%0 Journal Article
	%A Duong Vannak and  Mohd Shahir Liew and  Guo Zheng Yew
	%D 2013
	%J International Journal of Geological and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 80, 2013
	%T Time Domain and Frequency Domain Analyses of Measured Metocean Data for Malaysian Waters
	%U https://publications.waset.org/pdf/16180
	%V 80
	%X Data of wave height and wind speed were collected
from three existing oil fields in South China Sea – offshore
Peninsular Malaysia, Sarawak and Sabah regions. Extreme values
and other significant data were employed for analysis. The data were
recorded from 1999 until 2008. The results show that offshore
structures are susceptible to unacceptable motions initiated by wind
and waves with worst structural impacts caused by extreme wave
heights. To protect offshore structures from damage, there is a need
to quantify descriptive statistics and determine spectra envelope of
wind speed and wave height, and to ascertain the frequency content
of each spectrum for offshore structures in the South China Sea
shallow waters using measured time series. The results indicate that
the process is nonstationary; it is converted to stationary process by
first differencing the time series. For descriptive statistical analysis,
both wind speed and wave height have significant influence on the
offshore structure during the northeast monsoon with high mean wind
speed of 13.5195 knots ( = 6.3566 knots) and the high mean wave
height of 2.3597 m ( = 0.8690 m). Through observation of the
spectra, there is no clear dominant peak and the peaks fluctuate
randomly. Each wind speed spectrum and wave height spectrum has
its individual identifiable pattern. The wind speed spectrum tends to
grow gradually at the lower frequency range and increasing till it
doubles at the higher frequency range with the mean peak frequency
range of 0.4104 Hz to 0.4721 Hz, while the wave height tends to
grow drastically at the low frequency range, which then fluctuates
and decreases slightly at the high frequency range with the mean
peak frequency range of 0.2911 Hz to 0.3425 Hz.

	%P 549 - 554