Search results for: porous Ni electrodes.
354 Porous Ni and Ni-Co Electrodeposits for Alkaline Water Electrolysis – Energy Saving
Authors: I. Herraiz-Cardona, C. González-Buch, E. Ortega, V. Pérez-Herranz, J. García-Antón
Abstract:
Hydrogen is considered to be the most promising candidate as a future energy carrier. One of the most used technologies for the electrolytic hydrogen production is alkaline water electrolysis. However, due to the high energy requirements, the cost of hydrogen produced in such a way is high. In continuous search to improve this process using advanced electrocatalytic materials for the hydrogen evolution reaction (HER), Ni type Raney and macro-porous Ni-Co electrodes were prepared on AISI 304 stainless steel substrates by electrodeposition. The developed electrodes were characterized by SEM and confocal laser scanning microscopy. HER on these electrodes was evaluated in 30 wt.% KOH solution by means of hydrogen discharge curves and galvanostatic tests. Results show that the developed electrodes present a most efficient behaviour for HER when comparing with the smooth Ni cathode. It has been reported a reduction in the energy consumption of the electrolysis cell of about 25% by using the developed coatings as cathodes.Keywords: Alkaline water electrolysis, energy efficiency, porous nickel electrodes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3241353 Porous Ni Electrodes Modified with Au Nanoparticles for Hydrogen Production
Authors: V. Pérez-Herranz, C. González-Buch, E. M. Ortega, S. Mestre
Abstract:
In this work new macroporous Ni electrodes modified with Au nanoparticles for hydrogen production have been developed. The supporting macroporous Ni electrodes have been obtained by means of the electrodeposition at high current densities. Then, the Au nanoparticles were synthesized and added to the electrode surface. The electrocatalytic behaviour of the developed electrocatalysts was studied by means of pseudo-steady-state polarization curves, electrochemical impedance spectroscopy (EIS) and hydrogen discharge curves. The size of the Au synthetized nanoparticles shows a monomodal distribution, with a very sharp band between 10 and 50 nm. The characteristic parameters d10, d50 and d90 were 14, 20 and 31 nm respectively. From Tafel polarization data has been concluded that the Au nanoparticles improve the catalytic activity of the developed electrodes towards the HER respect to the macroporous Ni electrodes. EIS permits to obtain the electrochemically active area by means of the roughness factor value. All the developed electrodes show roughness factor values in the same order of magnitude. From the activation energy results it can be concluded that the Au nanoparticles improve the intrinsic catalytic activity of the macroporous Ni electrodes.Keywords: Au nanoparticles, hydrogen evolution reaction, porous Ni electrodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070352 Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor
Authors: E. Gnapowski, S. Gnapowski
Abstract:
This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.
Keywords: Input power, mesh electrodes, onset voltage, porous dielectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943351 The Influence of Electrode Heating On the Force Generated On a High Voltage Capacitor with Asymmetrical Electrodes
Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký
Abstract:
When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This is caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. If one of the electrodes is heated, it changes the conditions around the capacitor and influences the process of ionisation, thus changing the value of the generated force. This paper describes these changes and gives reasons behind them. Further the experimental results are given as proof of the ionic mechanism of the phenomenon.Keywords: Capacitor with asymmetrical electrodes, Generated force, Heated electrode, High voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524350 The Pack-Bed Sphere Liquid Porous Burner
Authors: B. Krittacom, P. Amatachaya, W. Srimuang, K. Inla
Abstract:
The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PEKeywords: Liquid fuel, Porous burner, Temperature profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761349 Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation
Authors: Jaibir Sharma, Lee JaeWung, Merugu Srinivas, Navab Singh
Abstract:
This paper presents thermal annealing de-wetting technique for the preparation of porous metal membrane for Thin Film Encapsulation (TFE) application. Thermal annealing de-wetting experimental results reveal that pore size formation in porous metal membrane depend upon i.e. 1. The substrate at which metal is deposited, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for formation of porous metal membrane. In order to demonstrate this technique, Silver (Ag) was used as a metal for preparation of porous metal membrane on amorphous silicon (a-Si) and silicon oxide. The annealing of the silver thin film of various thicknesses was performed at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for TFE application, the porous silver film prepared on amorphous silicon (a- Si) and silicon oxide was released using XeF2 and VHF, respectively. Finally, guide line and structures are suggested to use this porous membrane for robust TFE application.Keywords: De-wetting, thermal annealing, metal, melting point, porous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068348 A Study on Characteristics and Geometric Parameters of the Flat Porous Aerostatic Bearing
Authors: T. Y. Huang, B. Z. Wang, S. C. Lin, S. Y. Hsu
Abstract:
A CFD software was employed to analyze the characteristics of the flat round porous aerostatic bearings. The effects of gap between the bearing and the guide way and the porosity of the porous material on the load capacity of the bearing were studied. The adequacy of the simulation model and the approach was verified. From the parametric study, it is found that the depth of the flow path does not influence the load capacity of the bearing; the load capacity of the bearing will decrease if the thickness of the porous material increases or the porous material protrudes above the bearing housing; the variation of the chamfer at the edge of the bearing does not affect the bearing load capacity. For a bearing with an air gap of 5μm and a porosity of 0.1, the average load capacity and the pressure distribution of the bearing are nearly unchanged no matter the bearing moves at a constant or a varying speed.
Keywords: Aerostatic bearing, Load capacity, Porosity, Porous material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602347 Force on a High Voltage Capacitor with Asymmetrical Electrodes
Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký
Abstract:
When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This phenomenon is most likely to be caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. A method to measure this force has been devised and used. A formula describing the force has also been derived. After comparing the data gained through experiments with those acquired using the theoretical formula, a difference was found above a certain value of current. This paper also gives reasons for this difference.Keywords: Capacitor with asymmetrical electrodes, Electricalfield, Mechanical force, Motion of ions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971346 Numerical and Experimental Study of Flow from a Leaking Buried Pipe in an Unsaturated Porous Media
Authors: S.M.Hosseinalipour, H.Aghakhani
Abstract:
Considering the numerous applications of the study of the flow due to leakage in a buried pipe in unsaturated porous media, finding a proper model to explain the influence of the effective factors is of great importance.There are various important factors involved in this type of flow such as: pipe leakage size and location, burial depth, the degree of the saturation of the surrounding porous medium, characteristics of the porous medium, fluid type and pressure of the upstream.In this study, the flow through unsaturated porous media due to leakage of a buried pipe for up and down leakage location is studied experimentally and numerically and their results are compared. Study results show that Darcy equation together with BCM method (for calculating the relative permeability) have suitable ability for predicting the flow due to leakage of buried pipes in unsaturated porous media.Keywords: Buried, Leaking pipe, Porous media, Unsaturated
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377345 Textronic System to Muscle Electrostimulation
Authors: M. Frydrysiak, J. Zięba, L. Tęsiorowski, M. Tokarska
Abstract:
In the paper the research of flat textile products for use as electrodes was presented. Material-s resistance measurements were carried out to determine the suitability of the textiles. Based on the received results of studies different types of textile electrodes were designed. Textile electrodes tests were carried out on human phantoms. The electro-conductive properties of human forearm phantom were also described. Based on this results special electroconductive hydrogels with electro-conductive particles were feasible. The hydrogel is an important element of the forearm-s phantom model of a survey of electrodes for muscle electrostimulation. The hydrogel is an equivalent human skin and tissue. The hydrogel should have a permanence and recurrence of the electro-conductive properties.Keywords: Electro-conductive textiles, electrostimulation, forearm phantom, resistance measurement, textile electrodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352344 Surface Morphology and Formation of Nanostructured Porous GaN by UV-assisted Electrochemical Etching
Authors: L. S. Chuah, Z. Hassan, C. W. Chin, H. Abu Hassan
Abstract:
This article reports on the studies of porous GaN prepared by ultra-violet (UV) assisted electrochemical etching in a solution of 4:1:1 HF: CH3OH:H2O2 under illumination of an UV lamp with 500 W power for 10, 25 and 35 minutes. The optical properties of porous GaN sample were compared to the corresponding as grown GaN. Porosity induced photoluminescence (PL) intensity enhancement was found in these samples. The resulting porous GaN displays blue shifted PL spectra compared to the as-grown GaN. Appearance of the blue shifted emission is correlated with the development of highly anisotropic structures in the morphology. An estimate of the size of the GaN nanostructure can be obtained with the help of a quantized state effective mass theory.
Keywords: Photoluminescence, porous GaN, electrochemical etching, Si, RF-MBE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932343 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes
Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon
Abstract:
Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.Keywords: All-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744342 Metal-Semiconductor-Metal Photodetector Based On Porous In0.08Ga0.92N
Authors: Saleh H. Abud, Z. Hassan, F. K. Yam
Abstract:
Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.
Keywords: Porous InGaN, photoluminescence, SMS photodetector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036341 Generation of Highly Ordered Porous Antimony-Doped Tin Oxide Film by A Simple Coating Method with Colloidal Template
Authors: Asep Bayu Dani Nandiyanto, Asep Suhendi, Yutaka Kisakibaru, Takashi Ogi, Kikuo Okuyama
Abstract:
An ordered porous antimony-doped tin oxide (ATO) film was successfully prepared using a simple coating process with colloidal templates. The facile production was effective when a combination of 16-nm ATO (as a model of an inorganic nanoparticle) and polystyrene (PS) spheres (as a model of the template) weresimply coated to produce a composite ATO/PS film. Heat treatment was then used to remove the PS and produce the porous film. The porous film with a spherical pore shape and a highly ordered porous structure could be obtained. A potential way for the control of pore size could be also achieved by changing initial template size. The theoretical explanation and mechanism of porous formation were also added, which would be important for the scaling-up prediction and estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571340 Experimental Study of Flow Effects of Solid Particles’ Size in Porous Media
Authors: S. Akridiss, E. El Tabach, K. Chetehouna, N. Gascoin, M. S. Kadiri
Abstract:
Transpiration cooling combined to regenerative cooling is a technique that could be used to cool the porous walls of the future ramjet combustion chambers; it consists of using fuel that will flow through the pores of the porous material consisting of the chamber walls, as coolant. However, at high temperature, the fuel is pyrolysed and generates solid coke particles inside the porous materials. This phenomenon can lead to a significant decrease of the material permeability and can affect the efficiency of the cooling system. In order to better understand this phenomenon, an experimental laboratory study was undertaken to determine the transport and deposition of particles in a sintered porous material subjected to steady state flow. The test bench composed of a high-pressure autoclave is used to study the transport of different particle size (35
Keywords: Experimental study, permeability, porous material, suspended particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833339 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment
Authors: Thomas Paris, Vincent Bruyere, Patrick Namy
Abstract:
A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.
Keywords: Fluid mechanics, compressible flow, heat transfer, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141338 Studies on the Feasibility of Cow Dung as a Non-Conventional Energy Source
Authors: Raj Kumar Rajak, Bharat Mishra
Abstract:
Bio-batteries represent an entirely new long-term, reasonable, reachable and ecofriendly approach to produce sustainable energy. In the present experimental work, we have studied the effect of generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow dung as an electrolyte. C-Mg electrode pair shows maximum voltage and SCC (Short Circuit Current) while C-Zn electrode pair shows less OCV (Open Circuit Voltage) and SCC. We have chosen C-Zn electrodes because Mg electrodes are not economical. By the studies of different electrodes and cow dung, it is found that C-Zn electrode battery is more suitable. This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.
Keywords: Bio-batteries, electricity, cow dung, electrodes, non-conventional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933337 Finite Element Analysis for Damped Vibration Properties of Panels Laminated Porous Media
Authors: Y. Kurosawa, T. Yamaguchi
Abstract:
A numerical method is proposed to calculate damping properties for sound-proof structures involving elastic body, viscoelastic body, and porous media. For elastic and viscoelastic body displacement is modeled using conventional finite elements including complex modulus of elasticity. Both effective density and bulk modulus have complex quantities to represent damped sound fields in the porous media. Particle displacement in the porous media is discretised using finite element method. Displacement vectors as common unknown variables are solved under coupled condition between elastic body, viscoelastic body and porous media. Further, explicit expressions of modal loss factor for the mixed structures are derived using asymptotic method. Eigenvalue analysis and frequency responded were calculated for automotive test panel laminated viscoelastic and porous structures using this technique, the results almost agreed with the experimental results.Keywords: Damping, Porous Media, Finite Element Method, Computer Aided Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131336 Marangoni Convection in a Fluid Saturated Porous Layer with a Deformable Free Surface
Authors: Nor Fadzillah Mohd Mokhtar, Norihan Md Arifin, Roslinda Nazar, Fudziah Ismail, MohamedSuleiman
Abstract:
The stability analysis of Marangoni convection in porous media with a deformable upper free surface is investigated. The linear stability theory and the normal mode analysis are applied and the resulting eigenvalue problem is solved exactly. The Darcy law and the Brinkman model are used to describe the flow in the porous medium heated from below. The effect of the Crispation number, Bond number and the Biot number are analyzed for the stability of the system. It is found that a decrease in the Crispation number and an increase in the Bond number delay the onset of convection in porous media. In addition, the system becomes more stable when the Biot number is increases and the Daeff number is decreases.
Keywords: Deformable, Marangoni, Porous, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194335 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction
Authors: Z. Neffah, H. Kahalerras
Abstract:
A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.Keywords: Chemical reaction, heat transfer, mass transfer, oscillating flow, porous channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011334 Effect of Conjugate Heat and Mass Transfer on MHD Mixed Convective Flow past Inclined Porous Plate in Porous Medium
Authors: Md. Nasir Uddin, M. A. Alim, M. M. K. Chowdhury
Abstract:
This analysis is performed to study the momentum, heat and mass transfer characteristics of MHD mixed convective flow past inclined porous plate in porous medium, including the effect of fluid suction. The fluid is assumed to be steady, incompressible and dense. Similarity solution is used to transform the problem under consideration into coupled nonlinear boundary layer equations which are then solved numerically by using the Runge-Kutta sixth-order integration scheme together with Nachtsheim-Swigert shooting iteration technique. Numerical results for the various types of parameters entering into the problem for velocity, temperature and concentration distributions are presented graphically and analyzed thereafter. Moreover, expressions for the skin-friction, heat transfer co-efficient and mass transfer co-efficient are discussed with graphs against streamwise distance for various governing parameters.
Keywords: Fluid suction, heat and mass transfer, inclined porous plate, MHD, mixed convection, porous medium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276333 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux
Authors: D Bhargavi, J. Sharath Kumar Reddy
Abstract:
The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.
Keywords: Porous material, channel partially filled with a porous material, axial conduction, viscous dissipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638332 Dynamic Analysis of Porous Media Using Finite Element Method
Authors: M. Pasbani Khiavi, A. R. M. Gharabaghi, K. Abedi
Abstract:
The mechanical behavior of porous media is governed by the interaction between its solid skeleton and the fluid existing inside its pores. The interaction occurs through the interface of gains and fluid. The traditional analysis methods of porous media, based on the effective stress and Darcy's law, are unable to account for these interactions. For an accurate analysis, the porous media is represented in a fluid-filled porous solid on the basis of the Biot theory of wave propagation in poroelastic media. In Biot formulation, the equations of motion of the soil mixture are coupled with the global mass balance equations to describe the realistic behavior of porous media. Because of irregular geometry, the domain is generally treated as an assemblage of fmite elements. In this investigation, the numerical formulation for the field equations governing the dynamic response of fluid-saturated porous media is analyzed and employed for the study of transient wave motion. A finite element model is developed and implemented into a computer code called DYNAPM for dynamic analysis of porous media. The weighted residual method with 8-node elements is used for developing of a finite element model and the analysis is carried out in the time domain considering the dynamic excitation and gravity loading. Newmark time integration scheme is developed to solve the time-discretized equations which are an unconditionally stable implicit method Finally, some numerical examples are presented to show the accuracy and capability of developed model for a wide variety of behaviors of porous media.
Keywords: Dynamic analysis, Interaction, Porous media, time domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874331 Entropy Generation for Natural Convection in a Darcy – Brinkman Porous Cavity
Authors: Ali Mchirgui, Nejib Hidouri, Mourad Magherbi, Ammar Ben Brahim
Abstract:
The paper provides a numerical investigation of the entropy generation analysis due to natural convection in an inclined square porous cavity. The coupled equations of mass, momentum, energy and species conservation are solved using the Control Volume Finite-Element Method. Effect of medium permeability and inclination angle on entropy generation is analysed. It was found that according to the Darcy number and the porous thermal Raleigh number values, the entropy generation could be mainly due to heat transfer or to fluid friction irreversibility and that entropy generation reaches extremum values for specific inclination angles.Keywords: Porous media, entropy generation, convection, numerical method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606330 Finite Element Modeling of Heat and Moisture Transfer in Porous Material
Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume
Abstract:
This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280329 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media
Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.
Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783328 A Virtual Electrode through Summation of Time Offset Pulses
Authors: Isaac Cassar, Trevor Davis, Yi-Kai Lo, Wentai Liu
Abstract:
Retinal prostheses have been successful in eliciting visual responses in implanted subjects. As these prostheses progress, one of their major limitations is the need for increased resolution. As an alternative to increasing the number of electrodes, virtual electrodes may be used to increase the effective resolution of current electrode arrays. This paper presents a virtual electrode technique based upon time-offsets between stimuli. Two adjacent electrodes are stimulated with identical pulses with too short of pulse widths to activate a neuron, but one has a time offset of one pulse width. A virtual electrode of twice the pulse width was then shown to appear in the center, with a total width capable of activating a neuron. This can be used in retinal implants by stimulating electrodes with pulse widths short enough to not elicit responses in neurons, but with their combined pulse width adequate to activate a neuron in between them.
Keywords: Electrical stimulation, Neuroprosthesis, Retinal implant, Retinal Prosthesis, Virtual electrode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790327 Preparation of Porous Carbon Particles using a Spray-Drying Method with Colloidal Template
Authors: Yutaka Kisakibaru, AsepBayu Dani Nandiyanto, Ratna Balgis, Takashi Ogi, Kikuo Okuyama
Abstract:
spherical porous carbon particles with controllable porosity with a mean size of 2.5m have been prepared using a spray drying method with organic particle colloidal template. As a precursor, a mixing solution of carbon nanopowder and polystyrene (PS) particles as a template was used. The result showed that the particles with a good porous structure could be obtained. The pore size and shape (spherical) were identical to the initial template, giving a potential way for further developments. The control of particle porosity was also possible and reported in this paper, in which this control could be achieved by means of PS concentration.Keywords: Porous structure particle; Carbon nanoparticles; Catalyst; Spray-drying method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104326 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids
Authors: N. Targui, H. Kahalerras
Abstract:
The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy- Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.
Keywords: Double pipe heat exchanger, Nanofluids, Nanoparticles, Porous baffles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518325 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor
Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung
Abstract:
The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V·s at 250°C.
Keywords: Single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, Thin-film transistor (TFT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789