in Text Mining”. IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2. IJCSI Press, 2012.
[16] S. Ghosh, S. Roy, and S. Bandyopadhyay, ”A tutorial review on Text Mining Algorithms”. International Journal of Advanced research in Computer and Communication Engineering, ISSN 2278-1021, Vol. 1, Issue 4. IJARCCE Press, 2012.
[17] T. Nogueira, H. Camargo, and S. Rezende, ”Fuzzy-DDE: a fuzzy method for the extraction of document cluster descriptors”. International Journal of Computer Information Systems and Industrial Management Applications, ISSN 2150-7988, Vol. 5. pp. 472–479. IJCISIM Press, 2013.
[18] K. Oh, C. Lim, S. Kim, and H. Choi, ”Research Trend Analysis using Word Similarities and Clusters”. International Journal of Multimedia and Ubiquitous Engineering, Vol. 8, No. 1. IJMUE Press, Tasmania, 2013.
[19] N. Uramoto, H. Matsuzawa, T. Nagano, A. Murakami, H. Takeuchi, and K. Takeda, ”A text-mining system for knowledge discovery from biomedical documents”. IBM Systems Journal, Vol. 43, No. 3. IEEE Press, Japan, 2004.
[20] L. Magdalena, M. Ojeda-Aciego, and J. Verdegay (eds), ”Extracting topics in texts: Towards a fuzzy logic approach”. Proceedings of IPMU’08. pp. 1733–1740. Torremolinos, 2008.
[21] M. Kathuria, N. Duhan, and C. Nagpal, ”Application Of Fuzzy Logic In Web Mining Domain: A Survey”. International Journal of Advanced Research in IT and Engineering. ISSN: 2278-6244, Vol. 1, No. 3. Tamilnadu, 2012.
[22] T. Martin, and M. Azmi-Murad, ”An Incremental Algorithm to find Asymmetric Word Similarities for Fuzzy Text Mining”. Soft Computing as Transdisciplinary Science and Technology Advances in Soft Computing, Vol. 29. pp. 838–847. Springer, 2005.
[23] A. Kaladevi, S. Padmavathy, and S. Theetcchenya, ”Augmentation of Knowledge Reuse Employing Fuzzy Ontology Based Approach”. International Journal of Engineering and Management Research, ISSN: 2250-0758, Vol. 3, Issue 2. pp. 17-21. IJMER Press, India, 2013.
[24] B. Anjali, and G. Bamnote, ”Web Document Clustering Using Fuzzy Equivalence Relations”. Journal of Emerging Trends in Computing and Information Sciences. ISSN: 2079-8407, Vol. 2, Special Issue. pp. 22–27. CIS Journal, 2011.
[25] F. Alshuwaier, W. Almutairi, and A. Areshey, ”Smart Search Tools Using Named Entity Recognition”. Proceeding in Information Technology and Applications (ITA). ISBN: 978-1-4799-2876-7. pp. 304–311. IEEE, Chengdu, 2013.
[26] A. Muhammad, and L. Dey, ”Biological ontology enhancement with fuzzy relations: a text-mining framework”. ISBN: 0-7695-2415-X. pp. 379–385. IEEE, Canada, 2005.
[27] R. Lau, D. Song, Y. Li, T. Cheung, and X. Jin Hao, ”Towards A Fuzzy Domain Ontology Extraction Method for Adaptive e-Learning”. CiteSeerX Scientific Literature Digital Library and Search Engine. CiteSeerX, 2013.
[28] J. Yen, and R. Langari, ”Fuzzy logic: intelligence, control, and information”. Prentice-Hall, Inc. 1998.
[29] M. Guelpeli, and A. Garcia, ”An Analysis of Constructed Categories for Textual Classification Using Fuzzy Similarity and Agglomerative Hierarchical Methods”. Third International IEEE Conference on Signal and Image Technologies and Internet-Based System. IEEE, Lisboa Reitoria, 2008.
[30] D. Georgiou, T. Karakasidis, J. Nieto, and A. Torres A, ”Use of Fuzzy Clustering Technique and Matrices to Classify Amino Acids and Its Impact to Chou’s Pseudo Amino Acid Composition”. Journal of Theoretical Biology, Reference: YJTBI 5356. JTB Press, 2008.
[31] M. Sridharan, ”Fuzzy mathematical model for the analysis of geomagnetic field data”. The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; Earth Planets Space, 61, pp. 1169-1177, Japan 2009.
[32] N. Archana, P. Girish, and P. Sandip P, ”Improved Membership Function for Multiclass Clustering with Fuzzy Rule Based Clustering Approach”. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), Volume 3, Issue 5, 2014.
[33] B. Steven, K. Ewan, and L. Edward, ”Chapter from Natural Language Processing with Python”. Version 3.0, USA, 2014.
[34] A. Kaladevi, and S. Padmavathy, ”Ontology Extraction for E-Learning - A Fuzzy Based Approach”. International Conference on Computer Communication and Informatics (ICCCI -2013), INDIA, 2013.
[35] C. Rakhi, ”Domain Keyword Extraction Technique: A New Weighting Method Based On Frequency Analysis”. ACER 2013, pp. 109-118, CS & IT-CSCP, 2013.
[36] B. SankaraSubramanian, R. Vasanth Kumar Mehta, ”Contradiction Analysis in Text Mining: A Fuzzy Logic Approach”. SCSVMV University, kanchipuram, INDIA, 2009.
[37] M. Foley, ”The Application of Fuzzy Logic in Determining Linguistic Rules and Associative Membership Functions for the Control of a Manufacturing Process”. Masters Dissertation. Dublin Institute of Technology, 2011.
[38] F. Bertran, N. Clara, and J. Ferrer, ”Extending The Roughness Of The Data Via Transitive Closures Of Similarity Indexes”. Vol. XII, No. 2, pp. 75-84, 2007.