Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.

Keywords: Absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580

References:


[1] Hikita, H.; Asai, S.; Katsu, Y.; Ikuno, S. Absorption of carbon dioxide into aqueous monoethanolamine solutions, AICHE J. 1979, 25, 793-800.
[2] Lin, C.; Liu, W.; Tan, C. Removal of carbon dioxide by absorption in a rotating packed bed, Ind. Eng. Chem. Res. 2003, 42, 2381-2386.
[3] Jassim, M. S.; Rochelle, G.; Eimer, D.; Ramshaw, C. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed, Ind. Eng. Chem. Res. 2007, 46, 2823-2833.
[4] Aroonwilas, A.; Tontiwachwuthikul, P. High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP), J. Sep. Purif. Technol. 1997, 12, 67-79.
[5] Xiao, J.; Li, C.; Li, M. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol + monoethanolamine, J. Chem. Eng. Sci. 2000, 55, 161-175.
[6] Seo, D. J.; Hong, W. H. Effect of piperazine on the kinetics of carbon dioxide with aqueous solutions of 2-amino-2-methyl-1-propanol, Ind. Eng. Chem. Res. 2000, 39, 2062-2067.
[7] Bougie, F.; Iliuta, M. C. Analysis of regeneration of sterically hindered alkanolamines aqueous solutions with and without activator, J. Chem. Eng. Sci. 2010, 65, 4746-4750.
[8] Kim, Y. E.; Lim, J. A.; Jeong, S. K.; Yoon, Y. I.; Bae, S. T. Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions, Bull. Korean Chem. Soc. 2013, 34, 783-787.
[9] Yu, C.; Cheng, H.; Tan, C. CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed, Int. J. Greenhouse Gas Control, 2012, 9, 136-147.
[10] Sheng, M.; Xie, C.; Zeng, X.; Sun, B.; Zhang, L. Intensification of CO2 capture using aqueous diethylenetriamine (DETA) solution from simulated gas in a rotating packed bed, Fuel, 2018, 234, 1518-1527.
[11] Rufford, T. E.; Smart, S.; Watson, G. C. Y.; Graham, B. F. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies, J. Pet. Sci. Eng. 2012, 94-95, 123-154.
[12] Garcia-Abuin, A.; Gomez-Diaz, D.; Navaza, J. M.; Rumbo, A.; Carbon dioxide capture with tertiary amines. Absorption rate and reaction mechanism, J. Taiwan Inst. Chem. Eng. 2017, 80, 356-362.
[13] Sotelo, J. L.; Benitez, F. J.; Beltran-Heredia, J.; Rodriguez, C. Absorption of carbon dioxide into aqueous solutions of triethanolamine, AICHE J. 1990, 36 (8), 1263-1266.
[14] Xu, G.; Zhang, C.; Qin, S.; Wang, Y. Kinetics study of absorption of carbon dioxide into solutions of activated methyldiethanolamine, Ind. Eng. Chem. Res. 1992, 31, 921-927.
[15] Ermatchkov, V.; Kamps, A. P. S.; Speyer, D.; Maurer, G. Solubility of carbon dioxide in aqueous solutions of piperazine in the low gas loading region, J. Chem. Eng. Data, 2006, 51, 1788-1796.
[16] Bougie, F.; Iliuta, M. C. CO2 absorption in aqueous piperazine solutions: experimental study and modeling, J. Chem. Eng. Data, 2011, 56, 1547-1554.
[17] Bishnoi, S.; Rochelle, G. T. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility, J. Chem. Eng. Sci. 2000, 55, 5531-5543.
[18] Hikita, H.; Asai, S.; Ishikawa, H.; Honda, M. The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method, Chem. Eng. J. 1977, 13, 7-12.
[19] Zhang, X.; Zhang, C.; Liu, Y. Kinetics of absorption of CO2 into aqueous solution of MDEA blended with DEA, Ind. Eng. Chem. Res. 2002, 41, 1135-1141.
[20] Dugas, R.; Rochelle, G. Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine, Energy Procedia, 2009, 1, 1163-1169.
[21] Dugas, R. E.; Rochelle, G. CO2 absorption rate into concentrated aqueous monoethanolamine and piperazine, J. Chem. Eng. Data, 2011, 56, 2187-2195.
[22] Zhang, X.; Zhang, C.; Qin, S.; Zheng, Z. A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of methyldiethanolamine and piperazine, Ind. Eng. Chem. 2001, 40, 3785-3791.
[23] Bishnoi, S.; Rochelle, G. T. Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine, AICHE J. 2002, 48, 2788-2799.
[24] Samanta, A.; Roy, S.; Bandyopadhyay, S. S. Physical solubility and diffusivity of N2O and CO2 in aqueous solutions of piperazine and (N-methyldiethanolamine + piperazine), J. Chem. Eng. Data, 2007, 52, 1381-1385.
[25] Aroonwilas, A.; Veawab, A. Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column, Ind. Eng. Chem. Res. 2004, 43, 2228-2237.
[26] Rahimi, A.; Tavakoli, T.; Saadat, A.; Niksiar, A. Modeling and experimental study of CO2 removal by alkanolamines in a packed bed, Sep. Sci. Technol. 2014, 49, 317-328.
[27] Borhani, T. N. G.; Akbari, V.; Hamid, M. K. A.; Manan, A. M. Rate-based simulation and comparison various promoters for CO2 capture in industrial DEA-promoted potassium carbonate absorption unit, J. Ind. Eng. Chem. 2015, 22, 306-316.
[28] Hemmati, A.; Farahzad, R.; Surendar, A.; Aminahmadi, B.; Validation of mass transfer and liquid holdup correlations for CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator, Process Saf. Environ. Protection. 2019, 126, 214-222.
[29] Wang, Y. W.; Xu, S.; Otto, F. D., Mather, A. E. Solubility of N2O in alkanolamines and in mixed solvnets, Chem. Eng. J. 1992, 48, 31-40.
[30] Blauwhoff, P. M. M.; Versteeg, G. F.; van Swaaij, W. P. M. A study on the reaction between CO2 and alkanolamines in aqueous solutions, Chem. Eng. Sci. 1983, 38, 1411-1429.
[31] Al-Juaied, M.; Rochelle, G. T. Absorption of CO2 in aqueous diglycolamine, Ind. Eng. Chem. Res. 2006, 45, 2473-2482.
[32] Lin, C.; Lin, Y.; Tan, C. Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed bed, J. Hazard. Mater. 2010, 175, 344-351.