Search results for: steel strip reinforcement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1021

Search results for: steel strip reinforcement

661 Buckling Performance of Irregular Section Cold-Formed Steel Columns under Axially Concentric Loading

Authors: Chayanon Hansapinyo

Abstract:

This paper presents experimental investigation and finite element analysis on buckling behavior of irregular section coldformed steel columns under axially concentric loading. For the experimental study, four different sections of columns were tested to investigate effect of stiffening and width-to-thickness ratio on buckling behavior. For each of the section, three lengths of 230, 950 and 1900 mm. were studied representing short, intermediate long and long columns, respectively. Then, nonlinear finite element analyses of the tested columns were performed. The comparisons in terms of load-deformation response and buckling mode show good agreement and hence the FEM models were validated. Parametric study of stiffening element and thickness of 1.0, 1.15, 1.2, 1.5, 1.6 and 2.0 mm. was analyzed. The test results showed that stiffening effect pays a large contribution to prevent distortional mode. The increase in wall thickness enhanced buckling stress beyond the yielding strength in short and intermediate columns, but not for the long columns.

Keywords: Buckling behavior, Irregular section, Cold-formed steel, Concentric loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
660 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate

Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar

Abstract:

Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength, and corrosion resistance. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).

Keywords: Hardness, RSM, sputtering, TiN XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
659 Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

Authors: M. S. Reza, M. Hamdi, A.S. Hadi

Abstract:

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.

Keywords: ANOVA, EDM, Injection Flushing, L18 OrthogonalArray, MRR, Stainless Steel 304

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
658 Agent-based Simulation for Blood Glucose Control in Diabetic Patients

Authors: Sh. Yasini, M. B. Naghibi-Sistani, A. Karimpour

Abstract:

This paper employs a new approach to regulate the blood glucose level of type I diabetic patient under an intensive insulin treatment. The closed-loop control scheme incorporates expert knowledge about treatment by using reinforcement learning theory to maintain the normoglycemic average of 80 mg/dl and the normal condition for free plasma insulin concentration in severe initial state. The insulin delivery rate is obtained off-line by using Qlearning algorithm, without requiring an explicit model of the environment dynamics. The implementation of the insulin delivery rate, therefore, requires simple function evaluation and minimal online computations. Controller performance is assessed in terms of its ability to reject the effect of meal disturbance and to overcome the variability in the glucose-insulin dynamics from patient to patient. Computer simulations are used to evaluate the effectiveness of the proposed technique and to show its superiority in controlling hyperglycemia over other existing algorithms

Keywords: Insulin Delivery rate, Q-learning algorithm, Reinforcement learning, Type I diabetes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
657 Investigations Into the Turning Parameters Effect on the Surface Roughness of Flame Hardened Medium Carbon Steel with TiN-Al2O3-TiCN Coated Inserts based on Taguchi Techniques

Authors: Samir Khrais, Adel Mahammod Hassan , Amro Gazawi

Abstract:

The aim of this research is to evaluate surface roughness and develop a multiple regression model for surface roughness as a function of cutting parameters during the turning of flame hardened medium carbon steel with TiN-Al2O3-TiCN coated inserts. An experimental plan of work and signal-to-noise ratio (S/N) were used to relate the influence of turning parameters to the workpiece surface finish utilizing Taguchi methodology. The effects of turning parameters were studied by using the analysis of variance (ANOVA) method. Evaluated parameters were feed, cutting speed, and depth of cut. It was found that the most significant interaction among the considered turning parameters was between depth of cut and feed. The average surface roughness (Ra) resulted by TiN-Al2O3- TiCN coated inserts was about 2.44 μm and minimum value was 0.74 μm. In addition, the regression model was able to predict values for surface roughness in comparison with experimental values within reasonable limit.

Keywords: Medium carbon steel, Prediction, Surface roughness, Taguchi method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
656 A Ground Structure Method to Minimize the Total Installed Cost of Steel Frame Structures

Authors: Filippo Ranalli, Forest Flager, Martin Fischer

Abstract:

This paper presents a ground structure method to optimize the topology and discrete member sizing of steel frame structures in order to minimize total installed cost, including material, fabrication and erection components. The proposed method improves upon existing cost-based ground structure methods by incorporating constructability considerations well as satisfying both strength and serviceability constraints. The architecture for the method is a bi-level Multidisciplinary Feasible (MDF) architecture in which the discrete member sizing optimization is nested within the topology optimization process. For each structural topology generated, the sizing optimization process seek to find a set of discrete member sizes that result in the lowest total installed cost while satisfying strength (member utilization) and serviceability (node deflection and story drift) criteria. To accurately assess cost, the connection details for the structure are generated automatically using accurate site-specific cost information obtained directly from fabricators and erectors. Member continuity rules are also applied to each node in the structure to improve constructability. The proposed optimization method is benchmarked against conventional weight-based ground structure optimization methods resulting in an average cost savings of up to 30% with comparable computational efficiency.

Keywords: Cost-based structural optimization, cost-based topology and sizing optimization, steel frame ground structure optimization, multidisciplinary optimization of steel structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
655 Analyzing Defects with Failure Assessment Diagrams of Gas Pipelines

Authors: Alfred Hasanaj, Ardit Gjeta, Miranda Kullolli

Abstract:

The approach in analyzing defects on different pipe lines is conducted through Failure Assessment Diagram (FAD). These methods of analyses have further extended in recent years. This approach is used to identify and stress out a solution for the defects which randomly occur with gas pipes such are corrosion defects, gauge defects, and combination of defects where gauge and dents are included. Few of the defects are to be analyzed in this paper where our main focus will be the fracture of cast Iron pipes, elastic-plastic failure and plastic collapse of X52 steel pipes for gas transport. We need to conduct a calculation of probability of the defects in order to predict and avoid such costly defects.

Keywords: Defects, Failure Assessment Diagrams, Safety Factor Steel Pipes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2910
654 Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment

Authors: C. Lanzerstorfer

Abstract:

The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning.

Keywords: Air classification, converter dust, recycling, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171
653 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets

Authors: S. D. El Wakil

Abstract:

The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.

Keywords: Fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
652 Investigation of Optimal Parameter Settings in Super Duplex Welding

Authors: R. M. Chandima Ratnayake, Daniel Dyakov

Abstract:

Super steel materials play a vital role in the construction and fabrication of structural, piping and pipeline components. In assuring the integrity of onshore and offshore operating systems, they enable life cycle costs to be minimized. In this context, Duplex stainless steel (DSS) material related welding on constructions and fabrications plays a significant role in maintaining and assuring integrity at an optimal expenditure over the life cycle of production and process systems as well as associated structures. In DSS welding, factors such as gap geometry, shielding gas supply rate, welding current, and type of the welding process are vital to the final joint performance. Hence, an experimental investigation has been performed using an engineering robust design approach (ERDA) to investigate the optimal settings that generate optimal super DSS (i.e. UNS S32750) joint performance. This manuscript illustrates the mathematical approach and experimental design, optimal parameter settings and results of the verification experiment.

Keywords: Duplex stainless steel welding, engineering robust design, mathematical framework, optimal parameter settings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
651 Formation of Nanosize Phases under Thermomechanical Strengthening of Low Carbon Steel

Authors: Victor E. Gromov, Yurii F. Ivanov, Vadim B. Kosterev, Sergey V. Konovalov, Veronica I. Myasnikova, Guoyi Tang

Abstract:

A study of the H-beam's nanosize structure phase states after thermomechanical strengthening was carried out by TEM. The following processes were analyzed. 1. The dispersing of the cementite plates by cutting them by moving dislocations. 2. The dissolution of cementite plates and repeated precipitation of the cementite particles on the dislocations, the boundaries, subgrains and grains. 3. The decay of solid solution of carbon in the α-iron after "self-tempering" of martensite. 4. The final transformation of the retained austenite in beinite with α-iron particles and cementite formation. 5. The implementation of the diffusion mechanism of γ ⇒ α transformation.

Keywords: nanosize, phase, steel, strengthening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
650 Q-Learning with Eligibility Traces to Solve Non-Convex Economic Dispatch Problems

Authors: Mohammed I. Abouheaf, Sofie Haesaert, Wei-Jen Lee, Frank L. Lewis

Abstract:

Economic Dispatch is one of the most important power system management tools. It is used to allocate an amount of power generation to the generating units to meet the load demand. The Economic Dispatch problem is a large scale nonlinear constrained optimization problem. In general, heuristic optimization techniques are used to solve non-convex Economic Dispatch problem. In this paper, ideas from Reinforcement Learning are proposed to solve the non-convex Economic Dispatch problem. Q-Learning is a reinforcement learning techniques where each generating unit learn the optimal schedule of the generated power that minimizes the generation cost function. The eligibility traces are used to speed up the Q-Learning process. Q-Learning with eligibility traces is used to solve Economic Dispatch problems with valve point loading effect, multiple fuel options, and power transmission losses.

Keywords: Economic Dispatch, Non-Convex Cost Functions, Valve Point Loading Effect, Q-Learning, Eligibility Traces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
649 Nonlinear Finite Element Analysis of Optimally Designed Steel Angelina™ Beams

Authors: Ferhat Erdal, Osman Tunca, Serkan Tas, Serdar Carbas

Abstract:

Web-expanded steel beams provide an easy and economical solution for the systems having longer structural members. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. Until recently, there were two common types of open web-expanded beams: with hexagonal openings, also called castellated beams, and beams with circular openings referred to as cellular beams, until the generation of sinusoidal web-expanded beams. In the present research, the optimum design of a new generation beams, namely sinusoidal web-expanded beams, will be carried out and the design results will be compared with castellated and cellular beam solutions. Thanks to a reduced fabrication process and substantial material savings, the web-expanded beam with sinusoidal holes (Angelina™ Beam) meets the economic requirements of steel design problems while ensuring optimum safety. The objective of this research is to carry out non-linear finite element analysis (FEA) of the web-expanded beam with sinusoidal holes. The FE method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify of test results and to investigate the non-linear behavior of failure modes such as web-post buckling, shear buckling and vierendeel bending of beams.

Keywords: Steel structures, web-expanded beams, Angelina™ beam, optimum design, failure modes, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
648 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini

Abstract:

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
647 Lateral Torsional Buckling Investigation on Welded Q460GJ Structural Steel Unrestrained Beams under a Point Load

Authors: Yue Zhang, Bo Yang, Gang Xiong, Mohamed Elchalakanic, Shidong Nie

Abstract:

This study aims to investigate the lateral torsional buckling of I-shaped cross-section beams fabricated from Q460GJ structural steel plates. Both experimental and numerical simulation results are presented in this paper. A total of eight specimens were tested under a three-point bending, and the corresponding numerical models were established to conduct parametric studies. The effects of some key parameters such as the non-dimensional member slenderness and the height-to-width ratio, were investigated based on the verified numerical models. Also, the results obtained from the parametric studies were compared with the predictions calculated by different design codes including the Chinese design code (GB50017-2003, 2003), the new draft version of Chinese design code (GB50017-201X, 2012), Eurocode 3 (EC3, 2005) and the North America design code (ANSI/AISC360-10, 2010). These comparisons indicated that the sectional height-to-width ratio does not play an important role to influence the overall stability load-carrying capacity of Q460GJ structural steel beams with welded I-shaped cross-sections. It was also found that the design methods in GB50017-2003 and ANSI/AISC360-10 overestimate the overall stability and load-carrying capacity of Q460GJ welded I-shaped cross-section beams.

Keywords: Experimental study, finite element analysis, global stability, lateral torsional buckling, Q460GJ structural steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011
646 Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

Authors: Bandula-Heva, T., Dhanasekar, M.

Abstract:

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.

Keywords: Stress-Strain Curve, Tensile Test, Particle Image Velocimetry, Railhead Metal Properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394
645 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm

Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin

Abstract:

In today’s business environment, companies should  make strategic decisions to gain sustainable competitive advantage.  Order selection is a crucial issue among these decisions especially for  steel production industry. When the companies allocate a high  proportion of their design and production capacities to their ongoing  projects, determining which customer order should be chosen among  the potential orders without exceeding the remaining capacity is the  major critical problem. In this study, it is aimed to identify and  prioritize the evaluation factors for the customer order selection  problem. Conjoint Analysis is used to examine the importance level  of each factor which is determined as the potential profit rate per unit  of time, the compatibility of potential order with available capacity,  the level of potential future order with higher profit, customer credit  of future business opportunity, and the negotiability level of  production schedule for the order.

 

Keywords: Conjoint analysis, order prioritization, profit management, structural steel firm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
644 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials

Authors: R. Ziaie Moayed, A. Khalili

Abstract:

Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.

Keywords: Bearing capacity, FLAC3D, geosynthetic, settlement, stone column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
643 Conservation and Repair Works for Traditional Timber Mosque in Malaysia: A Review on Techniques

Authors: N.K.F. Mustafa, S. Johar, A.G. Ahmad, S.H. Zulkarnain, M.Y. A. Rahman, A.I. Che Ani

Abstract:

Building life cycle will never be excused from the existence of defects and deterioration. They are common problems in building, existed in newly build or in aged building. Buildings constructed from wood are indeed affected by its agent and serious defects and damages can reduce values to a building. In repair works, it is important to identify the causes and repair techniques that best suites with the condition. This paper reviews the conservation of traditional timber mosque in Malaysia comprises the concept, principles and approaches of mosque conservation in general. As in conservation practice, wood in historic building can be conserved by using various restoration and conservation techniques which this can be grouped as Fully and Partial Replacement, Mechanical Reinforcement, Consolidation by Impregnation and Reinforcement, Removing Paint and also Preservation of Wood and Control Insect Invasion, as to prolong and extended the function of a timber in a building. It resulted that the common techniques adopted in timber mosque conservation are from the conventional ways and the understanding of the repair technique requires the use of only preserve wood to prevent the future immature defects.

Keywords: Building conservation, conservation principles, repair works, traditional timber mosque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3637
642 Identification of Micromechanical Fracture Model for Predicting Fracture Performance of Steel Wires for Civil Engineering Applications

Authors: Kazeem K. Adewole, Julia M. Race, Steve J. Bull

Abstract:

The fracture performance of steel wires for civil engineering applications remains a major concern in civil engineering construction and maintenance of wire reinforced structures. The need to employ approaches that simulate micromechanical material processes which characterizes fracture in civil structures has been emphasized recently in the literature. However, choosing from the numerous micromechanics-based fracture models, and identifying their applicability and reliability remains an issue that still needs to be addressed in a greater depth. Laboratory tensile testing and finite element tensile testing simulations with the shear, ductile and Gurson-Tvergaard-Needleman’s micromechanics-based models conducted in this work reveal that the shear fracture model is an appropriate fracture model to predict the fracture performance of steel wires used for civil engineering applications. The need to consider the capability of the micromechanics-based fracture model to predict the “cup and cone” fracture exhibited by the wire in choosing the appropriate fracture model is demonstrated.

Keywords: Fracture performance, FE simulation, Shear fracture model, Ductile fracture model, Gurson-Tvergaard-Needleman fracture model, Wires.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
641 Application of Generalized Taguchi and Design of Experiment Methodology for Rebar Production at an Integrated Steel Plant

Authors: S. B. V. S. P. Sastry, V. V. S. Kesava Rao

Abstract:

In this paper, x-ray impact of Taguchi method and design of experiment philosophy to project relationship between various factors leading to output yield strength of rebar is studied. In bar mill of an integrated steel plant, there are two production lines called as line 1 and line 2. The metallic properties e.g. yield strength of finished product of the same material is varying for a particular grade material when rolled simultaneously in both the lines. A study has been carried out to set the process parameters at optimal level for obtaining equal value of yield strength simultaneously for both lines.

Keywords: Bar mill, design of experiment, Taguchi, yield strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
640 Influence of Strengthening with Perforated Steel Plates on the Behavior of Infill Walls and RC Frame

Authors: Eray Ozbek, Ilker Kalkan, S. Oguzhan Akbas, Sabahattin Aykac

Abstract:

The contribution of the infill walls to the overall earthquake response of a structure is limited and this contribution is generally ignored in the analyses. Strengthening of the infill walls through different techniques has been and is being studied extensively in the literature to increase this limited contribution and the ductilities and energy absorption capacities of the infill walls to create non-structural components where the earthquake-induced energy can be absorbed without damaging the bearing components of the structural frame. The present paper summarizes an extensive research project dedicated to investigate the effects of strengthening the brick infill walls of a reinforced concrete (RC) frame on its lateral earthquake response. Perforated steel plates were used in strengthening due to several reasons, including the ductility and high deformation capacity of these plates, the fire resistant, recyclable and non-cancerogenic nature of mild steel, and the ease of installation and removal of the plates to the wall with the help of anchor bolts only. Furthermore, epoxy, which increases the cost and amount of labor of the strengthening process, is not needed in this technique. The individual behavior of the strengthened walls under monotonic diagonal and lateral reversed cyclic loading was investigated within the scope of the study. Upon achieving brilliant results, RC frames with strengthened infill walls were tested and are being tested to examine the influence of this strengthening technique on the overall behavior of the RC frames. Tests on the wall and frame specimens indicated that the perforated steel plates contribute to the lateral strength, rigidity, ductility and energy absorption capacity of the wall and the infilled frame to a major extent.

Keywords: Infill wall, Strengthening, External plate, Earthquake Behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
639 Slope Stability of an Earthen Levee Strengthened by HPTRM under Turbulent Overtopping Conditions

Authors: Fashad Amini, Lin Li

Abstract:

High performance turf reinforcement mat (HPTRM) is one of the most advanced flexible armoring technologies for severe erosion challenges. The effect of turbulence on the slope stability of an earthen levee strengthened by high performance turf reinforcement mat (HPTRM) is investigated in this study for combined storm surge and wave overtopping conditions. The results show that turbulence has strong influence on the slope stability during the combined storm surge and wave overtopping conditions. Among the surge height, peak wave force and turbulent force. The turbulent force has the ability to stabilize the earthen levee at the large wave force the turbulent force has strongest effect on the FS. The surge storm acts as an independent force on the slope stability of the earthen levee. It just adds to the effects of the turbulent force and wave force on the slope stability of HPTRM strengthened levee.

Keywords: Slope stability, strength reduction method, HPTRM, levee, overtopping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
638 The Prospect of Producing Hydrogen by Electrolysis of Idle Discharges of Water from Reservoirs and Recycling of Waste-Gas Condensates

Authors: Inom Sh. Normatov, Nurmakhmad Shermatov, Rajabali Barotov, Rano Eshankulova

Abstract:

The results of the studies for the hydrogen production by the application of water electrolysis and plasma-chemical processing of gas condensate-waste of natural gas production methods are presented. Thin coating covers the electrode surfaces in the process of water electrolysis. Therefore, water for electrolysis was first exposed to electrosedimentation. The threshold voltage is shifted to a lower value compared with the use of electrodes made of stainless steel. At electrolysis of electrosedimented water by use of electrodes from stainless steel, a significant amount of hydrogen is formed. Pyrolysis of gas condensates in the atmosphere of a nitrogen was followed by the formation of acetylene (3-7 vol.%), ethylene (4-8 vol.%), and pyrolysis carbon (10-15 wt.%).

Keywords: Electrolyze, gas condensate, hydrogen, pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
637 Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams

Authors: Ruoyang Tang, Jianguo Nie

Abstract:

Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode.

Keywords: Bracing member, construction stage, lateral-torsional buckling, steel girder system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
636 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water

Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing

Abstract:

As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.

Keywords: HGMS, particulates, superoxide dismutase activity, steel wool magnetic medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
635 Development of Map of Gridded Basin Flash Flood Potential Index: GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue Provinces

Authors: Le Xuan Cau

Abstract:

Flash flood is occurred in short time rainfall interval: from 1 hour to 12 hours in small and medium basins. Flash floods typically have two characteristics: large water flow and big flow velocity. Flash flood is occurred at hill valley site (strip of lowland of terrain) in a catchment with large enough distribution area, steep basin slope, and heavy rainfall. The risk of flash floods is determined through Gridded Basin Flash Flood Potential Index (GBFFPI). Flash Flood Potential Index (FFPI) is determined through terrain slope flash flood index, soil erosion flash flood index, land cover flash floods index, land use flash flood index, rainfall flash flood index. Determining GBFFPI, each cell in a map can be considered as outlet of a water accumulation basin. GBFFPI of the cell is determined as basin average value of FFPI of the corresponding water accumulation basin. Based on GIS, a tool is developed to compute GBFFPI using ArcObjects SDK for .NET. The maps of GBFFPI are built in two types: GBFFPI including rainfall flash flood index (real time flash flood warning) or GBFFPI excluding rainfall flash flood index. GBFFPI Tool can be used to determine a high flash flood potential site in a large region as quick as possible. The GBFFPI is improved from conventional FFPI. The advantage of GBFFPI is that GBFFPI is taking into account the basin response (interaction of cells) and determines more true flash flood site (strip of lowland of terrain) while conventional FFPI is taking into account single cell and does not consider the interaction between cells. The GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue is built and exported to Google Earth. The obtained map proves scientific basis of GBFFPI.

Keywords: ArcObjects SDK for .NET, Basin average value of FFPI, Gridded basin flash flood potential index, GBFFPI map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
634 Effect of Alkali Treatment on Impact Behavior of Areca Fibers Reinforced Polymer Composites

Authors: Srinivasa C. V., Bharath K. N.

Abstract:

Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principal benefits: moderate strength and stiffness, low cost, and being an environmental friendly, degradable, and renewable material. A study has been carried out to evaluate impact properties of composites made by areca fibers reinforced urea formaldehyde, melamine urea formaldehyde and epoxy resins. The extracted areca fibers from the areca husk were alkali treated with potassium hydroxide (KOH) to obtain better interfacial bonding between fiber and matrix. Then composites were produced by means of compression molding technique with varying process parameters, such as fiber condition (untreated and alkali treated), and fiber loading percentages (50% and 60% by weight). The developed areca fiber reinforced composites were then characterized by impact test. The results show that, impact strength increase with increase in the loading percentage. It is observed that, treated areca fiber reinforcement increases impact strength when compared to untreated areca fiber reinforcement.

Keywords: Lignocellulosic Fibers Composites, Areca Fibers, Alkali Treatment, Impact Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3745
633 Broadening of Raw Materials in the Steel Industry, by Recycling and Recovery Wastes

Authors: A. Todorut, T. Heput

Abstract:

In technological processes, in addition to the main product, result a large amount of materials, called wastes, but due to the possibilities of recovery, by means of recycling and reusing it can fit in the category of by-products. These large amounts of dust from the steel industry are a major problem in terms of environmental and human health, landscape, etc. Solving these problems, the impressive amounts of waste can be done through their proper management and recovery for every type of waste. In this article it was watched the capitalizing through pelleting and briquetting of small and powdery waste aiming to obtain the sponge iron as raw material, used in blast furnaces and electric arc furnaces. The data have been processed in the Excel spreadsheet program, being presented in the form of diagrams.

Keywords: Agglomeration, industry, iron, pellets, wastes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
632 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: Cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616