Search results for: nonlinear heat conduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2361

Search results for: nonlinear heat conduction

2181 Theoretical Study of Flexible Edge Seals for Vacuum Glazing

Authors: Farid Arya, Trevor Hyde

Abstract:

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Keywords: Flexible edge seal, stress, support pillar, vacuum glazing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
2180 On the Positive Definite Solutions of Nonlinear Matrix Equation

Authors: Tian Baoguang, Liang Chunyan, Chen Nan

Abstract:

In this paper, the nonlinear matrix equation is investigated. Based on the fixed-point theory, the boundary and the existence of the solution with the case r>-δi are discussed. An algorithm that avoids matrix inversion with the case -1<-δi<0 is proposed.

Keywords: Nonlinear matrix equation, Positive definite solution, The maximal-minimal solution, Iterative method, Free-inversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
2179 A New Algorithm for Solving Isothermal Carbonization of Wood Particle

Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri

Abstract:

A new algorithm based on the lattice Boltzmann method (LBM) is proposed as a potential solver for one-dimensional heat and mass transfer for isothermal carbonization of wood particles. To check the validity of this algorithm, the LBM results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and particle size on the evolution of the local temperature and mass loss inside the wood particle.

Keywords: Lattice Boltzmann Method, pyrolysis, conduction, carbonization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
2178 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: KLMS, online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
2177 Adaptive Fuzzy Control of a Nonlinear Tank Process

Authors: A. R. Tavakolpour-Saleh, H. Jokar

Abstract:

Liquid level control of conical tank system is known to be a great challenge in many industries such as food processing, hydrometallurgical industries and wastewater treatment plant due to its highly nonlinear characteristics. In this research, an adaptive fuzzy PID control scheme is applied to the problem of liquid level control in a nonlinear tank process. A conical tank process is first modeled and primarily simulated. A PID controller is then applied to the plant model as a suitable benchmark for comparison and the dynamic responses of the control system to different step inputs were investigated. It is found that the conventional PID controller is not able to fulfill the controller design criteria such as desired time constant due to highly nonlinear characteristics of the plant model. Consequently, a nonlinear control strategy based on gain-scheduling adaptive control incorporating a fuzzy logic observer is proposed to accurately control the nonlinear tank system. The simulation results clearly demonstrated the superiority of the proposed adaptive fuzzy control method over the conventional PID controller.

Keywords: Adaptive control, fuzzy logic, conical tank, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
2176 Increase of Heat Index over Bangladesh: Impact of Climate Change

Authors: Mohammad Adnan Rajib, Md.Rubayet Mortuza, Saranah Selmi, Asif Khan Ankur, Md. Mujibur Rahman

Abstract:

Heat Index describes the combined effect of temperature and humidity on human body. This combined effect is causing a serious threat to the health of people because of the changing climate. With climate change, climate variability and thus the occurrence of heat waves is likely to increase. Evidence is emerging from the analysis of long-term climate records of an increase in the frequency and duration of extreme temperature events in all over Bangladesh particularly during summer. Summer season has prolonged while winters have become short in Bangladesh. Summers have become hotter and thus affecting the lives of the people engaged in outdoor activities during scorching sun hours. In 2003 around 62 people died due to heat wave across the country. In this paper Bangladesh is divided in four regions and heat index has been calculated from 1960 to 2010 in these regions of the country. The aim of this paper is to identify the spots most vulnerable to heat strokes and heat waves due to high heat index. The results show upward trend of heat index in almost all the regions of Bangladesh. The highest increase in heat index value has been observed in areas of South-west region and North-west Region. The highest change in average heat index has been found in Jessore by almost 5.50C.

Keywords: Anomaly, Heat index, Relative humidity, Temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
2175 Modeling the Effect of Spacer Orientation on Heat Transfer in Membrane Distillation

Authors: M. Shakaib, M. Ehtesham-ul Haq, I. Ahmed, R.M. Yunus

Abstract:

Computational fluid dynamics (CFD) simulations carried out in this paper show that spacer orientation has a major influence on temperature patterns and on the heat transfer rates. The local heat flux values significantly vary from high to very low values at each filament when spacer touches the membrane surface. The heat flux profile is more uniform when spacer filaments are not in contact with the membrane thus making this arrangement more beneficial. The temperature polarization is also found to be less in this case when compared to the empty channel.

Keywords: heat transfer, membrane distillation, spacer, temperature polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
2174 The Influence of the Inlet Conditions on the Airside Heat Transfer Performance of Plain Finned Evaporator

Authors: Abdenour Bourabaa, Mohamed Saighi, Ibrahim Belal

Abstract:

A numerical study has been conducted to investigate the influence of fin pitch and relative humidity on the heat transfer performance of the fin-and-tube heat exchangers having plain fin geometry under dehumidifying conditions. The analysis is done using the ratio between the heat transfer coefficients in totally wet conditions and those in totally dry conditions using the appropriate correlations for both dry and wet conditions. For a constant relative humidity, it is found that the heat transfer coefficient increases with the increase of the air frontal velocity. By contrast, the fin efficiency decreases when the face velocity is increased. Apparently, this phenomenon is attributed to the path of condensate drainage. For the influence of relative humidity, the results showed an increase in heat transfer performance and a decrease in wet fin efficiency when relative humidity increases. This is due to the higher amount of mass transfer encountered at higher relative humidity. However, it is found that the effect of fin pitch on the heat transfer performance depends strongly on the face velocity. At lower frontal velocity the heat transfer increases with fin pitch. Conversely, an increase in fin pitch gives lower heat transfer coefficients when air velocity is increased.

Keywords: Dehumidifying conditions, Fin efficiency, Heat andmass transfer, Heat exchangers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
2173 Fuzzy PID Controller with Coupled Rules for a Nonlinear Quarter Car Model

Authors: Şaban Çetin, Özgür Demir

Abstract:

In this study, Fuzzy PID Control scheme is designed for an active suspension system. The main goal of an active suspension system for using in a vehicle model is reducing body deflections and handling high comfort for a passenger car. The present system was modelled as a two-degree-of-freedom (2-DOF) nonlinear vehicle model.

Keywords: Active suspension system, Fuzzy PID controller, a nonlinear quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
2172 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: Film condensation, heat transfer, plain tube, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
2171 Chaotic Response and Bifurcation Analysis of Gear-Bearing System with and without Porous Effect under Nonlinear Suspension

Authors: Cai-Wan Chang-Jian

Abstract:

This study presents a systematic analysis of the dynamic behaviors of a gear-bearing system with porous squeeze film damper (PSFD) under nonlinear suspension, nonlinear oil-film force and nonlinear gear meshing force effect. It can be found that the system exhibits very rich forms of sub-harmonic and even the chaotic vibrations. The bifurcation diagrams also reveal that greater values of permeability may not only improve non-periodic motions effectively, but also suppress dynamic amplitudes of the system. Therefore, porous effect plays an important role to improve dynamic stability of gear-bearing systems or other mechanical systems. The results presented in this study provide some useful insights into the design and development of a gear-bearing system for rotating machinery that operates in highly rotational speed and highly nonlinear regimes.

Keywords: Gear, PSFD, bifurcation, chaos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
2170 Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences

Authors: Mai S. Mabrouk, Nahed H. Solouma, Abou-Bakr M. Youssef, Yasser M. Kadah

Abstract:

Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.

Keywords: Gene prediction, nonlinear dynamics, correlation dimension, Lyapunov exponent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
2169 Application of He-s Amplitude Frequency Formulation for a Nonlinear Oscillator with Fractional Potential

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, He-s amplitude frequency formulation is used to obtain a periodic solution for a nonlinear oscillator with fractional potential. By calculation and computer simulations, compared with the exact solution shows that the result obtained is of high accuracy.

Keywords: He's amplitude frequency formulation, Periodic solution, Nonlinear oscillator, Fractional potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
2168 Experimental Study on a Solar Heat Concentrating Steam Generator

Authors: Qiangqiang Xu, Xu Ji, Jingyang Han, Changchun Yang, Ming Li

Abstract:

Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system's structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m2, the effective heat collecting area is 7.6 m2 and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m2, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0.

Keywords: Heat concentrating, heat loss, medium temperature, solar steam production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
2167 Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field

Authors: Zone-Ching Lin, Meng-Hua Lin, Ying-Chih Hsu

Abstract:

This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.

Keywords: Quasi-steady molecular statics, Nanoscale orthogonal cutting, Finite difference, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
2166 Stochastic Resonance in Nonlinear Signal Detection

Authors: Youguo Wang, Lenan Wu

Abstract:

Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.

Keywords: Probability of detection error, signal detection, stochastic resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
2165 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastaran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Zscan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample. The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: Nanoscale materials, Silver sulfide nanoparticles, Nonlinear absorption, Nonlinear scattering, Optical limiting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
2164 Resistive Switching in TaN/AlNx/TiN Cell

Authors: Hsin-Ping Huang, Shyankay Jou

Abstract:

Resistive switching of aluminum nitride (AlNx) thin film was demonstrated in a TaN/AlNx/TiN memory cell that was prepared by sputter deposition techniques. The memory cell showed bipolar switching of resistance between +3.5 V and –3.5 V. The resistance ratio of high resistance state (HRS) to low resistance state (HRS), RHRS/RLRS, was about 2 over 100 cycles of endurance test. Both the LRS and HRS of the memory cell exhibited ohmic conduction at low voltages and Poole-Frenkel emission at high voltages. The electrical conduction in the TaN/AlNx/TiN memory cell was possibly attributed to the interactions between charges and defects in the AlNx film.

Keywords: Aluminum nitride, nonvolatile memory, resistive switching, thin films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
2163 Robust H8 Fuzzy Control Design for Nonlinear Two-Time Scale System with Markovian Jumps based on LMI Approach

Authors: Wudhichai Assawinchaichote, Sing Kiong Nguang

Abstract:

This paper examines the problem of designing a robust H8 state-feedback controller for a class of nonlinear two-time scale systems with Markovian Jumps described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, LMI-based sufficient conditions for the uncertain Markovian jump nonlinear two-time scale systems to have an H8 performance are derived. The proposed approach does not involve the separation of states into slow and fast ones and it can be applied not only to standard, but also to nonstandard nonlinear two-time scale systems. A numerical example is provided to illustrate the design developed in this paper.

Keywords: TS fuzzy, Markovian jumps, LMI, two-time scale systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
2162 Computer Simulations of an Augmented Automatic Choosing Control Using Automatic Choosing Functions of Gradient Optimization Type

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the automatic choosing functions of gradient optimization type for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by minimizing the Hamiltonian with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
2161 Nonlinear and Asymmetric Adjustment to Purchasing Power Parity in East-Asian Countries

Authors: Wen-Chi Liu

Abstract:

This study applies a simple and powerful nonlinear unit root test to test the validity of long-run purchasing power parity (PPP)  in a sample of 10 East-Asian countries (i.e., China, Hong Kong,  Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Taiwan  and Thailand) over the period of March 1985 to September 2008. The empirical results indicate that PPP holds true for half of these 10  East-Asian countries under study, and the adjustment toward PPP is found to be nonlinear and in an asymmetric way. 

 

Keywords: Purchasing Power Parity, East-Asian Countries, Nonlinear Unit Root Test, Asymmetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
2160 Gas Condensing Unit with Inner Heat Exchanger

Authors: Dagnija Blumberga, Toms Prodanuks, Ivars Veidenbergs, Andra Blumberga

Abstract:

Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit.

Keywords: Gas condensing unit, filling, inner heat exchanger, package, spraying, tunes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
2159 Optimization of Fin Type and Fin per Inch on Heat Transfer and Pressure Drop of an Air Cooler

Authors: A. Falavand Jozaei, A. Ghafouri

Abstract:

Operation enhancement in an air cooler depends on rate of heat transfer, and pressure drop. In this paper for a given heat duty, study of the effects of FPI (Fin Per Inch) and fin type (circular and hexagonal fins) on heat transfer, and pressure drop in an air cooler in Iran, Arvand petrochemical. A program in EES (Engineering Equations Solver) software moreover, Aspen B-JAC and HTFS+ softwares are used for this purpose to solve governing equations. At first the simulated results obtained from this program is compared to the experimental data for two cases of FPI. The effects of FPI from 3 to 15 over heat transfer (Q) to pressure drop ratio (Q/Δp ratio). This ratio is one of the main parameters in design, and simulation heat exchangers. The results show that heat transfer (Q) and pressure drop increase with increasing FPI steadily, and the Q/Δp ratio increases to FPI=12 and then decreased gradually to FPI=15, and Q/Δp ratio is maximum at FPI=12. The FPI value selection between 8 and 12 obtained as a result to optimum heat transfer to pressure drop ratio. Also by contrast, between circular and hexagonal fins results, the Q/Δp ratio of hexagonal fins more than Q/Δp ratio of circular fins for FPI between 8 and 12 (optimum FPI)

Keywords: Air cooler, circular and hexagonal fins, fin per inch, heat transfer and pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4628
2158 River Flow Prediction Using Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.

Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
2157 Unsteady Water Boundary Layer Flow with Non-Uniform Mass Transfer

Authors: G. Revathi, P. Saikrishnan

Abstract:

In the present analysis an unsteady laminar forced convection water boundary layer flow is considered. The fluid properties such as viscosity and Prandtl number are taken as variables such that those are inversely proportional to temperature. By using quasi-linearization technique the nonlinear coupled partial differential equations are linearized and the numerical solutions are obtained by using implicit finite difference scheme with the appropriate selection of step sizes. Non-similar solutions have been obtained from the starting point of the stream-wise coordinate to the point where skin friction value vanishes. The effect non-uniform mass transfer along the surface of the cylinder through slot is studied on the skin friction and heat transfer coefficients.

Keywords: Boundary layer, heat transfer, non-similar solution, non-uniform mass, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
2156 Nonlinear Large Deformation Analysis of Rotor

Authors: Amin Almasi

Abstract:

Reliability assessment and risk analysis of rotating machine rotors in various overload and malfunction situations present challenge to engineers and operators. In this paper a new analytical method for evaluation of rotor under large deformation is addressed. Model is presented in general form to include also composite rotors. Presented simulation procedure is based on variational work method and has capability to account for geometric nonlinearity, large displacement, nonlinear support effect and rotor contacting other machine components. New shape functions are presented which capable to predict accurate nonlinear profile of rotor. The closed form solutions for various operating and malfunction situations are expressed. Analytical simulation results are discussed

Keywords: Large Deformation, Nonlinear, Rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
2155 Finite Volume Method for Flow Prediction Using Unstructured Meshes

Authors: Juhee Lee, Yongjun Lee

Abstract:

In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.

Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
2154 An Iterative Algorithm for KLDA Classifier

Authors: D.N. Zheng, J.X. Wang, Y.N. Zhao, Z.H. Yang

Abstract:

The Linear discriminant analysis (LDA) can be generalized into a nonlinear form - kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experiments show that it has a comparable performance with SVM.

Keywords: Linear discriminant analysis (LDA), kernel LDA (KLDA), conjugate gradient algorithm, nonlinear discriminant classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
2153 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: Beam on nonlinear Winkler foundation method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
2152 Adaptive Nonlinear Backstepping Control

Authors: Sun Lim, Bong-Seok Kim

Abstract:

This paper presents an adaptive nonlinear position controller with velocity constraint, capable of combining the input-output linearization technique and Lyapunov stability theory. Based on the Lyapunov stability theory, the adaptation law of the proposed controller is derived along with the verification of the overall system-s stability. Computer simulation results demonstrate that the proposed controller is robust and it can ensure transient stability of BLDCM, under the occurrence of a large sudden fault.

Keywords: BLDC Motor Control, Backstepping Control, Adaptive nonlinear control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180