Search results for: reinforced vulcanized rubbers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 546

Search results for: reinforced vulcanized rubbers

216 Behavior of Cu-WC-Ti Metal Composite Afterusing Planetary Ball Milling

Authors: A.T.Z. Mahamat, A.M. A Rani, Patthi Husain

Abstract:

Copper based composites reinforced with WC and Ti particles were prepared using planetary ball-mill. The experiment was designed by using Taguchi technique and milling was carried out in an air for several hours. The powder was characterized before and after milling using the SEM, TEM and X-ray for microstructure and for possible new phases. Microstructures show that milled particles size and reduction in particle size depend on many parameters. The distance d between planes of atoms estimated from X-ray powder diffraction data and TEM image. X-ray diffraction patterns of the milled powder did not show clearly any new peak or energy shift, but the TEM images show a significant change in crystalline structure of corporate on titanium in the composites.

Keywords: ball milling, microstructures, titanium, tungstencarbides, X-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
215 Energy Systems and Crushing Behavior of Fiber Reinforced Composite Materials

Authors: Hakim S. Sultan Aljibori

Abstract:

Effect of geometry on crushing behavior, energy absorption and failure mode of woven roving jute fiber/epoxy laminated composite tubes were experimentally studied. Investigations were carried out on three different geometrical types of composite tubes (circular, square and radial corrugated) subjected to axial compressive loading. It was observed in axial crushing study that the load bearing capability is significantly influenced by corrugation geometry. The influence of geometries of specimens was supported by the plotted load – displacement curves of the tests.

Keywords: Crushing behavior, jute fiber, composite tubes andSpecific energy absorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
214 Probabilistic Robustness Assessment of Structures under Sudden Column-Loss Scenario

Authors: Ali Y Al-Attraqchi, P. Rajeev, M. Javad Hashemi, Riadh Al-Mahaidi

Abstract:

This paper presents a probabilistic incremental dynamic analysis (IDA) of a full reinforced concrete building subjected to column loss scenario for the assessment of progressive collapse. The IDA is chosen to explicitly account for uncertainties in loads and system capacity. Fragility curves are developed to predict the probability of progressive collapse given the loss of one or more columns. At a broader scale, it will also provide critical information needed to support the development of a new generation of design codes that attempt to explicitly quantify structural robustness.

Keywords: Incremental dynamic analysis, progressive collapse, structural engineering, pushdown analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
213 The Effect of Air Entraining Agents on Compressive Strength

Authors: Demet Yavuz

Abstract:

Freeze-thaw cycles are one of the greatest threats to concrete durability. Lately, protection against this threat excites scientists’ attention. Air-entraining admixtures have been widely used to produce freeze-thaw resistant at concretes. The use of air-entraining agents (AEAs) enhances not only freeze-thaw endurance but also the properties of fresh concrete such as segregation, bleeding and flow ability. This paper examines the effects of air-entraining on compressive strength of concrete. Air-entraining is used between 0.05% and 0.4% by weight of cement. One control and four fiber reinforced concrete mixes are prepared and three specimens are tested for each mix. It is concluded from the test results that when air entraining is increased the compressive strength of concrete reduces for all mixes with AEAs.

Keywords: Concrete, air-entraining, compressive strength, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
212 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: Composite, columns, experimental, finite element, fully encased, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786
211 Eccentric Loading of CFDST Columns

Authors: Trevor N. Haas, Alexander Koen

Abstract:

Columns have traditionally been constructed of reinforced concrete or structural steel. Much attention was allocated to estimate the axial capacity of the traditional column sections to the detriment of other forms of construction. Other forms of column construction such as Concrete Filled Double Skin Tubes received little research attention, and almost no attention when subjected to eccentric loading. This paper investigates the axial capacity of columns when subjected to eccentric loading. The experimental axial capacities are compared to other established theoretical formulae on concentric loading to determine a possible relationship. The study found a good correlation between the reduction in axial capacity for different column lengths and hollow section ratios.

Keywords: CSDST, CFST, Axial Capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3138
210 Progressive Collapse of Hyperbolic Cooling Tower Considering the Support Inclinations

Authors: Esmaeil Asadzadeh, Mehtab Alam

Abstract:

Progressive collapse of the layered hyperbolic tower shells are studied considering the influences of changes in the supporting columns’ types and angles. 3-D time history analyses employing the finite element method are performed for the towers supported with I-type and ᴧ-type column. It is found that the inclination angle of the supporting columns is a very important parameter in optimization and safe design of the cooling towers against the progressive collapse. It is also concluded that use of Demand Capacity Ratio (DCR) criteria of the linear elastic approach recommended by GSA is un-conservative for the hyperbolic tower shells.

Keywords: Progressive collapse, cooling towers, finite element analysis, crack generation, reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
209 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: Expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
208 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for Near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. In addition, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete [R/C] frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis [pushover analysis] in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: Nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
207 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis

Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix

Abstract:

This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.

Keywords: CFRP, composite failure, FEA, non-circular chainring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
206 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load

Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul

Abstract:

While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.

Keywords: Aluminum foam, collapse mechanisms, light-weight structures, transport application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
205 Cement Mortar Lining as a Potential Source of Water Contamination

Authors: M. Zielina, W. Dabrowski, E. Radziszewska-Zielina

Abstract:

Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.

Keywords: Concrete corrosion, hydrogen sulfide, odors, reinforced concrete sewers, sewerage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3289
204 Development of an Elastic Functionally Graded Interphase Model for the Micromechanics Response of Composites

Authors: Trevor Sabiston, Mohsen Mohammadi, Mohammed Cherkaoui, Kaan Inal

Abstract:

A new micromechanics framework is developed for long fibre reinforced composites using a single fibre surrounded by a functionally graded interphase and matrix as a representative unit cell. The unit cell is formulated to represent any number of aligned fibres by a single fibre. Using this model the elastic response of long fibre composites is predicted in all directions. The model is calibrated to experimental results and shows very good agreement in the elastic regime. The differences between the proposed model and existing models are discussed.

Keywords: Computational mechanics, functionally graded interphase, long fibre composites, micromechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
203 Influence of Some Technological Parameters on the Content of Voids in Composite during On-Line Consolidation with Filament Winding Technology

Authors: M. Stefanovska, B. Samakoski, S. Risteska, G. Maneski

Abstract:

In this study was performed in situ consolidation of polypropylene matrix/glass reinforced roving by combining heating systems and roll pressing. The commingled roving during hoop winding was winded on a cylindrical mandrel. The work also presents the advances made in the processing of these materials into composites by conventional technique filament winding. Experimental studies were performed with changing parameters – temperature, pressure and speed. Finally, it describes the investigation of the optimal processing conditions that maximize the mechanical properties of the composites. These properties are good enough for composites to be used as engineering materials in many structural applications.

Keywords: Commingled fiber, consolidation heat, filament winding, voids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
202 Non Destructive Characterisation of Cement Mortar during Carbonation

Authors: Son Tung Pham, William Prince

Abstract:

The objective of this work was to examine the changes in non destructive properties caused by carbonation of CEM II mortar. Samples of CEM II mortar were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2 concentration. We examined the evolutions of the gas permeability, the thermal conductivity, the thermal diffusivity, the volume of the solid phase by helium pycnometry, the longitudinal and transverse ultrasonic velocities. The principal contribution of this work is that, apart of the gas permeability, changes in other non destructive properties have never been studied during the carbonation of cement materials. These properties are important in predicting/measuring the durability of reinforced concrete in CO2 environment. The carbonation depth and the porosity accessible to water were also reported in order to explain comprehensively the changes in non destructive parameters.

Keywords: Carbonation, cement mortar, longitudinal and transverse ultrasonic velocities, non destructive tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
201 The Overload Behaviour of Reinforced Concrete Flexural Members

Authors: Angelo Thurairajah

Abstract:

Sufficient ultimate deformation is necessary to demonstrate the member ductility, which is dependent on the section and the material ductility. The concrete cracking phase of softening prior to the plastic hinge formation is an essential feature as well. The nature of the overload behaviour is studied using the order of the ultimate deflection. The ultimate deflection is primarily dependent on the slenderness (span to depth ratio), the ductility of the reinforcing steel, the degree of moment redistribution, the type of loading, and the support conditions. The ultimate deflection and the degree of moment redistribution from the analytical study are in good agreement with the experimental results and the moment redistribution provisions of the Australian Standards AS3600 Concrete Structures Code.

Keywords: Ductility, softening, ultimate deflection, overload behaviour, moment redistribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 316
200 Axisymmetric Vibration of Pyrocomposite Hollow Cylinder

Authors: V. K. Nelson, S. Karthikeyan

Abstract:

Axisymmetric vibration of an infinite Pyrocomposite circular hollow cylinder made of inner and outer pyroelectric layer of 6mm-class bonded together by a Linear Elastic Material with Voids (LEMV) layer is studied. The exact frequency equation is obtained for the traction free surfaces with continuity condition at the interfaces. Numerical results in the form of data and dispersion curves for the first and second mode of the axisymmetric vibration of the cylinder BaTio3 / Adhesive / BaTio3 by taking the Adhesive layer as an existing Carbon Fibre Reinforced Polymer (CFRP) are compared with a hypothetical LEMV layer with and without voids and as well with a pyroelectric hollow cylinder. The damping is analyzed through the imaginary parts of the complex frequencies.

Keywords: Axisymmetric vibration, CFRP, hollow cylinders, LEMV, pyrocomposite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
199 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: Composite, epoxy, polyester, relining, sewage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
198 Compliance Modelling and Optimization of Kerf during WEDM of Al7075/SiCP Metal Matrix Composite

Authors: Thella Babu Rao, A. Gopala Krishna

Abstract:

This investigation presents the formulation of kerf (width of slit) and optimal control parameter settings of wire electrochemical discharge machining which results minimum possible kerf while machining Al7075/SiCp MMCs. WEDM is proved its efficiency and effectiveness to cut the hard ceramic reinforced MMCs within the permissible budget. Among the distinct performance measures of WEDM process, kerf is an important performance characteristic which determines the dimensional accuracy of the machined component while producing high precision components. The lack of available of the machinability information such advanced MMCs result the more experimentation in the manufacturing industries. Therefore, extensive experimental investigations are essential to provide the database of effect of various control parameters on the kerf while machining such advanced MMCs in WEDM. Literature reviled the significance some of the electrical parameters which are prominent on kerf for machining distinct conventional materials. However, the significance of reinforced particulate size and volume fraction on kerf is highlighted in this work while machining MMCs along with the machining parameters of pulse-on time, pulse-off time and wire tension. Usually, the dimensional tolerances of machined components are decided at the design stage and a machinist pay attention to produce the required dimensional tolerances by setting appropriate machining control variables. However, it is highly difficult to determine the optimal machining settings for such advanced materials on the shop floor. Therefore, in the view of precision of cut, kerf (cutting width) is considered as the measure of performance for the model. It was found from the literature that, the machining conditions of higher fractions of large size SiCp resulting less kerf where as high values of pulse-on time result in a high kerf. A response surface model is used to predict the relative significance of various control variables on kerf. Consequently, a powerful artificial intelligence called genetic algorithms (GA) is used to determine the best combination of the control variable settings. In the next step the conformation test was conducted for the optimal parameter settings and found good agreement between the GA kerf and measured kerf. Hence, it is clearly reveal that the effectiveness and accuracy of the developed model and program to analyze the kerf and to determine its optimal process parameters. The results obtained in this work states that, the resulted optimized parameters are capable of machining the Al7075/SiCp MMCs more efficiently and with better dimensional accuracy.

Keywords: Al7075SiCP MMC, kerf, WEDM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
197 Investigation of Overstrength of Dual System by Non-Linear Static and Dynamic Analyses

Authors: Nina Øystad-Larsen, Miran Cemalovic, Amir M. Kaynia

Abstract:

The nonlinear static and dynamic analysis procedures presented in EN 1998-1 for the structural response of a RC wall-frame building are assessed. The structure is designed according to the guidelines for high ductility (DCH) in 1998-1. The finite element packages SeismoStruct and OpenSees are utilized and evaluated. The structural response remains nearly in the elastic range even though the building was designed for high ductility. The overstrength is a result of oversized and heavily reinforced members, with emphasis on the lower storey walls. Nonlinear response history analysis in the software packages give virtually identical results for displacements.

Keywords: Behaviour factor, Dual system, OpenSEES, Overstrength, SeismoStruct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
196 Thermoplastic Composites with Reduced Discoloration and Enhanced Fire-Retardant Property

Authors: Peng Cheng, Liqing Wei, Hongyu Chen, Ruomiao Wang

Abstract:

This paper discusses a light-weight reinforced thermoplastic (LWRT) composite with superior fire retardancy. This porous LWRT composite is manufactured using polyolefin, fiberglass, and fire retardant additives via a wet-lay process. However, discoloration of the LWRT can be induced by various mechanisms, which may be a concern in the building and construction industry. It is commonly understood that discoloration is strongly associated with the presence of phenolic antioxidant(s) and NOx. The over-oxidation of phenolic antioxidant(s) is probably the root-cause of the discoloration (pinking/yellowing). Hanwha Azdel, Inc. developed a LWRT with fire-retardant property of ASTM E84-Class A specification, as well as negligible discoloration even under harsh conditions. In addition, this thermoplastic material is suitable for secondary processing (e.g. compression molding) if necessary.

Keywords: Discoloration, fire-retardant, thermoplastic composites, wet-lay process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
195 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: Accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
194 UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite

Authors: A. Evcin, N. Çiçek Bezir, R. Duman, N. Duman

Abstract:

Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites.

Keywords: Electrospinning, carbon nanofiber, characterization, composites, nanofiber, ultraviolet radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
193 Behavior of the Foundation of Bridge Reinforced by Rigid and Flexible Inclusions

Authors: T. Karech A. Noui, T. Bouzid

Abstract:

This article presents a comparative study by numerical analysis of the behavior of reinforcements of clayey soils by flexible columns (stone columns) and rigid columns (piles). The numerical simulation was carried out in 3D for an assembly of foundation, columns and a pile of a bridge. Particular attention has been paid to take into account the installation of the columns. Indeed, in practice, due to the compaction of the column, the soil around it sustains a lateral expansion and the horizontal stresses are increased. This lateral expansion of the column can be simulated numerically. This work represents a comparative study of the interaction between the soil on one side, and the two types of reinforcement on the other side, and their influence on the behavior of the soil and of the pile of a bridge.

Keywords: Piles, stone columns, interaction, foundation, settlement, consolidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
192 Value–based Group Decision on Support Bridge Selection

Authors: Christiono Utomo, Arazi Idrus

Abstract:

Value-based group decision is very complicated since many parties involved. There are different concern caused by differing preferences, experiences, and background. Therefore, a support system is required to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. The support system is based on combination between value-based analysis, multi criteria group decision making based on satisfying options, and negotiation process based on coalition formation. This paper presents the group decision and negotiation on the selection of suitable material for a support bridge structure involving three decision makers, who are an estate manager, a project manager, and an engineer. There are three alternative solutions for the material of the support bridge structure, which are (a1) steel structure, (a2) reinforced concrete structure and (a3) wooden structure.

Keywords: Value-based, group decision, negotiation support, construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
191 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading

Authors: Y. S. Tai, M. Y. Huang, H. T. Hu

Abstract:

The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.

Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
190 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams

Authors: Woo-Young Jung, Minho Kwon

Abstract:

Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.

Keywords: Torsion, non-linear analysis, three-dimensional lattice, high-strength concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
189 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections

Authors: N. Zhang, J. S. Kuang, S. Mogili

Abstract:

To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.

Keywords: Large-scale tests, RC beam-column knee joints, seismic performance, shear strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
188 Improving Multi-storey Building Sensor Network with an External Hub

Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis

Abstract:

Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.

Keywords: Wireless sensor networks, radio propagation, building monitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
187 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: Design studies, computational model(s), case study/studies, modeling, coupling beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3270