Search results for: lithium ion cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 816

Search results for: lithium ion cell

786 The Effect of a Graded Band Gap Window on the Performance of a Single Junction AlxGa1-xAs/GaAs Solar Cell

Authors: Morteza Fathipour, Atousa Elahidoost, Alireza Mojab, Vala Fathipour

Abstract:

We have modeled the effect of a graded band gap window on the performance of a single junction AlxGa1-xAs/GaAs solar cell. First, we study the electrical characteristics of a single junction AlxGa1-xAs/GaAs solar cell, by employing an optimized structure for this solar cell, we show that grading the band gap of the window can increase the conversion efficiency of the solar cell by about 1.5%, and can also improve the quantum efficiency of the solar cell especially at shorter wavelengths.

Keywords: Conversion efficiency, Graded band gap window, Quantum efficiency, Single junction AlxGa1-xAs/GaAs solar cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
785 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars

Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic

Abstract:

Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.

Keywords: Circular economy, electric mobility, lithium ion batteries, remanufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5264
784 Mathematical Modeling of Cell Volume Alterations under Different Osmotic Conditions

Authors: Juliana A. Knocikova, Yann Bouret, Médéric Argentina, Laurent Counillon

Abstract:

Cell volume, together with membrane potential and intracellular hydrogen ion concentration, is an essential biophysical parameter for normal cellular activity. Cell volumes can be altered by osmotically active compounds and extracellular tonicity. In this study, a simple mathematical model of osmotically induced cell swelling and shrinking is presented. Emphasis is given to water diffusion across the membrane. The mathematical description of the cellular behavior consists in a system of coupled ordinary differential equations. We compare experimental data of cell volume alterations driven by differences in osmotic pressure with mathematical simulations under hypotonic and hypertonic conditions. Implications for a future model are also discussed.

Keywords: Eukaryotic cell, mathematical modeling, osmosis, volume alterations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
783 Evaluation of Model and Performance of Fuel Cell Hybrid Electric Vehicle in Different Drive Cycles

Authors: Fathollah Ommi, Golnaz Pourabedin, Koros Nekofa

Abstract:

In recent years fuel cell vehicles are rapidly appearing all over the globe. In less than 10 years, fuel cell vehicles have gone from mere research novelties to operating prototypes and demonstration models. At the same time, government and industry in development countries have teamed up to invest billions of dollars in partnerships intended to commercialize fuel cell vehicles within the early years of the 21st century. The purpose of this study is evaluation of model and performance of fuel cell hybrid electric vehicle in different drive cycles. A fuel cell system model developed in this work is a semi-experimental model that allows users to use the theory and experimental relationships in a fuel cell system. The model can be used as part of a complex fuel cell vehicle model in advanced vehicle simulator (ADVISOR). This work reveals that the fuel consumption and energy efficiency vary in different drive cycles. Arising acceleration and speed in a drive cycle leads to Fuel consumption increase. In addition, energy losses in drive cycle relates to fuel cell system power request. Parasitic power in different parts of fuel cell system will increase when power request increases. Finally, most of energy losses in drive cycle occur in fuel cell system because of producing a lot of energy by fuel cell stack.

Keywords: Drive cycle, Energy efficiency, energy consumption, Fuel cell system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
782 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: Fuel cell dynamics, real time simulation, fuel cell, modelling, testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
781 Design of a Compact Meshed Antennas for 5G Communication Systems

Authors: Chokri Baccouch, Chayma Bahhar, Hedi Sakli, Nizar Sakli, Taoufik Aguili

Abstract:

This paper presents a hybrid system solar cell antenna for 5G mobile communications networks. We propose here a solar cell antenna with either a front face collection grid or mesh patch. The solar cell antenna of our contribution combines both optical and radiofrequency signals. Thus, we propose two solar cell antenna structures in the frequency bands of future 5G standard respectively in both 2.6 and 3.5 GHz bands. Simulation using the Advanced Design System (ADS) software allows us to analyze and determine the antenna parameters proposed in this work such as the reflection coefficient (S11), gain, directivity and radiated power.

Keywords: Patch antenna, solar cell, DC, RF, 5G.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
780 Resistive Switching in TaN/AlNx/TiN Cell

Authors: Hsin-Ping Huang, Shyankay Jou

Abstract:

Resistive switching of aluminum nitride (AlNx) thin film was demonstrated in a TaN/AlNx/TiN memory cell that was prepared by sputter deposition techniques. The memory cell showed bipolar switching of resistance between +3.5 V and –3.5 V. The resistance ratio of high resistance state (HRS) to low resistance state (HRS), RHRS/RLRS, was about 2 over 100 cycles of endurance test. Both the LRS and HRS of the memory cell exhibited ohmic conduction at low voltages and Poole-Frenkel emission at high voltages. The electrical conduction in the TaN/AlNx/TiN memory cell was possibly attributed to the interactions between charges and defects in the AlNx film.

Keywords: Aluminum nitride, nonvolatile memory, resistive switching, thin films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
779 Meshed Antenna for Ku-band Wireless Communication

Authors: Chokri Baccouch, Chayma Bahhar, Hedi Sakli, Nizar Sakli

Abstract:

In this article, we present the combination of an antenna patch structure with a photovoltaic cell in one device for telecommunication applications in isolated environments. The radiating patch element of a patch antenna was replaced by a solar cell. DC current generation is the original feature of the solar cell, but now it was additionally able to receive and transmit electromagnetic waves. A mathematical model which serves in the minimization of power losses of the cell and therefore the improvement in conversion performance was studied. Simulation results of this antenna show a resonance at a frequency of 16.55 GHz in Ku-band with a gain of 4.24 dBi.

Keywords: Electric power collected, optical and electrical losses, optimization of the grid of collection, patch antenna, photovoltaic cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
778 Battery Operation Time Enhancement Based On Alternating Battery Cell Discharge

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

This paper proposes an alternating discharge method of multiple battery cells to extend battery operation time. In the proposed method, two battery cells are periodically connected in turn to a mobile device and only one cell supply power while the other rests. Battery operation time of the connecting cell decreases due to rate-capacity effect, while that of the resting cell increases due to recovery effect. These two effects conflict each other, but recovery effect is generally larger than rate-capacity effect and battery lifetime is extended. It was found from the result that battery operation time increase about 7% by using alternating battery cell discharge.

Keywords: Battery, Recovery Effect, Rate-Capacity Effect, Low-Power, Alternating Battery Cell Discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
777 Performance Enhancement Employing Vertical Beamforming for FFR Technique

Authors: P. Chaipanya, P. Uthansakul, M. Uthansakul

Abstract:

This paper proposes a vertical beamforming concept to a cellular network employing Fractional Frequency Reuse technique including with cell sectorization. Two different beams are utilized in cell-center and cell-edge, separately. The proposed concept is validated through computer simulation in term of SINR and channel capacity. Also, comparison when utilizing horizontal and vertical beam formation is in focus. The obtained results indicate that the proposed concept can improve the performance of the cellular networks comparing with the one using horizontal beamforming.

Keywords: Beamforming, Fractional Frequency Reuse, Inter- Cell Interference, cell sectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
776 Solar Cell Parameters Estimation Using Simulated Annealing Algorithm

Authors: M. R. AlRashidi, K. M. El-Naggar, M. F. AlHajri

Abstract:

This paper presents Simulated Annealing based approach to estimate solar cell model parameters. Single diode solar cell model is used in this study to validate the proposed approach outcomes. The developed technique is used to estimate different model parameters such as generated photocurrent, saturation current, series resistance, shunt resistance, and ideality factor that govern the current-voltage relationship of a solar cell. A practical case study is used to test and verify the consistency of accurately estimating various parameters of single diode solar cell model. Comparative study among different parameter estimation techniques is presented to show the effectiveness of the developed approach.

Keywords: Simulated Annealing, Parameter Estimation, Solar Cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
775 The Effect of Ultrasound Pre-Treatment on Froth Flotation Performance

Authors: W.M.F. Wan Ishak, N. A. Rowson

Abstract:

The aim of this study is to compare the effect of the ultrasonic pre treatment on the removal of heavy metals (Iron, Zinc and Copper) from Acid Mine Drainage (AMD) by Denver Cell flotation. Synthetic AMD and individual metal solutions are used in the initial experiments to optimise the process conditions for real AMD. Three different process methods, ultrasound treatment followed by Denver flotation cell, Denver flotation cell alone and ultrasonic treatments run simultaneously with the Denver flotation cell were tested for every sample. Precipitation of the metal solutions by using sodium hydroxide (NaOH) and application of the optimum frother dosage followed by flotation significantly reduced the metal content of the AMD.

Keywords: Ultrasound, Denver cell, Flotation, Heavy metals, AMD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
774 Design and Realization of an Electronic Load for a PEM Fuel Cell

Authors: Arafet Bouaicha, Hatem Allegui, Amar Rouane, El-Hassane Aglzim, Abdelkader Mami

Abstract:

In order to further understand the behavior of PEM fuel cell and optimize their performance, it is necessary to perform measurements in real time. The internal impedance measurement by electrochemical impedance spectroscopy (EIS) is of great importance. In this work, we present the impedance measurement method of a PEM fuel cell by electrochemical impedance spectroscopy method and the realization steps of electronic load for this measuring technique implementation. The theoretical results are obtained from the simulation of software PSPICE® and experimental tests are carried out using the Ballard Nexa™ PEM fuel cell system.

Keywords: Electronic load, MOS transistor, PEM fuel cell, Impedance measurement, Electrochemical Impedance Spectroscopy (EIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
773 Study of Sickle Cell Syndromes in the Population of the Region of Batna

Authors: K .Belhadi, H. Bousselsela, M. Yahia, A. Zidani, S. Benbia

Abstract:

Sickle cell anemia is a recessive genetic disease caused by the presence in the red blood cell, of abnormal hemoglobin called hemoglobin S. It results from the replacement in the beta chain of the acid glutamic acid by valin at position 6. Topics may be homozygous (SS) or heterozygous (AS) most often asymptomatic. Other mutations result in compound heterozygous: - Synthesis of hemoglobin C mutation in the sixth leucin codon (heterozygous SC); - ß-thalassemia (heterozygous S-ß thalassemia). SS homozygous, heterozygous SC and S- ß -thalassemia are grouped under the major sickle cell syndromes. To make a laboratory diagnosis of hemoglobinopathies in a portion of the population in region of Batna, our study was conducted on 115 patients with suspected sickle cell anemia, all cases have benefited from hematological tests as blood count (count RBC, calculated erythrocyte indices, MCV and MCHC, measuring the hemoglobin concentration) and a biochemical test in this case electrophoresis CAPILLARYS HEMOGLOBIN (E). The results showed: 27 cases of sickle cell anemia were found on 115 suspected cases, 73,03% homozygous sickle cell disease and 59,25% sickle cell trait. Finally, the double heterozygous S/C, represent the incidence rate of 3, 70%.

Keywords: Hemoglobin, sickle cell syndromes, laboratory diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
772 Fuel Cell/DC-DC Convertor Control by Sliding Mode Method

Authors: Farzad Abdous

Abstract:

Fuel cell's system requires regulating circuit for voltage and current in order to control power in case of connecting to other generative devices or load. In this paper Fuel cell system and convertor, which is a multi-variable system, are controlled using sliding mode method. Use of weighting matrix in design procedure made it possible to regulate speed of control. Simulation results show the robustness and accuracy of proposed controller for controlling desired of outputs.

Keywords: DC-DC converter, Fuel cell, PEM, Slides mode control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
771 Wireless Backhauling for 5G Small Cell Networks

Authors: Abdullah A. Al Orainy

Abstract:

Small cell backhaul solutions need to be cost-effective, scalable, and easy to install. This paper presents an overview of small cell backhaul technologies. Wireless solutions including TV white space, satellite, sub-6 GHz radio wave, microwave and mmWave with their backhaul characteristics are discussed. Recent research on issues like beamforming, backhaul architecture, precoding and large antenna arrays, and energy efficiency for dense small cell backhaul with mmWave communications is reviewed. Recent trials of 5G technologies are summarized.

Keywords: Backhaul, Small Cells, Wireless, 5G.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
770 Data Acquisition from Cell Phone using Logical Approach

Authors: Keonwoo Kim, Dowon Hong, Kyoil Chung, Jae-Cheol Ryou

Abstract:

Cell phone forensics to acquire and analyze data in the cellular phone is nowadays being used in a national investigation organization and a private company. In order to collect cellular phone flash memory data, we have two methods. Firstly, it is a logical method which acquires files and directories from the file system of the cell phone flash memory. Secondly, we can get all data from bit-by-bit copy of entire physical memory using a low level access method. In this paper, we describe a forensic tool to acquire cell phone flash memory data using a logical level approach. By our tool, we can get EFS file system and peek memory data with an arbitrary region from Korea CDMA cell phone.

Keywords: Forensics, logical method, acquisition, cell phone, flash memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4064
769 A Novel Four-Transistor SRAM Cell with Low Dynamic Power Consumption

Authors: Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati

Abstract:

This paper presents a novel CMOS four-transistor SRAM cell for very high density and low power embedded SRAM applications as well as for stand-alone SRAM applications. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 20% smaller than a conventional six-transistor cell using same design rules. Also proposed cell uses two word-lines and one pair bit-line. Read operation perform from one side of cell, and write operation perform from another side of cell, and swing voltage reduced on word-lines thus dynamic power during read/write operation reduced. The fabrication process is fully compatible with high-performance CMOS logic technologies, because there is no need to integrate a poly-Si resistor or a TFT load. HSPICE simulation in standard 0.25μm CMOS technology confirms all results obtained from this paper.

Keywords: Positive feedback, leakage current, read operation, write operation, dynamic energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2824
768 Hydrolysis Characteristics of Polycrystalline Lithium Hydride Powders and Sintered Bulk

Authors: M. B. Shuai, S. Xiao, Q. S. Li, M. F. Chu, X. F. Yang

Abstract:

Ambient hydrolysis products in moist air and hydrolysis kinetics in argon with humidity of RH1.5% for polycrystalline LiH powders and sintered bulks were investigated by X-ray diffraction, Raman spectroscopy and gravimetry. The results showed that the hydrolysis products made up a layered structure of LiOH•H2O/LiOH/Li2O from surface of the sample to inside. In low humid argon atmosphere, the primary hydrolysis product was Li2O rather than LiOH. The hydrolysis kinetic curves of LiH bulks present a paralinear shape, which could be explained by the “Layer Diffusion Control" model. While a three-stage hydrolysis kinetic profile was observed for LiH powders under the same experimental conditions. The first two sections were similar to that of the bulk samples, and the third section also presents a linear reaction kinetics but with a smaller reaction rate compared to the second section because of a larger exothermic effect for the hydrolysis reaction of LiH powder.

Keywords: Hydrolysis, lithium compound, polycrystallinelithium hydride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
767 Comparison of the DC/DC-Converters for Fuel Cell Applications

Authors: Oleksandr Krykunov

Abstract:

The source voltage of high-power fuel cell shows strong load dependence at comparatively low voltage levels. In order to provide the voltage of 750V on the DC-link for feeding electrical energy into the mains via a three phase inverter a step-up converter with a large step-up ratio is required. The output voltage of this DC/DC-converter must be stabile during variations of the load current and the voltage of the fuel cell. This paper presents the methods and results of the calculation of the efficiency and the expense for the realization for the circuits of the DC/DC-converter that meet these requirements.

Keywords: DC/DC-converter, calculation, efficiency, fuel cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
766 Immunomodulatory Effects of Multipotent Mesenchymal Stromal Cells on T-Cell Populations at Tissue-Related Oxygen Level

Authors: A. N. Gornostaeva, P. I. Bobyleva, E. R. Andreeva, L. B. Buravkova

Abstract:

Multipotent mesenchymal stromal cells (MSCs) possess immunomodulatory properties. The effect of MSCs on the crucial cellular immunity compartment – T-cells is of a special interest. It is known that MSC tissue niche and expected milieu of their interaction with T- cells are characterized by low oxygen concentration, whereas the in vitro experiments usually are carried out at a much higher ambient oxygen (20%). We firstly evaluated immunomodulatory effects of MSCs on T-cells at tissue-related oxygen (5%) after interaction implied cell-to-cell contacts and paracrine factors only. It turned out that MSCs under reduced oxygen can effectively suppress the activation and proliferation of PHAstimulated T-cells and can provoke decrease in the production of proinflammatory and increase in anti-inflammatory cytokines. In hypoxia some effects were amplified (inhibition of proliferation, antiinflammatory cytokine profile shift). This impact was more evident after direct cell-to-cell interaction; lack of intercellular contacts could revoke the potentiating effect of hypoxia.

Keywords: Cell-to-cell interaction, low oxygen, MSC immunosuppression, T-cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
765 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of GaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current

Keywords: GaAs solar cell, 1MeV electron irradiation, irradiation fluence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3821
764 Microstructure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3-xAlxO2 Cathode Material for Lithium Ion Batteries

Authors: Wei-Bo Hua, Zhuo Zheng, Xiao-Dong Guo, Ben-He Zhong

Abstract:

The layered structure LiNi1/3Co1/3Mn1/3-xAlxO2 (x = 0 ~ 0.04) series cathode materials were synthesized by a carbonate co-precipitation method, followed by a high temperature calcination process. The influence of Al substitution on the microstructure and electrochemical performances of the prepared materials was investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge/discharge test. The results show that the LiNi1/3Co1/3Mn1/3-xAlxO2 has a well-ordered hexagonal α-NaFeO2 structure. Although the discharge capacity of Al-doped samples decreases as x increases, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 exhibits superior capacity retention at high voltage (4.6 V). Therefore, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 is a promising material for “green” vehicles.

Keywords: Lithium ion battery, carbonate co-precipitation, microstructure, electrochemical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
763 Enhanced Interference Management Technique for Multi-Cell Multi-Antenna System

Authors: Simon E. Uguru, Victor E. Idigo, Obinna S. Oguejiofor, Naveed Nawaz

Abstract:

As the deployment of the Fifth Generation (5G) mobile communication networks take shape all over the world, achieving spectral efficiency, energy efficiency, and dealing with interference are among the greatest challenges encountered so far. The aim of this study is to mitigate inter-cell interference (ICI) in a multi-cell multi-antenna system while maximizing the spectral efficiency of the system. In this study, a system model was devised that showed a miniature representation of a multi-cell multi-antenna system. Based on this system model, a convex optimization problem was formulated to maximize the spectral efficiency of the system while mitigating the ICI. This optimization problem was solved using CVX, which is a modeling system for constructing and solving discipline convex programs. The solutions to the optimization problem are sub-optimal coordinated beamformers. These coordinated beamformers direct each data to the served user equipments (UEs) in each cell without interference during downlink transmission, thereby maximizing the system-wide spectral efficiency.

Keywords: coordinated beamforming, convex optimization, inter-cell interference, multi-antenna, multi-cell, spectral efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
762 Design of a Compact Herriott Cell for Heat Flux Measurement Applications

Authors: R. G. Ramírez-Chavarría, C. Sánchez-Pérez, V. Argueta-Díaz

Abstract:

In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.

Keywords: Heat flux, herriott cell, optical beam deflection, thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2770
761 On using PEMFC for Electrical Power Generation on More Electric Aircraft

Authors: Jenica Ileana Corcau, Liviu Dinca

Abstract:

The electrical power systems of aircrafts have made serious progress in recent years because the aircrafts depend more and more on the electricity. There is a trend in the aircraft industry to replace hydraulic and pneumatic systems with electrical systems, achieving more comfort and monitoring features and enlarging the energetic efficiency. Thus, was born the concept More Electric Aircraft. In this paper is analyzed the integration of a fuel cell into the existing electrical generation and distribution systems of an aircraft. The dynamic characteristics of fuel cell systems necessitate an adaptation of the electrical power system. The architecture studied in this paper consists of a 50kW fuel cell, a dc to dc converter and several loads. The dc to dc converter is used to step down the fuel cell voltage from about 625Vdc to 28Vdc.

Keywords: Electrical power system, More Electric Aircraft, Fuel Cell, dc to dc converter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
760 Energy Management System in Fuel Cell, Ultracapacitor, Battery Hybrid Energy Storage

Authors: Vinod Tejwani, Bhavik Suthar

Abstract:

The paper presents and energy management strategy for a Fuel Cell, Ultracapacitor, Battery hybrid energy storage. The fuel cell hybrid power system is devised basically for emergency power requirements and transient load applications. The power density of an Ultracapacitor is extremely high and for a battery, it is subtle. For a fuel cell, the value of power density is medium. The energy density of these three stockpiling gadgets is contrarily about the power density, i.e. for the batteries it is most noteworthy and for the Ultracapacitor, it is least. Again the fuel cell has medium energy density. The proposed Energy Management System (EMS) is trying to rationalize these parameters viz. the energy density and power density. The working of the fuel cell, Ultracapacitor and batteries are controlled in a coordinated environment in a way to optimize the energy usage and at the same time to get benefits of power and energy density from their inherent characteristics. MATLAB/ Simulink® based test bench is created by using different DC-DC converters for all energy storage devices and an inverter is modeled to supply the time varying load. The results provided by the EMS are highly satisfactory that proves its adaptability.

Keywords: Energy Management System (EMS) Fuel Cell, Ultracapacitor, Battery, Hybrid Energy Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
759 Rain Cell Ratio Technique in Path Attenuation for Terrestrial Radio Links

Authors: Peter Odero Akuon

Abstract:

A rain cell ratio model is proposed that computes attenuation of the smallest rain cell which represents the maximum rain rate value i.e. the cell size when rainfall rate is exceeded 0.01% of the time, R0.01 and predicts attenuation for other cells as the ratio with this maximum. This model incorporates the dependence of the path factor r on the ellipsoidal path variation of the Fresnel zone at different frequencies. In addition, the inhomogeneity of rainfall is modeled by a rain drop packing density factor. In order to derive the model, two empirical methods that can be used to find rain cell size distribution Dc are presented. Subsequently, attenuation measurements from different climatic zones for terrestrial radio links with frequencies F in the range 7-38 GHz are used to test the proposed model. Prediction results show that the path factor computed from the rain cell ratio technique has improved reliability when compared with other path factor and effective rain rate models, including the current ITU-R 530-15 model of 2013.

Keywords: Packing density of rain drops, prediction model, rain attenuation, rain cell ratio technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647
758 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-watt fluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: Solar Cell, Solar-cell power generating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
757 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Andrew Jester, Ross Lee, Pritpal Singh

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, a new battery technology is desirable for grid applications to curtail these risks. Biological cells, such as human neurons and electrocytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell akin to the charging/discharging of a battery cell. This work serves as the first step for developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na+-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior like human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: Battery, biomimetic, electrocytes, human neurons, ion-selective membranes, membrane potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315