Search results for: robot end effector
391 Study on Robot Trajectory Planning by Robot End-Effector Using Dual Curvature Theory of the Ruled Surface
Authors: Y. S. Oh, P. Abhishesh, B. S. Ryuh
Abstract:
This paper presents the method of trajectory planning by the robot end-effector which accounts for more accurate and smooth differential geometry of the ruled surface generated by tool line fixed with end-effector based on the methods of curvature theory of ruled surface and the dual curvature theory, and focuses on the underlying relation to unite them for enhancing the efficiency for trajectory planning. Robot motion can be represented as motion properties of the ruled surface generated by trajectory of the Tool Center Point (TCP). The linear and angular properties of the six degree-of-freedom motion of end-effector are computed using the explicit formulas and functions from curvature theory and dual curvature theory. This paper explains the complete dualization of ruled surface and shows that the linear and angular motion applied using the method of dual curvature theory is more accurate and less complex.
Keywords: Dual curvature theory, robot end effector, ruled surface, TCP, tool center point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350390 Kinematic Analysis and Software Development of a Seven Degree of Freedom Inspection Robot
Authors: G. Shanmugasundar, R. Sivaramakrishnan, S. Venugopal
Abstract:
Robots are booming as an essential substituent in the field of inspection. In hazardous environments like nuclear waste disposal, robots are really a necessitate one. In a view to meet such demands, this paper presents the seven degree of freedom articulated inspection robot. To design such a robot the kinematic analysis of seven Degree of freedom robot which can inspect the hazardous nuclear waste storage tanks is done. The effective utilization of universal joints for arms and screw jack mechanisms at the base gives the higher order of degree of freedom to the newly designed robot. The analytical method of deriving the manipulator forward as well as inverse kinematics is explained elaborately using the Denavit-Hartenberg Approach for the purpose of calculating the robot joints, links and end-effector parameters. The comparison of the geometric and the analytical approach is stated. The self-developed kinematic model gives the accurate positions of the end effector. The Graphical User Interface (GUI) is developed in Visual Basic language for the manipulation of kinematic results easily. This software gives the expected position of the end-effector accurately at short time compared to manual manipulations.
Keywords: Robot kinematics, screw jack mechanisms, Denavit-Hartenberg approach, universal joints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914389 Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor
Authors: Shiuh-Jer Huang, Yu-Chi Liu, Su-Hai Hsiang
Abstract:
A novel low-cost impedance control structure is proposed for monitoring the contact force between end-effector and environment without installing an expensive force/torque sensor. Theoretically, the end-effector contact force can be estimated from the superposition of each joint control torque. There have a nonlinear matrix mapping function between each joint motor control input and end-effector actuating force/torques vector. This new force control structure can be implemented based on this estimated mapping matrix. First, the robot end-effector is manipulated to specified positions, then the force controller is actuated based on the hall sensor current feedback of each joint motor. The model-free fuzzy sliding mode control (FSMC) strategy is employed to design the position and force controllers, respectively. All the hardware circuits and software control programs are designed on an Altera Nios II embedded development kit to constitute an embedded system structure for a retrofitted Mitsubishi 5 DOF robot. Experimental results show that PI and FSMC force control algorithms can achieve reasonable contact force monitoring objective based on this hardware control structure.
Keywords: Robot, impedance control, fuzzy sliding mode control, contact force estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4018388 Visual Object Tracking and Interception in Industrial Settings
Authors: Ahmet Denker, Tuğrul Adıgüzel
Abstract:
This paper presents a solution for a robotic manipulation problem. We formulate the problem as combining target identification, tracking and interception. The task in our solution is sensing a target on a conveyor belt and then intercepting robot-s end-effector at a convenient rendezvous point. We used an object recognition method which identifies the target and finds its position from visualized scene picture, then the robot system generates a solution for rendezvous problem using the target-s initial position and belt velocity . The interception of the target and the end-effector is executed at a convenient rendezvous point along the target-s calculated trajectory. Experimental results are obtained using a real platform with an industrial robot and a vision system over it.Keywords: Object recognition, rendezvous planning, robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725387 Motion Planning of SCARA Robots for Trajectory Tracking
Authors: Giovanni Incerti
Abstract:
The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.Keywords: Motion planning, SCARA robot, trajectory tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405386 Modelling of a Direct Drive Industrial Robot
Authors: C. Perez, O. Reinoso, N. Garcia, J. M. Sabater, L. Gracia
Abstract:
For high-speed control of robots, a good knowledge of system modelling is necessary to obtain the desired bandwidth. In this paper, we present a cartesian robot with a pan/tilt unit in end-effector (5 dof). This robot is implemented with powerful direct drive AC induction machines. The dynamic model, parameter identification and model validation of the robot are studied (including actuators). This work considers the cartesian robot coupled and non linear (contrary to normal considerations for this type of robots). The mechanical and control architecture proposed in this paper is efficient for industrial and research application in which high speed, well known model and very high accuracy are required.
Keywords: Robot modelling, parameter identification and validation, AC servo-motors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563385 Controlling 6R Robot by Visionary System
Authors: Azamossadat Nourbakhsh, Moharram Habibnezhad Korayem
Abstract:
In the visual servoing systems, the data obtained by Visionary is used for controlling robots. In this project, at first the simulator which was proposed for simulating the performance of a 6R robot before, was examined in terms of software and test, and in the proposed simulator, existing defects were obviated. In the first version of simulation, the robot was directed toward the target object only in a Position-based method using two cameras in the environment. In the new version of the software, three cameras were used simultaneously. The camera which is installed as eye-inhand on the end-effector of the robot is used for visual servoing in a Feature-based method. The target object is recognized according to its characteristics and the robot is directed toward the object in compliance with an algorithm similar to the function of human-s eyes. Then, the function and accuracy of the operation of the robot are examined through Position-based visual servoing method using two cameras installed as eye-to-hand in the environment. Finally, the obtained results are tested under ANSI-RIA R15.05-2 standard.Keywords: 6R Robot , camera, visual servoing, Feature-based visual servoing, Position-based visual servoing, Performance tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384384 Visual Inspection of Work Piece with a Complex Shape by Means of Robot Manipulator
Authors: A. Y. Bani Hashim, N. S. A. Ramdan
Abstract:
Inconsistency in manual inspection is real because humans get tired after some time. Recent trends show that automatic inspection is more appealing for mass production inspections. In such as a case, a robot manipulator seems the best candidate to run a dynamic visual inspection. The purpose of this work is to estimate the optimum workspace where a robot manipulator would perform a visual inspection process onto a work piece where a camera is attached to the end effector. The pseudo codes for the planned path are derived from the number of tool transit points, the delay time at the transit points, the process cycle time, and the configuration space that the distance between the tool and the work piece. It is observed that express start and swift end are acceptable in a robot program because applicable works usually in existence during these moments. However, during the mid-range cycle, there are always practical tasks programmed to be executed. For that reason, it is acceptable to program the robot such as that speedy alteration of actuator displacement is avoided. A dynamic visual inspection system using a robot manipulator seems practical for a work piece with a complex shape.
Keywords: Robot manipulator, Visual inspection, Work piece, Trajectory planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661383 Bio-mechanical Analysis of Human Joints and Extension of the Study to Robot
Authors: S. Parasuraman, Ler Shiaw Pei
Abstract:
In this paper, the bio-mechanical analysis of human joints is carried out and the study is extended to the robot manipulator. This study will first focus on the kinematics of human arm which include the movement of each joint in shoulder, wrist, elbow and finger complexes. Those analyses are then extended to the design of a human robot manipulator. A simulator is built for Direct Kinematics and Inverse Kinematics of human arm. In the simulation of Direct Kinematics, the human joint angles can be inserted, while the position and orientation of each finger tips (end-effector) are shown. Inverse Kinematics does the reverse of the Direct Kinematics. Based on previous materials obtained from kinematics analysis, the human manipulator joints can be designed to follow prescribed position trajectories.
Keywords: Kinematics, Human Joints, Robotics, Robot Dynamics, Manipulators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010382 Development of Roller-Based Interior Wall Painting Robot
Authors: Mohamed T. Sorour, Mohamed A. Abdellatif, Ahmed A. Ramadan, Ahmed A. Abo-Ismail
Abstract:
This paper describes the development of an autonomous robot for painting the interior walls of buildings. The robot consists of a painting arm with an end effector roller that scans the walls vertically and a mobile platform to give horizontal feed to paint the whole area of the wall. The painting arm has a planar twolink mechanism with two joints. Joints are driven from a stepping motor through a ball screw-nut mechanism. Four ultrasonic sensors are attached to the mobile platform and used to maintain a certain distance from the facing wall and to avoid collision with side walls. When settled on adjusted distance from the wall, the controller starts the painting process autonomously. Simplicity, relatively low weight and short painting time were considered in our design. Different modules constituting the robot have been separately tested then integrated. Experiments have shown successfulness of the robot in its intended tasks.Keywords: Automated roller painting, Construction robots, Mobile robots, service robots, two link planar manipulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6970381 The Development of Flying Type Moving Robot Using Image Processing
Authors: Suriyon Tansuriyavong, Yuuta Suzuki, Boonmee Choompol
Abstract:
Wheel-running type moving robot has the restriction on the moving range caused by obstacles or stairs. Solving this weakness, we studied the development of moving robot using airship. Our airship robot moves by recognizing arrow marks on the path. To have the airship robot recognize arrow marks, we used edge-based template matching. To control propeller units, we used PID and PD controller. The results of experiments demonstrated that the airship robot can move along the marks and can go up and down the stairs. It is shown the possibility that airship robot can become a robot which can move at wide range facilities.Keywords: Template matching, moving robot, airship robot, PID control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535380 The Framework of BeeBot: Binus Multi-Client of Intelligent Telepresence Robot
Authors: Widod Budiharto, Muhsin Shodiq, Bayu Kanigoro, Jurike V. Moniaga Hutomo
Abstract:
We present a BeeBot, Binus Multi-client Intelligent Telepresence Robot, a custom-build robot system specifically designed for teleconference with multiple person using omni directional actuator. The robot is controlled using a computer networks, so the manager/supervisor can direct the robot to the intended person to start a discussion/inspection. People tracking and autonomous navigation are intelligent features of this robot. We build a web application for controlling the multi-client telepresence robot and open-source teleconference system used. Experimental result presented and we evaluated its performance.Keywords: Telepresence robot, robot vision, intelligent robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563379 A Simulator for Robot Navigation Algorithms
Authors: Michael A. Folcik, Bijan Karimi
Abstract:
A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756378 On the Computation of a Common n-finger Robotic Grasp for a Set of Objects
Authors: Avishai Sintov, Roland Menassa, Amir Shapiro
Abstract:
Industrial robotic arms utilize multiple end-effectors, each for a specific part and for a specific task. We propose a novel algorithm which will define a single end-effector’s configuration able to grasp a given set of objects with different geometries. The algorithm will have great benefit in production lines allowing a single robot to grasp various parts. Hence, reducing the number of endeffectors needed. Moreover, the algorithm will reduce end-effector design and manufacturing time and final product cost. The algorithm searches for a common grasp over the set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account possible external wrenches (forces and torques) applied to the object. The mapped grasps are- represented by high-dimensional feature vectors which describes the shape of the gripper. We generate a database of all possible grasps for each object in the feature space. Then we use a search and classification algorithm for intersecting all possible grasps over all parts and finding a single common grasp suitable for all objects. We present simulations of planar and spatial objects to validate the feasibility of the approach.
Keywords: Common Grasping, Search Algorithm, Robotic End-Effector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675377 Motion Control of a 2-link Revolute Manipulator in an Obstacle-Ridden Workspace
Authors: Avinesh Prasad, Bibhya Sharma, Jito Vanualailai
Abstract:
In this paper, we propose a solution to the motion control problem of a 2-link revolute manipulator arm. We require the end-effector of the arm to move safely to its designated target in a priori known workspace cluttered with fixed circular obstacles of arbitrary position and sizes. Firstly a unique velocity algorithm is used to move the end-effector to its target. Secondly, for obstacle avoidance a turning angle is designed, which when incorporated into the control laws ensures that the entire robot arm avoids any number of fixed obstacles along its path enroute the target. The control laws proposed in this paper also ensure that the equilibrium point of the system is asymptotically stable. Computer simulations of the proposed technique are presented.Keywords: 2-link revolute manipulator, motion control, obstacle avoidance, asymptotic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851376 A Method of Drilling a Ground Using a Robotic Arm
Authors: Lotfi Beji, Laredj Benchikh
Abstract:
Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper.Keywords: Drilling, PDE control, robotic arm, resonant vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144375 Milling Simulations with a 3-DOF Flexible Planar Robot
Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden
Abstract:
Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.Keywords: Control, machining, multibody, robotic, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367374 Development of a Portable Welding Robot with EtherCAT Interface
Authors: Juyi Park, Sang-Bum Lee, Jin-Wook Kim, Ji-Yoon Kim, Jung-Min Kim, Hee-Hwan Park, Jae-Won Seo, Gye-Hyung Kang, Soo-Ho Kim
Abstract:
This paper presents a portable robot that is to use for welding process in shipbuilding yard. It has six degree of freedom and 3kg payload capability. Its weight is 21.5kg so that human workers can carry it to the work place. Its body mainly made of magnesium alloy and aluminum alloy for few parts that require high strength. Since the distance between robot and controller should be 50m at most, the robot controller controls the robot through EtherCAT. RTX and KPA are used for real time EtherCAT control on Windows XP. The performance of the developed robot was satisfactory, in welding of U type cell in shipbuilding yard.Keywords: Portable welding robot, Shipbuilding, EtherCAT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963373 Robot Cell Planning
Authors: Allan Tubaileh, Ibrahim Hammad, Loay Al Kafafi
Abstract:
A new approach to determine the machine layout in flexible manufacturing cell, and to find the feasible robot configuration of the robot to achieve minimum cycle time is presented in this paper. The location of the input/output location and the optimal robot configuration is obtained for all sequences of work tasks of the robot within a specified period of time. A more realistic approach has been presented to model the problem using the robot joint space. The problem is formulated as a nonlinear optimization problem and solved using Sequential Quadratic Programming algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043372 An Example of Open Robot Controller Architecture - For Power Distribution Line Maintenance Robot System -
Authors: Yingxin He, Kyouichi Tatsuno
Abstract:
In this paper, we propose an architecture for easily constructing a robot controller. The architecture is a multi-agent system which has eight agents: the Man-machine interface, Task planner, Task teaching editor, Motion planner, Arm controller, Vehicle controller, Vision system and CG display. The controller has three databases: the Task knowledge database, the Robot database and the Environment database. Based on this controller architecture, we are constructing an experimental power distribution line maintenance robot system and are doing the experiment for the maintenance tasks, for example, “Bolt insertion task".Keywords: Robot controller, Software library, Maintenance robot, Robot language, Agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400371 Wireless Power Transfer Application in GSM Controlled Robot for Home Automation
Authors: Kaibalya Prasad Panda, Nirakar Behera, Kamal Lochan Biswal
Abstract:
The aim of this paper is to combine the concept of wireless power transfer and GSM controlled robot for the application of home automation. The wireless power transfer concept can be well utilized to charge battery of the GSM controlled robot. When the robot has completed its task, it can come to the origin where it can charge itself. Robot can be charged wirelessly, when it is not performing any task. Combination of GSM controlled robot and wireless power transfer provides greater advantage such as; no wastage of charge stored in the battery when the robot is not doing any task. This provides greater reliability that at any instant, robot can do its work once it receives a message through GSM module. GSM module of the robot and user mobile phone must be interfaced properly, so that robot can do task when it receives message from same user mobile phone, not from any other phone. This paper approaches a robotic movement control through the smart phone and control of GSM robot is done by programming in Arduino environment. The commands used in controlling the robot movement are also explained.
Keywords: Arduino, automation, GSM controlled robot, GSM module, wireless power transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416370 Vision Based Robot Experiment: Measurement of Path Related Characteristics
Authors: M. H. Korayem, K. Khoshhal, H. Aliakbarpour
Abstract:
In this paper, a vision based system has been used for controlling an industrial 3P Cartesian robot. The vision system will recognize the target and control the robot by obtaining images from environment and processing them. At the first stage, images from environment are changed to a grayscale mode then it can diverse and identify objects and noises by using a threshold objects which are stored in different frames and then the main object will be recognized. This will control the robot to achieve the target. A vision system can be an appropriate tool for measuring errors of a robot in a situation where the experimental test is conducted for a 3P robot. Finally, the international standard ANSI/RIA R15.05-2 is used for evaluating the path-related characteristics of the robot. To evaluate the performance of the proposed method experimental test is carried out.Keywords: Robot, Vision, Experiment, Standard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255369 A Stable Pose Estimation Method for the Biped Robot using Image Information
Authors: Sangbum Park, Youngjoon Han
Abstract:
This paper proposes a balance control scheme for a biped robot to trace an arbitrary path using image information. While moving, it estimates the zero moment point(ZMP) of the biped robot in the next step using a Kalman filter and renders an appropriate balanced pose of the robot. The ZMP can be calculated from the robot's pose, which is measured from the reference object image acquired by a CCD camera on the robot's head. For simplifying the kinematical model, the coordinates systems of individual joints of each leg are aligned and the robot motion is approximated as an inverted pendulum so that a simple linear dynamics, 3D-LIPM(3D-Linear Inverted Pendulum Mode) can be applied. The efficiency of the proposed algorithm has been proven by the experiments performed on unknown trajectory.
Keywords: Biped robot, Zero moment point, Balance control, Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404368 Application of Wireless Visual Sensor for Semi- Autonomous Mine Navigation System
Authors: Vinay Kumar Pilania, Debashish Chakravarty
Abstract:
The present paper represent the efforts undertaken for the development of an semi-automatic robot that may be used for various post-disaster rescue operation planning and their subsequent execution using one-way communication of video and data from the robot to the controller and controller to the robot respectively. Wireless communication has been used for the purpose so that the robot may access the unapproachable places easily without any difficulties. It is expected that the information obtained from the robot would be of definite help to the rescue team for better planning and execution of their operations.Keywords: Mine environment, mine navigation, mine rescue robot, video data transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731367 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes
Authors: M. Nemer, E. I. Konukseven
Abstract:
In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.Keywords: Offline programming, CAD-based tools, edge deburring, edge scanning, path generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912366 Robot Task-Level Programming Language and Simulation
Authors: M. Samaka
Abstract:
This paper presents the development of a software application for Off-line robot task programming and simulation. Such application is designed to assist in robot task planning and to direct manipulator motion on sensor based programmed motion. The concept of the designed programming application is to use the power of the knowledge base for task accumulation. In support of the programming means, an interactive graphical simulation for manipulator kinematics was also developed and integrated into the application as the complimentary factor to the robot programming media. The simulation provides the designer with useful, inexpensive, off-line tools for retain and testing robotics work cells and automated assembly lines for various industrial applications.Keywords: Robot programming, task-level programming, robot languages, robot simulation, robotics software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3261365 Underneath Vehicle Inspection Using Fuzzy Logic, Subsumption and OpenCV Library
Authors: Hazim Abdulsada
Abstract:
The inspection of underneath vehicle system has been given significant attention by governments after the threat of terrorism become more prevalent. New technologies such as mobile robots and computer vision are led to have more secure environment. This paper proposed that a mobile robot like Aria robot can be used to search and inspect the bombs under parking a lot vehicle. This robot is using fuzzy logic and subsumption algorithms to control the robot that movies underneath the vehicle. An OpenCV library and laser Hokuyo are added to Aria robot to complete the experiment for under vehicle inspection. This experiment was conducted at the indoor environment to demonstrate the efficiency of our methods to search objects and control the robot movements under vehicle. We got excellent results not only by controlling the robot movement but also inspecting object by the robot camera at same time. This success allowed us to know the requirement to construct a new cost effective robot with more functionality.
Keywords: Fuzzy logic, Mobile robots, OpenCV, Subsumption, Under vehicle inspection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811364 Design and Fabrication of a Column-Climber Robot (Koala Robot)
Authors: Maziar Sadeghi, Amir Moradi
Abstract:
This paper proposes a robot able to climb Columns. This robot is not dependent on the diameter and material of the columns. Some climbing robots have been designed up to now but Koala robot was designed and fabricated for climbing columns exclusively. Simple kinematics of climbing in the nature inspired us to design this robot. We used two linear mechanisms to grip the column. The gripper consists of a DC motor and a power screw mechanism with a linear bushing as a guide. This mechanism provides enough force to grip the column. In addition we needed an actuator for climbing the column; hence, two pneumatic jacks were used. All the mechanical parts were designed according to the exerted forces and operational condition. The prototype can be simply installed and controlled on the column by an inexperienced operator. This robot is intended for inspection and surveillance of pipes in oil industries and power poles in electric industries.Keywords: Robot, Column-climber, Gripping mechanism, Koala.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174363 Tracked Robot with Blade Arms to Enhance Crawling Capability
Authors: Jhu-Wei Ji, Fa-Shian Chang, Lih-Tyng Hwang, Chih-Feng Liu, Jeng-Nan Lee, Shun-Min Wang, Kai-Yi Cho
Abstract:
This paper presents a tracked robot with blade arms powered to assist movement in difficult environments. As a result, the tracked robot is able to pass a ramp or climb stairs. The main feature is a pair of blade arms on both sides of the vehicle body working in collaboration with previously validated transformable track system. When the robot encounters an obstacle in a terrain, it enlists the blade arms with power to overcome the obstacle. In disaster areas, there usually will be terrains that are full of broken and complicated slopes, broken walls, rubbles, and ditches. Thereupon, a robot, which is instructed to pass through such disaster areas, needs to have a good off-road capability for such complicated terrains. The robot with crawling-assisting blade arms would overcome the obstacles along the terrains, and possibly become to be a rescue robot. A prototype has been developed and built; experiments were carried out to validate the enhanced crawling capability of the robot.
Keywords: Tracked robot, rescue robot, blade arm, crawling ability, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406362 An Approach for Integration of Industrial Robot with Vision System and Simulation Software
Authors: Ahmed Sh. Khusheef, Ganesh Kothapalli, Majid Tolouei-Rad
Abstract:
Utilization of various sensors has made it possible to extend capabilities of industrial robots. Among these are vision sensors that are used for providing visual information to assist robot controllers. This paper presents a method of integrating a vision system and a simulation program with an industrial robot. The vision system is employed to detect a target object and compute its location in the robot environment. Then, the target object-s information is sent to the robot controller via parallel communication port. The robot controller uses the extracted object information and the simulation program to control the robot arm for approaching, grasping and relocating the object. This paper presents technical details of system components and describes the methodology used for this integration. It also provides a case study to prove the validity of the methodology developed.Keywords: industrial robot, integration, simulation, vision system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222