Search results for: offshore pipelines.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 67

Search results for: offshore pipelines.

67 Preliminary Evaluation of Feasibility for Wind Energy Production on Offshore Extraction Platforms

Authors: M. Raciti Castelli, S. De Betta, E. Benini

Abstract:

A preliminary evaluation of the feasibility of installing small wind turbines on offshore oil and gas extraction platforms is presented. Some aerodynamic considerations are developed in order to determine the best rotor architecture to exploit the wind potential on such installations, assuming that wind conditions over the platforms are similar to those registered on the roofs of urban buildings. Economical considerations about both advantages and disadvantages of the exploitation of wind energy on offshore extraction platforms with respect to conventional offshore wind plants, is also presented. Finally, wind charts of European offshore winds are presented together with a map of the major offshore installations.

Keywords: Extraction platform, offshore wind energy, verticalaxis wind turbine (VAWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
66 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: Carbon capture and storage, water solubility, equation of states.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
65 Novel Mobile Climbing Robot Agent for Offshore Platforms

Authors: Akbar F. Moghaddam, Magnus Lange, Omid Mirmotahari, Mats Høvin

Abstract:

To improve HSE standards, oil and gas industries are interested in using remotely controlled and autonomous robots instead of human workers on offshore platforms. In addition to earlier reason this strategy would increase potential revenue, efficient usage of work experts and even would allow operations in more remote areas. This article is the presentation of a custom climbing robot, called Walloid, designed for offshore platform topside automation. This 4 arms climbing robot with grippers is an ongoing project at University of Oslo.

Keywords: Climbing Robots, Mobile Robots, Offshore Robotics, Offshore Platforms, Automation, Inspection, Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
64 Voice Over IP Technology Development in Offshore Industry: System Dynamics Approach

Authors: B. Kiyani, R. H. Amiri, S. H. Hosseini, A. Bourouni, A. Karimi

Abstract:

Nowadays, offshore's complicated facilities need their own communications requirements. Nevertheless, developing and real-world applications of new communications technology are faced with tremendous problems for new technology users, developers and implementers. Traditional systems engineering cannot be capable to develop a new technology effectively because it does not consider the dynamics of the process. This paper focuses on the design of a holistic model that represents the dynamics of new communication technology development within offshore industry. The model shows the behavior of technology development efforts. Furthermore, implementing this model, results in new and useful insights about the policy option analysis for developing a new communications technology in offshore industry.

Keywords: Technology development, Offshore industry, Systemdynamics, Voice Over IP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
63 Effectiveness of Software Quality Assurance in Offshore Development Enterprises in Sri Lanka

Authors: Malinda G. Sirisena

Abstract:

The aim of this research is to evaluate the effectiveness of software quality assurance approaches of Sri Lankan offshore software development organizations, and to propose a framework which could be used across all offshore software development organizations.

An empirical study was conducted using derived framework from popular software quality evaluation models. The research instrument employed was a questionnaire survey among thirty seven Sri Lankan registered offshore software development organizations.

The findings demonstrate a positive view of Effectiveness of Software Quality Assurance – the stronger predictors of Stability, Installability, Correctness, Testability and Changeability. The present study’s recommendations indicate a need for much emphasis on software quality assurance for the Sri Lankan offshore software development organizations.

Keywords: Software Quality Assurance (SQA), Offshore Software Development, Quality Assurance Evaluation Models, Effectiveness of Quality Assurance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
62 Effects of Polluted Water on the Metallic Water Pipelines

Authors: Abdul-Khaliq M. Hussain, Bashir A. Tantosh, El-Sadeg A. Abdalla

Abstract:

Corrosion of metallic water pipelines buried below ground surface is a function of the nature of the surrounding soil and groundwater. This gives the importance of knowing the physical and chemical characteristics of the pipe-s surrounding environment. The corrosion of externally – unprotected metallic water pipelines, specially ductile iron pipes, in localities with aggressive soil conditions is becoming a significant problem. Anticorrosive protection for metallic water pipelines, their fittings and accessories is very important, because they may be attached by corrosion with time. The tendency of a metallic substrate to corrode is a function of the surface characteristics of the metal and of the metal/protective film interface, the physical, electrical and electrochemical properties of the film, and the nature of the environment in which the pipelines system is placed. In this work the authors have looked at corrosion problems of water pipelines and their control. The corrosive properties of groundwater and soil environments are reviewed, and parameters affecting corrosion are discussed. The purpose of this work is to provide guidelines for materials selection in water and soil environments, and how the water pipelines can be protected against metallic corrosion.

Keywords: Corrosion, Drinking Water, Metallic WaterPipelines, Polluted Water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
61 Development of 3D Coordinates and Damaged Point Detection System for Ducts using IMU

Authors: Ki-Tae Park, Young-Joon Yu, Chin-Hyung Lee, Woosang Lee

Abstract:

Recently, as the scale of construction projects has increases, more ground excavation for foundations is carried out than ever before. Consequently, damage to underground ducts (gas, water/sewage or oil pipelines, communication cables or power cable ducts) or superannuated pipelines frequently cause serious accidents resulting in damage to life and property. (In Korea, the total length of city water pipelines was approximately 2,000 km as of the end of 2009.) In addition, large amounts of damage caused by fractures, water and gas leakage caused by superannuation or damage to underground ducts in construction has been reported. Therefore, a system is required to precisely detect defects and deterioration in underground pipelines and the locations of such defects, for timely and accurate maintenance or replacement of the ducts. In this study, a system was developed which can locate underground structures (gas and water pipelines, power cable ducts, etc.) in 3D-coordinates and monitor the degree and position of defects using an Inertial Measurement Unit (IMU) sensing technique. The system can prevent damage to underground ducts and superannuated pipelines during construction, and provide reliable data for maintenance. The utility of the IMU sensing technique used in aircraft and ships in civil applications was verified.

Keywords: IMU, Pipelines, 3D-Coordinate, monitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
60 Reliability Analysis of Underground Pipelines Using Subset Simulation

Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li

Abstract:

An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.

Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3505
59 Evaluation of an Offshore Wind Power Project: Economic, Strategic and Environmental Value

Authors: Paula Ferreira, Filipa Vieira

Abstract:

The use of wind energy for electricity generation is growing rapidly across the world and in Portugal. However, the geographical characteristics of the country along with the average wind regime and with the environmental restrictions imposed to these projects create limitations to the exploit of the onshore wind resource. The best onshore wind spots are already committed and the possibility of offshore wind farms in the Portuguese cost is now being considered. This paper aims to make a contribution to the evaluation of offshore wind power projects in Portugal. The technical restrictions are addressed and the strategic, environmental and financial interest of the project is analysed from the private company and public points of view. The results suggest that additional support schemes are required to ensure private investors interest for these projects. Assuming an approach of direct substitution of energy sources for electricity generation, the avoided CO2 equivalent emissions for an offshore wind power project were quantified. Based on the conclusions, future research is proposed to address the environmental and social impacts of these projects.

Keywords: Feed-in tariff, offshore wind power, project evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
58 On Leak Localization in the Main Branched and Simple Inclined Gas Pipelines

Authors: T. Davitashvili, G. Gubelidze

Abstract:

In this paper two mathematical models for definition of gas accidental escape localization in the gas pipelines are suggested. The first model was created for leak localization in the horizontal branched pipeline and second one for leak detection in inclined section of the main gas pipeline. The algorithm of leak localization in the branched pipeline did not demand on knowledge of corresponding initial hydraulic parameters at entrance and ending points of each sections of pipeline. For detection of the damaged section and then leak localization in this section special functions and equations have been constructed. Some results of calculations for compound pipelines having two, four and five sections are presented. Also a method and formula for the leak localization in the simple inclined section of the main gas pipeline are suggested. Some results of numerical calculations defining localization of gas escape for the inclined pipeline are presented.

Keywords: Branched and inclined gas pipelines, leak detection, mathematical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
57 Cyprus- Offshore Aquaculture Mooring Systems: Current Status and Future Development

Authors: V. Vassiliou, M. Menicou, M. Charalambides, J. DeCew, I. Tsukrov

Abstract:

Cyprus- offshore aquaculture industry has promising prospects taking into account that Cyprus is an island. Its production trend is increasing overtaking bigger countries such Greece and Italy. However, current mooring systems seem to be under-performing acting as obstacles for its future development. Furthermore, shallow coastal waters scarcity due to competing industries dictates future development to come by moving further from shore exposing fish farms and subsequently mooring systems to harsher environmental loadings. It is, therefore, of paramount importance to design mooring systems based on engineering and scientific principles and leave behind the present “trial and error" methods. This paper presents the current state of Cyprus- offshore aquaculture industry and focuses of its mooring designs by proposing a new methodology for designing more reliable systems, hence ensuring its future.

Keywords: Environmental loadings, mooring systems design, numerical modeling, offshore aquaculture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3504
56 Effects of Sea Water Level Fluctuations on Seismic Response of Jacket Type Offshore Platforms

Authors: M. Rad, M. Dolatshahi Pirooz, M. Esmayili

Abstract:

To understand the seismic behavior of the offshore structures, the dynamic interaction of the water-structure-soil should be assessed. In this regard the role of the water dynamic properties in magnifying or reducing of the effects of earthquake induced motions on offshore structures haven't been investigated in precise manner in available literature. In this paper the sea water level fluctuations effects on the seismic behavior of a sample of offshore structures has been investigated by emphasizing on the water-structure interaction phenomenon. For this purpose a two dimensional finite element model of offshore structures as well as surrounded water has been developed using ANSYS software. The effect of soil interaction with embedded pile foundation has been imposed by using a series of nonlinear springs in horizontal and vertical directions in soil-piles contact points. In the model, the earthquake induced motions have been applied on springs and consequently the motions propagated upward to the structure and surrounded water. As a result of numerical study, the horizontal deformations of the offshore deck as well as internal force and buckling coefficient in structural elements have been recorded and controlled with and without water presence. In part of study a parametric study has been accomplished on sea water level fluctuations and effect of this parameter has been studied on the aforementioned numerical results.

Keywords: Fluid-Structure Interaction, Jacket, Sea Water Level, Seismic Loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
55 Pipelines Monitoring System Using Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Seong-Joon Baek, Bae-Ho Lee

Abstract:

Recently there has been a growing interest in the field of bio-mimetic robots that resemble the behaviors of an insect or an aquatic animal, among many others. One of various bio-mimetic robot applications is to explore pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. Special types of mobile robots are necessary for the pipeline monitoring tasks. In order to move effectively along a pipeline, the robot-s movement will resemble that of insects or crawling animals. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependent on periodical offline monitoring. This paper proposes a monitoring system that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Mobile and active monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
54 Reduced Order Modeling of Natural Gas Transient Flow in Pipelines

Authors: M. Behbahani-Nejad, Y. Shekari

Abstract:

A reduced order modeling approach for natural gas transient flow in pipelines is presented. The Euler equations are considered as the governing equations and solved numerically using the implicit Steger-Warming flux vector splitting method. Next, the linearized form of the equations is derived and the corresponding eigensystem is obtained. Then, a few dominant flow eigenmodes are used to construct an efficient reduced-order model. A well-known test case is presented to demonstrate the accuracy and the computational efficiency of the proposed method. The results obtained are in good agreement with those of the direct numerical method and field data. Moreover, it is shown that the present reduced-order model is more efficient than the conventional numerical techniques for transient flow analysis of natural gas in pipelines.

Keywords: Eigenmode, Natural Gas, Reduced Order Modeling, Transient Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
53 Using Environmental Sensitivity Index (ESI) to Assess and Manage Environmental Risks of Pipelines in GIS Environment: A Case Study ofa Near Coastline and Fragile Ecosystem Located Pipeline

Authors: Jahangir Jafari, Nematollah Khorasani, Afshin Danehkar

Abstract:

Having a very many number of pipelines all over the country, Iran is one of the countries consists of various ecosystems with variable degrees of fragility and robusticity as well as geographical conditions. This study presents a state-of-the-art method to estimate environmental risks of pipelines by recommending rational equations including FES, URAS, SRS, RRS, DRS, LURS and IRS as well as FRS to calculate the risks. This study was carried out by a relative semi-quantitative approach based on land uses and HVAs (High-Value Areas). GIS as a tool was used to create proper maps regarding the environmental risks, land uses and distances. The main logic for using the formulas was the distance-based approaches and ESI as well as intersections. Summarizing the results of the study, a risk geographical map based on the ESIs and final risk score (FRS) was created. The study results showed that the most sensitive and so of high risk area would be an area comprising of mangrove forests located in the pipeline neighborhood. Also, salty lands were the most robust land use units in the case of pipeline failure circumstances. Besides, using a state-of-the-art method, it showed that mapping the risks of pipelines out with the applied method is of more reliability and convenience as well as relative comprehensiveness in comparison to present non-holistic methods for assessing the environmental risks of pipelines. The focus of the present study is “assessment" than that of “management". It is suggested that new policies are to be implemented to reduce the negative effects of the pipeline that has not yet been constructed completely

Keywords: ERM, ESI, ERA, Pipeline, Assalouyeh

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
52 Effect of Corrosion on Hydrocarbon Pipelines

Authors: Madjid Meriem-Benziane, Hamou Zahloul

Abstract:

The demand of hydrocarbons has increased the construction of pipelines and the protection of the physical and mechanical integrity of the already existing infrastructure. Corrosion is the main reason of failures in the pipeline and it is mostly produced by acid (HCOOCH3). In this basis, a CFD code was used, in order to study the corrosion of internal wall of hydrocarbons pipeline. In this situation, the corrosion phenomenon shows a growing deposit, which causes defect damages (welding or fabrication) at diverse positions along the pipeline. The solution of the pipeline corrosion is based on the diminution of the Naphthenic acid.

Keywords: Pipeline, corrosion, Naphthenic acid (NA), CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3306
51 A Practical Solution of a Plant Pipes Monitoring System Using Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Bae-Ho Lee, Ji-Sung Lee

Abstract:

There has been a growing interest in the field of bio-mimetic robots that resemble the shape of an insect or an aquatic animal, among many others. One bio-mimetic robot serves the purpose of exploring pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. In order to move effectively inside a pipeline, the robot-s movement will resemble that of a lizard. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependant on periodical offline monitoring. This paper provides the Monitoring System that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Mobileand active monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
50 Reliability Analysis of Tubular Joints of Offshore Platforms in Malaysia

Authors: Nelson J. Cossa, Narayanan S. Potty, Mohd Shahir Liew, Arazi B. Idrus

Abstract:

The oil and gas industry has moved towards Load and Resistance Factor Design through API RP2A - LRFD and the recently published international standard, ISO-19902, for design of fixed steel offshore structures. The ISO 19902 is intended to provide a harmonized design practice that offers a balanced structural fitness for the purpose, economy and safety. As part of an ongoing work, the reliability analysis of tubular joints of the jacket structure has been carried out to calibrate the load and resistance factors for the design of offshore platforms in Malaysia, as proposed in the ISO. Probabilistic models have been established for the load effects (wave, wind and current) and the tubular joints strengths. In this study the First Order Reliability Method (FORM), coded in MATLAB Software has been employed to evaluate the reliability index of the typical joints, designed using API RP2A - WSD and ISO 19902.

Keywords: FORM, Reliability Analysis, Tubular Joints

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3444
49 Analytical Proposal to Damage Assessment of Buried Continuous Pipelines during External Blast Loading

Authors: Danesh Nourzadeh, Sepideh Khorshid, Shiro Takada, Khosrow Bargi

Abstract:

In this paper, transversal vibration of buried pipelines during loading induced by underground explosions is analyzed. The pipeline is modeled as an infinite beam on an elastic foundation, so that soil-structure interaction is considered by means of transverse linear springs along the pipeline. The pipeline behavior is assumed to be ideal elasto-plastic which an ultimate strain value limits the plastic behavior. The blast loading is considered as a point load, considering the affected length at some point of the pipeline, in which the magnitude decreases exponentially with time. A closed-form solution for the quasi-static problem is carried out for both elastic and elasticperfect plastic behaviors of pipe materials. At the end, a comparative study on steel and polyethylene pipes with different sizes buried in various soil conditions, affected by a predefined underground explosion is conducted, in which effect of each parameter is discussed.

Keywords: Beam on elastic foundation, Buried pipelines, External explosion, Non-linear quasi-static solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
48 Time Domain and Frequency Domain Analyses of Measured Metocean Data for Malaysian Waters

Authors: Duong Vannak, Mohd Shahir Liew, Guo Zheng Yew

Abstract:

Data of wave height and wind speed were collected from three existing oil fields in South China Sea – offshore Peninsular Malaysia, Sarawak and Sabah regions. Extreme values and other significant data were employed for analysis. The data were recorded from 1999 until 2008. The results show that offshore structures are susceptible to unacceptable motions initiated by wind and waves with worst structural impacts caused by extreme wave heights. To protect offshore structures from damage, there is a need to quantify descriptive statistics and determine spectra envelope of wind speed and wave height, and to ascertain the frequency content of each spectrum for offshore structures in the South China Sea shallow waters using measured time series. The results indicate that the process is nonstationary; it is converted to stationary process by first differencing the time series. For descriptive statistical analysis, both wind speed and wave height have significant influence on the offshore structure during the northeast monsoon with high mean wind speed of 13.5195 knots ( = 6.3566 knots) and the high mean wave height of 2.3597 m ( = 0.8690 m). Through observation of the spectra, there is no clear dominant peak and the peaks fluctuate randomly. Each wind speed spectrum and wave height spectrum has its individual identifiable pattern. The wind speed spectrum tends to grow gradually at the lower frequency range and increasing till it doubles at the higher frequency range with the mean peak frequency range of 0.4104 Hz to 0.4721 Hz, while the wave height tends to grow drastically at the low frequency range, which then fluctuates and decreases slightly at the high frequency range with the mean peak frequency range of 0.2911 Hz to 0.3425 Hz.

Keywords: Metocean, Offshore Engineering, Time Series, Descriptive Statistics, Autospectral Density Function, Wind, Wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3632
47 Structural Integrity Management for Fixed Offshore Platforms in Malaysia

Authors: Narayanan Sambu Potty , Mohammad Kabir B. Mohd Akram

Abstract:

Structural Integrity Management (SIM) is important for the protection of offshore crew, environment, business assets and company and industry reputation. API RP 2A contained guidelines for assessment of existing platforms mostly for the Gulf of Mexico (GOM). ISO 19902 SIM framework also does not specifically cater for Malaysia. There are about 200 platforms in Malaysia with 90 exceeding their design life. The Petronas Carigali Sdn Bhd (PCSB) uses the Asset Integrity Management System and the very subjective Risk based Inspection Program for these platforms. Petronas currently doesn-t have a standalone Petronas Technical Standard PTS-SIM. This study proposes a recommended practice for the SIM process for offshore structures in Malaysia, including studies by API and ISO and local elements such as the number of platforms, types of facilities, age and risk ranking. Case study on SMG-A platform in Sabah shows missing or scattered platform data and a gap in inspection history. It is to undergo a level 3 underwater inspection in year 2015.

Keywords: platform, assessment, integrity, risk based inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7208
46 An Automatic Pipeline Monitoring System Based on PCA and SVM

Authors: C. Wan, A. Mita

Abstract:

This paper proposes a novel system for monitoring the health of underground pipelines. Some of these pipelines transport dangerous contents and any damage incurred might have catastrophic consequences. However, most of these damage are unintentional and usually a result of surrounding construction activities. In order to prevent these potential damages, monitoring systems are indispensable. This paper focuses on acoustically recognizing road cutters since they prelude most construction activities in modern cities. Acoustic recognition can be easily achieved by installing a distributed computing sensor network along the pipelines and using smart sensors to “listen" for potential threat; if there is a real threat, raise some form of alarm. For efficient pipeline monitoring, a novel monitoring approach is proposed. Principal Component Analysis (PCA) was studied and applied. Eigenvalues were regarded as the special signature that could characterize a sound sample, and were thus used for the feature vector for sound recognition. The denoising ability of PCA could make it robust to noise interference. One class SVM was used for classifier. On-site experiment results show that the proposed PCA and SVM based acoustic recognition system will be very effective with a low tendency for raising false alarms.

Keywords: One class SVM, pipeline monitoring system, principal component analysis, sound recognition, third party damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
45 Development of a Pipeline Monitoring System by Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won

Abstract:

To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
44 Application of Vortex Induced Vibration Energy Generation Technologies to the Offshore Oil and Gas Platform: The Preliminary Study

Authors: M. A. Zahari, S. S. Dol

Abstract:

The global demand for continuous and eco-friendly renewable energy as alternative to fossils fuels is large and ever growing in nowadays. This paper will focus on capability of Vortex Induced Vibration (VIV) phenomenon in generating alternative energy for offshore platform application. In order to maximize the potential of energy generation, the effects of lock in phenomenon and different geometries of cylinder were studied in this project. VIV is the motion induced on bluff body which creates alternating lift forces perpendicular to fluid flow. Normally, VIV is unwanted in order to prevent mechanical failure of the vibrating structures. But in this project, instead of eliminating these vibrations, VIV will be exploited to transform these vibrations into a valuable resource of energy.

Keywords: Vortex Induced Vibration, Vortex Shedding, Renewable Energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688
43 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plainsided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the requirement for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: Grouted Connection, Numerical Model, Offshore Structure, Wear, Wind Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
42 Effect of Highly Pressurized Dispersion Arc Nozzle on Breakup of Oil Leakage in Offshore

Authors: N. M. M. Ammar, S. M. Mustaqim, N. M. Nadzir

Abstract:

The most important problem occurs on oil spills in sea water is to reduce the oil spills size. This study deals with the development of high pressurized nozzle using dispersion method for oil leakage in offshore. 3D numerical simulation results were obtained using ANSYS Fluent 13.0 code and correlate with the experimental data for validation. This paper studies the contribution of the process on flow speed and pressure of the flow from two different geometrical designs of nozzles and to generate a spray pattern suitable for dispersant application. Factor of size distribution of droplets generated by the nozzle is calculated using pressures ranging from 2 to 6 bars. Results obtain from both analyses shows a significant spray pattern and flow distribution as well as distance. Results also show a significant contribution on the effect of oil leakage in terms of the diameter of the oil spills break up.

Keywords: Arc Nozzle, CFD simulation, Droplets, Oil Spills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
41 Outer-Brace Stress Concentration Factors of Offshore Two-Planar Tubular DKT-Joints

Authors: Mohammad Ali Lotfollahi-Yaghin, Hamid Ahmadi

Abstract:

In the present paper, a set of parametric FE stress analyses is carried out for two-planar welded tubular DKT-joints under two different axial load cases. Analysis results are used to present general remarks on the effect of geometrical parameters on the stress concentration factors (SCFs) at the inner saddle, outer saddle, toe, and heel positions on the main (outer) brace. Then a new set of SCF parametric equations is developed through nonlinear regression analysis for the fatigue design of two-planar DKT-joints. An assessment study of these equations is conducted against the experimental data; and the satisfaction of the criteria regarding the acceptance of parametric equations is checked. Significant effort has been devoted by researchers to the study of SCFs in various uniplanar tubular connections. Nevertheless, for multi-planar joints covering the majority of practical applications, very few investigations have been reported due to the complexity and high cost involved.

Keywords: Offshore jacket structure, Parametric equation, Stress concentration factor (SCF), Two-planar tubular KT-joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
40 Power Generation Scheduling of Thermal Units Considering Gas Pipelines Constraints

Authors: Sara Mohtashami, Habib Rajabi Mashhadi

Abstract:

With the growth of electricity generation from gas energy gas pipeline reliability can substantially impact the electric generation. A physical disruption to pipeline or to a compressor station can interrupt the flow of gas or reduce the pressure and lead to loss of multiple gas-fired electric generators, which could dramatically reduce the supplied power and threaten the power system security. Gas pressure drops during peak loading time on pipeline system, is a common problem in network with no enough transportation capacity which limits gas transportation and causes many problem for thermal domain power systems in supplying their demand. For a feasible generation scheduling planning in networks with no sufficient gas transportation capacity, it is required to consider gas pipeline constraints in solving the optimization problem and evaluate the impacts of gas consumption in power plants on gas pipelines operating condition. This paper studies about operating of gas fired power plants in critical conditions when the demand of gas and electricity peak together. An integrated model of gas and electric model is used to consider the gas pipeline constraints in the economic dispatch problem of gas-fueled thermal generator units.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
39 Spectral Analysis of Radiation-Induced Natural Convection in Littoral Waters

Authors: Yadan Mao, Chengwang Lei, John C. Patterson

Abstract:

The mixing of pollutions and sediments in near shore regions of natural water bodies depends heavily on the characteristics such as the strength and frequency of flow instability. In the present paper, the instability of natural convection induced by absorption of solar radiation in littoral regions is considered. Spectral analysis is conducted on the quasi-steady state flow to reveal the power and frequency modes of the instability at various positions. Results indicate that the power of instability, the number of frequency modes, the prominence of higher frequency modes, and the highest frequency mode increase with the offshore distance and/or Rayleigh number. Harmonic modes are present at relatively low Rayleigh numbers. For a given offshore distance, the position with the strongest power of instability is located adjacent to the sloping bottom while the frequency modes are the same over the local depth. As the Rayleigh number increases, the unstable region extends toward the shore.

Keywords: Instability, Littoral waters, natural convection, Spectral analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
38 Health Risk Assessment for Sewer Workers using Bayesian Belief Networks

Authors: Kevin Fong-Rey Liu, Ken Yeh, Cheng-Wu Chen, Han-Hsi Liang

Abstract:

The sanitary sewerage connection rate becomes an important indicator of advanced cities. Following the construction of sanitary sewerages, the maintenance and management systems are required for keeping pipelines and facilities functioning well. These maintenance tasks often require sewer workers to enter the manholes and the pipelines, which are confined spaces short of natural ventilation and full of hazardous substances. Working in sewers could be easily exposed to a risk of adverse health effects. This paper proposes the use of Bayesian belief networks (BBN) as a higher level of noncarcinogenic health risk assessment of sewer workers. On the basis of the epidemiological studies, the actual hospital attendance records and expert experiences, the BBN is capable of capturing the probabilistic relationships between the hazardous substances in sewers and their adverse health effects, and accordingly inferring the morbidity and mortality of the adverse health effects. The provision of the morbidity and mortality rates of the related diseases is more informative and can alleviate the drawbacks of conventional methods.

Keywords: Bayesian belief networks, sanitary sewerage, healthrisk assessment, hazard quotient, target organ-specific hazard index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660