Search results for: grain filling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 353

Search results for: grain filling

53 Assessing the Suitability of South African Waste Foundry Sand as an Additive in Clay Masonry Products

Authors: Nthabiseng Portia Mahumapelo, Andre van Niekerk, Ndabenhle Sosibo, Nirdesh Singh

Abstract:

The foundry industry generates large quantities of solid waste in the form of waste foundry sand. The ever-increasing quantities of this type of industrial waste put pressure on land-filling space and its proper management has become a global concern. The South African foundry industry is not different when it comes to this solid waste generation. Utilizing the foundry waste sand in other applications has become an attractive avenue to deal with this waste stream. In the present paper, an evaluation was done on the suitability of foundry waste sand as an additive in clay masonry products. Purchased clay was added to the foundry waste sand sample in a 50/50 ratio. The mixture was named FC sample. The FC sample was mixed with water in a pan mixer until the mixture was consistent and suitable for extrusion. The FC sample was extruded and cut into briquettes. Water absorption, shrinkage and modulus of rupture tests were conducted on the resultant briquettes. Foundry waste sand and FC samples were respectively characterized mineralogically using X-Ray Diffraction, and the major and trace elements were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. Adding purchased clay to the foundry waste sand positively influenced the workability of the test sample. Another positive characteristic was the low linear shrinkage, which indicated that products manufactured from the FC sample would not be susceptible to cracking. The water absorption values were acceptable and the unfired and fired strength values of the briquette’s samples were acceptable. In conclusion, tests showed that foundry waste sand can be used as an additive in masonry clay bricks, provided it is blended with good quality clay.

Keywords: Foundry waste sand, masonry clay bricks, modulus of rupture, shrinkage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606
52 Baking Quality of Hulled Wheat Species in Organic Farming

Authors: P. Konvalina, I. Capouchová, Z. Stehno

Abstract:

The organic farmers use wider range of crop varieties than the conventional farming. Bread wheat is the most favorite and the most common food crop. The organic bread wheat is usually of worse technological quality. Therefore, it is supposed to be an attractive alternative to the hulled wheat species (einkorn, emmer wheat and spelt). Twenty-five hulled bread wheat varieties and control bread wheat ones were grown on the certified organic parcel in České Budějovice (the Czech Republic) between 2009 and 2012. Their baking quality was measured and evaluated with standard methods, and in accordance with ICC. The results have shown that the grain of hulled wheat varieties contain a lot of proteins in grains (up to 18 percent); even the organic hulled bread wheat varieties are characterized by such good baking quality. Einkorn and emmer wheat are of worse technological quality of proteins (low values of gluten index and Zeleny test), which is a disadvantage of these two wheat species. On the other hand, spelt wheat is of better technological quality and is similar to the control bread wheat varieties. Mixtures consisting of bread wheat, among others, are considered good alternatives; they may contribute to wider range of use of the hulled wheat species. It is one of the possibilities which may increase the proportion of proteins in bread wheat grains; the nutrition-rich hulled wheat grains may be also used in such way at the same time.

Keywords: Baking quality, organic farming, einkorn, emmer wheat, spelt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
51 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions, which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.

Keywords: Open channel flow, smooth bed, rough bed, Reynolds number, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
50 Evaluation of the Analytic for Hemodynamic Instability as A Prediction Tool for Early Identification of Patient Deterioration

Authors: Bryce Benson, Sooin Lee, Ashwin Belle

Abstract:

Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.

Keywords: Clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 350
49 Microservices-Based Provisioning and Control of Network Services for Heterogeneous Networks

Authors: Shameemraj M. Nadaf, Sipra Behera, Hemant K. Rath, Garima Mishra, Raja Mukhopadhyay, Sumanta Patro

Abstract:

Microservices architecture has been widely embraced for rapid, frequent, and reliable delivery of complex applications. It enables organizations to evolve their technology stack in various domains. Today, the networking domain is flooded with plethora of devices and software solutions which address different functionalities ranging from elementary operations, viz., switching, routing, firewall etc., to complex analytics and insights based intelligent services. In this paper, we attempt to bring in the microservices based approach for agile and adaptive delivery of network services for any underlying networking technology. We discuss the life cycle management of each individual microservice and a distributed control approach with emphasis for dynamic provisioning, management, and orchestration in an automated fashion which can provide seamless operations in large scale networks. We have conducted validations of the system in lab testbed comprising of Traditional/Legacy and Software Defined Wireless Local Area networks.

Keywords: Microservices architecture, software defined wireless networks, traditional wireless networks, automation, orchestration, intelligent networks, network analytics, seamless management, single pane control, fine-grain control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798
48 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
47 Influence of Outer Corner Radius in Equal Channel Angular Pressing

Authors: Basavaraj V. Patil, Uday Chakkingal, T. S. Prasanna Kumar

Abstract:

Equal Channel Angular Pressing (ECAP) is currently being widely investigated because of its potential to produce ultrafine grained microstructures in metals and alloys. A sound knowledge of the plastic deformation and strain distribution is necessary for understanding the relationships between strain inhomogeneity and die geometry. Considerable research has been reported on finite element analysis of this process, assuming threedimensional plane strain condition. However, the two-dimensional models are not suitable due to the geometry of the dies, especially in cylindrical ones. In the present work, three-dimensional simulation of ECAP process was carried out for six outer corner radii (sharp to 10 mm in steps of 2 mm), with channel angle 105¶Çü▒, for strain hardening aluminium alloy (AA 6101) using ABAQUS/Standard software. Strain inhomogeneity is presented and discussed for all cases. Pattern of strain variation along selected radial lines in the body of the workpiece is presented. It is found from the results that the outer corner has a significant influence on the strain distribution in the body of work-piece. Based on inhomogeneity and average strain criteria, there is an optimum outer corner radius.

Keywords: Equal Channel Angular Pressing, Finite Element Analysis, strain inhomogeneity, plastic equivalent strain, ultra fine grain size, aluminium alloy 6101.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
46 Influence of Port Geometry on Thrust Transient of Solid Propellant Rockets at Liftoff

Authors: Karuppasamy Pandian. M, Krishna Raj. K, Sabarinath. K, Sandeep. G, Sanal Kumar. V.R.

Abstract:

Numerical studies have been carried out using a two dimensional code to examine the influence of pressure / thrust transient of solid propellant rockets at liftoff. This code solves unsteady Reynolds-averaged thin-layer Navier–Stokes equations by an implicit LU-factorization time-integration method. The results from the parametric study indicate that when the port is narrow there is a possibility of increase in pressure / thrust-rise rate due to relatively high flame spread rate. Parametric studies further reveal that flame spread rate can be altered by altering the propellant properties, igniter jet characteristics and nozzle closure burst pressure without altering the grain configuration and/or the mission demanding thrust transient. We observed that when the igniter turbulent intensity is relatively low the vehicle could liftoff early due to the early flow choking of the rocket nozzle. We concluded that the high pressurization-rate has structural implications at liftoff in addition to transient burning effect. Therefore prudent selection of the port geometry and the igniter, for meeting the mission requirements, within the given envelop are meaningful objectives for any designer for the smooth liftoff of solid propellant rockets.

Keywords: Igniter Characteristics, Solid Propellant Rocket, SRM Liftoff, Starting Thrust Transient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
45 Ecoliteracy and Pedagogical Praxis in the Multidisciplinary University Greenhouse toward the Food Security Strengthening

Authors: Citlali Aguilera Lira, David Lynch Steinicke, Andrea León Garcia

Abstract:

One of the challenges that higher education faces is to find how to approach the sustainability in an inclusive way to the student within all the different academic areas, how to move the sustainable development from the abstract field to the operational field. This research comes from the ecoliteracy and the pedagogical praxis as tools for rebuilding the teaching processes inside of universities. The purpose is to determine and describe which are the factors involved in the process of learning particularly in the Greenhouse-School Siembra UV. In the Greenhouse-School Siembra UV, of the University of Veracruz, are cultivated vegetables, medicinal plants and small cornfields under the usage of eco-technologies such as hydroponics, Wickingbed and Hugelkultur, which main purpose is the saving of space, labor and natural resources, as well as function as agricultural production alternatives in the urban and periurban zones. The sample was formed with students from different academic areas and who are actively involved in the greenhouse, as well as institutes from the University of Veracruz and governmental and nongovernmental departments. This project comes from a pedagogic praxis approach, from filling the needs that the different professional profiles of the university students have. All this with the purpose of generate a pragmatic dialogue with the sustainability. It also comes from the necessity to understand the factors that intervene in the students’ praxis. In this manner is how the students are the fundamental unit in the sphere of sustainability. As a result, it is observed that those University of Veracruz students who are involved in the Greenhouse-school, Siembra UV, have enriched in different levels the sense of urban and periurban agriculture because of the diverse academic approaches they have and the interaction between them. It is concluded that the ecotechnologies act as fundamental tools for ecoliteracy in society, where it is strengthen the nutritional and food security from a sustainable development approach.

Keywords: Farming eco-technologies, food security, multidisciplinary, pedagogical praxis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
44 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.

Keywords: Open channel flow, Reynolds Number, roughness, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
43 Development of a Cost Effective Two Wheel Tractor Mounted Mobile Maize Sheller for Small Farmers in Bangladesh

Authors: M. Israil Hossain, T. P. Tiwari, Ashrafuzzaman Gulandaz, Nusrat Jahan

Abstract:

Two-wheel tractor (power tiller) is a common tillage tool in Bangladesh agriculture for easy access in fragmented land with affordable price of small farmers. Traditional maize sheller needs to be carried from place to place by hooking with two-wheel tractor (2WT) and set up again for shelling operation which takes longer time for preparation of maize shelling. The mobile maize sheller eliminates the transportation problem and can start shelling operation instantly any place as it is attached together with 2WT. It is counterclockwise rotating cylinder, axial flow type sheller, and grain separated with a frictional force between spike tooth and concave. The maize sheller is attached with nuts and bolts in front of the engine base of 2WT. The operating power of the sheller comes from the fly wheel of the engine of the tractor through ‘V” belt pulley arrangement. The average shelling capacity of the mobile sheller is 2.0 t/hr, broken kernel 2.2%, and shelling efficiency 97%. The average maize shelling cost is Tk. 0.22/kg and traditional custom hire rate is Tk.1.0/kg, respectively (1 US$=Tk.78.0). The service provider of the 2WT can transport the mobile maize sheller long distance in operator’s seating position. The manufacturers started the fabrication of mobile maize sheller. This mobile maize sheller is also compatible for the other countries where 2WT is available for farming operation.

Keywords: Cost effective, mobile maize sheller, maize shelling capacity, small farmers, two-wheel tractor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
42 Design, Fabrication and Performance Evaluation of Mobile Engine-Driven Pneumatic Paddy Collector

Authors: Sony P. Aquino, Helen F. Gavino, Victorino T. Taylan, Teresito G. Aguinaldo

Abstract:

A simple mobile engine-driven pneumatic paddy collector made of locally available materials using local manufacturing technology was designed, fabricated, and tested for collecting and bagging of paddy dried on concrete pavement. The pneumatic paddy collector had the following major components: radial flat bladed type centrifugal fan, power transmission system, bagging area, frame and the conveyance system. Results showed significant differences on the collecting capacity, noise level, and fuel consumption when rotational speed of the air mover shaft was varied. Other parameters such as collecting efficiency, air velocity, augmented cracked grain percentage, and germination rate were not significantly affected by varying rotational speed of the air mover shaft. The pneumatic paddy collector had a collecting efficiency of 99.33 % with a collecting capacity of 2685.00 kg/h at maximum rotational speed of centrifugal fan shaft of about 4200 rpm. The machine entailed an investment cost of P 62,829.25. The break-even weight of paddy was 510,606.75 kg/yr at a collecting cost of 0.11 P/kg of paddy. Utilizing the machine for 400 hours per year generated an income of P 23,887.73. The projected time needed to recover cost of the machine based on 2685 kg/h collecting capacity was 2.63 year.

Keywords: Mobile engine-driven pneumatic paddy collector, collecting capacity and efficiency, simple cost analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5443
41 An Analysis of Institutional Environments on Corporate Social Responsibility Practices in Nigerian Renewable Energy Firms

Authors: Bolanle Deborah Motilewa, E. K. Rowland Worlu, Gbenga Mayowa Agboola, Ayodele Maxwell Olokundun

Abstract:

Several studies have proposed a one-size fit all approach to Corporate Social Responsibility (CSR) practices, such that CSR as it applies to developed countries is adapted to developing countries, ignoring the differing institutional environments (such as the regulative, economic, social and political environments), which affects the profitability and practices of businesses operating in them. CSR as it applies to filling institutional gaps in developing countries, was categorized into four themes: environmental protection, product and service innovation, social innovation and local cluster development. Based on the four themes, the study employed a qualitative research approach through the use of interviews and review of available publications to study the influence of institutional environments on CSR practices engaged in by three renewable energy firms operating in Nigeria. Over the course of three 60-minutes sessions with the top management and selected workers of the firms, four propositions were made: regulatory environment influences environmental protection practice of Nigerian renewable firms, economic environment influences product and service innovation practice of Nigerian renewable energy firms, the social environment impacts on social innovation in Nigerian renewable energy firms, and political environment affects local cluster development practice of Nigerian renewable energy firms. It was also observed that beyond institutional environments, the international exposure of an organization’s managers reflected in their approach to CSR. This finding on the influence of international exposure on CSR practices creates an area for further study. Insights from this paper are set to help policy makers in developing countries, CSR managers, and future researchers.

Keywords: Corporate social responsibility, institutional environment, renewable energy firms, developing countries, international exposure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
40 Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter

Authors: Aka S. Koffi, N’Goran Yao, Philippe Bastide, Denis Bruneau, Diby Kadjo

Abstract:

Cocoa beans (Theobroma cocoa L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize the product is still hard to perform. Automatic fermenters are not rentable for most of producers. Heat (T>45°C) and acidity produced during the fermentation by microbiology activity of yeasts and bacteria are enabling the emergence of potential flavor and taste of future chocolate. In this study, a cylindro-rotative fermenter (FCR-V1) has been built and coconut fibers were used in its structure to confine heat. An axis of rotation (360°) has been integrated to facilitate the turning and homogenization of beans in the fermenter. This axis permits to put fermenter in a vertical position during the anaerobic alcoholic phase of fermentation, and horizontally during acetic phase to take advantage of the mid height filling. For circulation of air flow during turning in acetic phase, two woven rattan with grid have been made, one for the top and second for the bottom of the fermenter. In order to reduce air flow during acetic phase, two airtight covers are put on each grid cover. The efficiency of the turning by this kind of rotation, coupled with homogenization of the temperature, caused by the horizontal position in the acetic phase of the fermenter, contribute to having a good proportion of well-fermented beans (83.23%). In addition, beans’pH values ranged between 4.5 and 5.5. These values are ideal for enzymatic activity in the production of the aromatic compounds inside beans. The regularity of mass loss during all fermentation makes it possible to predict the drying surface corresponding to the amount being fermented.

Keywords: Cocoa fermentation, fermenter, microbial activity, temperature, turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
39 Physical and Electrical Characterization of ZnO Thin Films Prepared by Sol-Gel Method

Authors: Mohammad Reza Tabatabaei, Ali Vaseghi Ardekani

Abstract:

In this paper, Zinc Oxide (ZnO) thin films are deposited on glass substrate by sol-gel method. The ZnO thin films with well defined orientation were acquired by spin coating of zinc acetate dehydrate monoethanolamine (MEA), de-ionized water and isopropanol alcohol. These films were pre-heated at 275°C for 10 min and then annealed at 350°C, 450°C and 550°C for 80 min. The effect of annealing temperature and different thickness on structure and surface morphology of the thin films were verified by Atomic Force Microscopy (AFM). It was found that there was a significant effect of annealing temperature on the structural parameters of the films such as roughness exponent, fractal dimension and interface width. Thin films also were characterizied by X-ray Diffractometery (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure and show the c-axis grain orientation. Increasing annealing temperature increased the crystallite size and the c-axis orientation of the film after 450°C. Also In this study, ZnO thin films in different thickness have been prepared by sol-gel method on the glass substrate at room temperature. The thicknesses of films are 100, 150 and 250 nm. Using fractal analysis, morphological characteristics of surface films thickness in amorphous state were investigated. The results show that with increasing thickness, surface roughness (RMS) and lateral correlation length (ξ) are decreased. Also, the roughness exponent (α) and growth exponent (β) were determined to be 0.74±0.02 and 0.11±0.02, respectively.

Keywords: ZnO, Thin film, Fractal analysis, Morphology, AFM, annealing temperature, different thickness, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3442
38 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: Equal Channel Angular Extrusion, Severe Plastic Deformation, Copper, Mechanical Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
37 Methodology for Bioenergy Potential and Assessment for Energy Deployment in Rural Vhembe District Areas

Authors: Clement M. Matasane, Mohamed T. Kahn

Abstract:

Biomass resources such as animal waste, agricultural and acro-industrial residues, forestry and woodland waste, and industrial and municipal solid wastes provide alternative means to utilize its untapped potential for biomass/biofuel renewable energy systems. In addition, crop residues (i.e., grain, starch, and energy crops) are commonly available in the district and play an essential role in community farming activities. The remote sensing technology (mappings) and geographic information systems tool will be used to determine the biomass potential in the Vhembe District Municipality. The detailed assessment, estimation, and modeling in quantifying their distribution, abundance, and quality yield an effective and efficient use of their potential. This paper aims to examine the potential and prospects of deploying bioenergy systems in small or micro-systems in the district for community use and applications. This deployment of the biofuels/biomass systems will help communities for sustainable energy supply from their traditional energy use into innovative and suitable methods that improve their livelihood. The study demonstrates the potential applications of Geographical Information Systems (GIS) in spatial mapping analysis, evaluation, modeling, and decision support for easy access to renewable energy systems.

Keywords: Agricultural crops, waste materials, biomass potentials, bioenergy potentials, GIS mappings, environmental data, renewable energy deployment, sustainable energy supply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228
36 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: Cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
35 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW

Authors: A. Nait Salah, M. Kaddami

Abstract:

This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.

Keywords: ASME, base metal, filler metal, micro-hardness test, submerged arc welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
34 A Failure Criterion for Unsupported Boreholes in Poorly Cemented Granular Formations

Authors: Sam S. Hashemi

Abstract:

The breakage of bonding between sand particles and their dislodgment from the borehole wall are among the main factors resulting in a borehole failure in poorly cemented granular formations. The grain debonding usually precedes the borehole failure and it can be considered as a sign that the onset of the borehole collapse is imminent. Detecting the bonding breakage point and introducing an appropriate failure criterion will play an important role in borehole stability analysis. To study the influence of different factors on the initiation of sand bonding breakage at the borehole wall, a series of laboratory tests was designed and conducted on poorly cemented sand samples. The total absorbed strain energy per volume of material up to the point of the observed particle debonding was computed. The results indicated that the particle bonding breakage point at the borehole wall was reached both before and after the peak strength of the thick-walled hollow cylinder specimens depending on the stress path and cement content. Three different cement contents and two borehole sizes were investigated to study the influence of the bonding strength and scale on the particle dislodgment. Test results showed that the stress path has a significant influence on the onset of the sand bonding breakage. It was shown that for various stress paths, there is a near linear relationship between the absorbed energy and the normal effective mean stress.

Keywords: Borehole stability, experimental studies, total strain energy, poorly cemented sands, particle bonding breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
33 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy

Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah

Abstract:

This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.

Keywords: Friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
32 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase

Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia

Abstract:

Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.

Keywords: Bismuth-based superconductor, critical current density, phase formation, Sr(BO2)2 doping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689
31 Use of Chlorophyll Meters to Assess In-Season Wheat Nitrogen Fertilizer Requirements in the Southern San Joaquin Valley

Authors: Brian H. Marsh

Abstract:

Nitrogen fertilizer is the most used and often the most mismanaged nutrient input. Nitrogen management has tremendous implications on crop productivity, quality and environmental stewardship. Sufficient nitrogen is needed to optimum yield and quality. Soil and in-season plant tissue testing for nitrogen status are a time consuming and expensive process. Real time sensing of plant nitrogen status can be a useful tool in managing nitrogen inputs. The objectives of this project were to assess the reliability of remotely sensed non-destructive plant nitrogen measurements compared to wet chemistry data from sampled plant tissue, develop in-season nitrogen recommendations based on remotely sensed data for improved nitrogen use efficiency and assess the potential for determining yield and quality from remotely sensed data. Very good correlations were observed between early-season remotely sensed crop nitrogen status and plant nitrogen concentrations and subsequent in-season fertilizer recommendations. The transmittance/absorbance type meters gave the most accurate readings. Early in-season fertilizer recommendation would be to apply 40 kg nitrogen per hectare plus 15 kg nitrogen per hectare for each unit difference measured with the SPAD meter between the crop and reference area or 25 kg plus 13 kg per hectare for each unit difference measured with the CCM 200. Once the crop was sufficiently fertilized meter readings became inconclusive and were of no benefit for determining nitrogen status, silage yield and quality and grain yield and protein.

Keywords: Wheat, nitrogen fertilization, chlorophyll meter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
30 Thermal Treatments and Characteristics Study On Unalloyed Structural (AISI 1140) Steel

Authors: S. S. Sharma, P. R. Prabhu, Rajagopal Chadaga

Abstract:

The main emphasis of metallurgists has been to process the materials to obtain the balanced mechanical properties for the given application. One of the processing routes to alter the properties is heat treatment. Nearly 90% of the structural applications are related to the medium carbon an alloyed steels and hence are regarded as structural steels. The major requirement in the conventional steel is to improve workability, toughness, hardness and grain refinement. In this view, it is proposed to study the mechanical and tribological properties of unalloyed structural (AISI 1140) steel with different thermal (heat) treatments like annealing, normalizing, tempering and hardening and compared with as brought (cold worked) specimen. All heat treatments are carried out in atmospheric condition. Hardening treatment improves hardness of the material, a marginal decrease in hardness value with improved ductility is observed in tempering. Annealing and normalizing improve ductility of the specimen. Normalized specimen shows ultimate ductility. Hardened specimen shows highest wear resistance in the initial period of slide wear where as above 25KM of sliding distance, as brought steel dominates the hardened specimen. Both mild and severe wear regions are observed. Microstructural analysis shows the existence of pearlitic structure in normalized specimen, lath martensitic structure in hardened, pearlitic, ferritic structure in annealed specimen.

Keywords: Annealing, hardness, heat treatment, normalizing, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
29 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites

Authors: S. Ghanaraja, Subrata Ray, S. K. Nath

Abstract:

Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.

Keywords: Aluminum, alumina, nanoparticle reinforced composites, porosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
28 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels

Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery

Abstract:

The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.

Keywords: Interstitial free, miniaturized tensile specimen, plastic anisotropy, rapid alloy prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
27 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study

Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes

Abstract:

The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.

Keywords: Coal ash, gold tailings, paste, surface disposal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
26 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorrain, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: Cruciform specimen, multiaxial fatigue, Nickelbased superalloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
25 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel

Authors: M. I. Equbal, R.K. Ohdar, B. Singh, P. Talukdar

Abstract:

Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Microalloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.

Keywords: Cooling rate, Hot forging, Micro-alloyed, Ring compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3625
24 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: M. Ferguson, T. Konkova, I. Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: Additive manufacturing, direct energy deposition, electron back-scatter diffraction, finite element analysis, Inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420