Search results for: earth-to-air heat exchangers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1281

Search results for: earth-to-air heat exchangers

1251 Effects of Operating Conditions on Calcium Carbonate Fouling in a Plate Heat Exchanger

Authors: K. Pana-Suppamassadu, P. Jeimrittiwong, P. Narataruksa, S. Tungkamani

Abstract:

The aim of this work is to investigate on the internalflow patterns in a plate heat exchanger channel, which affect the rate of sedimentation fouling on the heat transfer surface of the plate heat exchanger. The research methodologies were the computer simulation using Computational Fluid Dynamics (CFD) and the experimental works. COMSOL MULTIPHYSICS™ Version 3.3 was used to simulate the velocity flow fields to verify the low and high flow regions. The results from the CFD technique were then compared with the images obtained from the experiments in which the fouling test rig was set up with a singlechannel plate heat exchanger to monitor the fouling of calcium carbonate. Two parameters were varied i.e., the crossing angle of the two plate: 55/55, 10/10, and 55/10 degree, and the fluid flow rate at the inlet: 0.0566, 0.1132 and 0.1698 m/s. The type of plate “GX-12" (the surface area 0.12 m2, the depth 2.9 mm, the width of fluid flow 215 mm and the thickness of stainless plate of 0.5 mm) was used in this study. The results indicated that the velocity distribution for the case of 55/55 degree seems to be very well organized when compared with the others. Also, an increase in the inlet velocity resulted in the reduction of fouling rate on the surface of plate heat exchangers.

Keywords: Computational fluid dynamics, crossing angles, finite element method, plate heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470
1250 Numerical Simulation of Heat Exchanger Area of R410A-R23 and R404A-R508B Cascade Refrigeration System at Various Evaporating and Condensing Temperature

Authors: A. D. Parekh, P. R. Tailor

Abstract:

Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by reduction in the evaporator temperature. The single stage vapour compression refrigeration system is limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of main three heat exchangers namely condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser (HTS), cascade condenser and evaporator (LTS) for both systems have been compared and the effect of condensing and evaporating temperature on heat-transfer area for both systems have been studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condensing temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporating temperature (Te).

Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
1249 Heat transfer Characteristics of Fin-and-Tube heat Exchanger under Condensing Conditions

Authors: Abdenour Bourabaa, Mohamed Saighi, Said El Metenani

Abstract:

In the present work an investigation of the effects of the air frontal velocity, relative humidity and dry air temperature on the heat transfer characteristics of plain finned tube evaporator has been conducted. Using an appropriate correlation for the air side heat transfer coefficient the temperature distribution along the fin surface was calculated using a dimensionless temperature distribution. For a constant relative humidity and bulb temperature, it is found that the temperature distribution decreases with increasing air frontal velocity. Apparently, it is attributed to the condensate water film flowing over the fin surface. When dry air temperature and face velocity are being kept constant, the temperature distribution decreases with the increase of inlet relative humidity. An increase in the inlet relative humidity is accompanied by a higher amount of moisture on the fin surface. This results in a higher amount of latent heat transfer which involves higher fin surface temperature. For the influence of dry air temperature, the results here show an increase in the dimensionless temperature parameter with a decrease in bulb temperature. Increasing bulb temperature leads to higher amount of sensible and latent heat transfer when other conditions remain constant.

Keywords: Fin efficiency, heat and mass transfer, dehumidifying conditions, finned tube heat exchangers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
1248 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

Authors: Rama Bhargava, Mania Goyal

Abstract:

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

Keywords: Viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3233
1247 Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer

Authors: S. Iijima, K. Nakayama, D. Kuchar, M. Kubota, H. Matsuda

Abstract:

Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.

Keywords: Regenerative Heat Exchange, Self Combustion, Toluene, Volatile Organic Compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
1246 Performance Evaluation of Extruded-Type Heat Sinks Used in Inverter for Solar Power Generation

Authors: Jeong Hyun Kim, Gyo Woo Lee

Abstract:

In this study, heat release performances of the three extruded-type heat sinks can be used in inverter for solar power generation were evaluated. Numbers of fins in the heat sinks (namely E-38, E-47 and E-76) were 38, 47 and 76, respectively. Heat transfer areas of them were 1.8, 1.9 and 2.8m2. The heat release performances of E-38, E-47 and E-76 heat sinks were measured as 79.6, 81.6 and 83.2%, respectively. The results of heat release performance show that the larger amount of heat transfer area the higher heat release rate. While on the other, in this experiment, variations of mass flow rates caused by different cross sectional areas of the three heat sinks may not be the major parameter of the heat release. Despite the 47.4% increment of heat transfer area of E-76 heat sink than that of E-47 one, its heat release rate was higher by only 2.0%; this suggests that its heat transfer area need to be optimized.

Keywords: Solar Inverter, Heat Sink, Forced Convection, Heat Transfer, Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
1245 Numerical Study of Heat Release of the Symmetrically Arranged Extruded-Type Heat Sinks

Authors: Man Young Kim, Gyo Woo Lee

Abstract:

In this numerical study, we want to present the design of highly efficient extruded-type heat sink. The symmetrically arranged extruded-type heat sinks are used instead of a single extruded or swaged-type heat sink. In this parametric study, the maximum temperatures, the base temperatures between heaters, and the heat release rates were investigated with respect to the arrangements of heat sources, air flow rates, and amounts of heat input. Based on the results we believe that the use of both side of heat sink is to be much better for release the heat than the use of single side. Also from the results, it is believed that the symmetric arrangement of heat sources is recommended to achieve a higher heat transfer from the heat sink.

Keywords: Heat Sink, Forced Convection, Heat Transfer, Performance Evaluation, Symmetrically Arranged.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
1244 Effect of Flow Holes on Heat Release Performance of Extruded-type Heat Sink

Authors: Jung Hyun Kim, Gyo Woo Lee

Abstract:

In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5oC by the holes.

Keywords: Heat Sink, Forced Convection, Heat Transfer, Performance Evaluation, Flow Holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
1243 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio

Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot

Abstract:

In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.

Keywords: Aspect Ratio, Channel, Jet, Mixed convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
1242 Heat Release Performance of Swaged- and Extruded-Type Heat Sink Used in Industrial Inverter

Authors: Jung Hyun Kim, Min Ye Ku, Gyo Woo Lee

Abstract:

In this experiment, we investigated the performance of two types of heat sink, swaged- and extruded-type, used in the inverter of industrial electricity generator. The swaged-type heat sink has 62 fins, and the extruded-type has 38 fins having the same dimension as that of the swaged-type. But the extruded-type heat sink maintains the same heat transfer area by the laterally waved surface which has 1 mm in radius. As a result, the swaged- and extruded-type heat sinks released 71% and 64% of the heat incoming to the heat sink, respectively. The other incoming heat were naturally convected and radiated to the ambient. In spite of 40% decrease in number of fins, the heat release performance of the extruded-type heat sink was lowered only 7% than that of the swaged-type. We believe that, this shows the increment of effective heat transfer area by the laterally waved surface of fins and the better heat transfer property of the extruded-type heat sink.

Keywords: Solar Inverter, Heat Sink, Forced Convection, Heat Transfer, Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1241 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126 , the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: Downhole Heat Exchangers, Geothermal Power Generation, Organic Rankine Cycle, Refrigerants, Working Fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
1240 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

In the present time, energy crises is considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which heat recovery system generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.

Keywords: Solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
1239 Heat Transfer Analysis of Rectangular Channel Plate Heat Sink

Authors: Zhang Lei, Liu Min, Liu Botao

Abstract:

In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.

Keywords: heat transfer, heat sink, numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
1238 Developing a Conjugate Heat Transfer Solver

Authors: Mansour A. Al Qubeissi

Abstract:

The current paper presents a numerical approach in solving the conjugate heat transfer problems. A heat conduction code is coupled internally with a computational fluid dynamics solver for developing a couple conjugate heat transfer solver. Methodology of treating non-matching meshes at interface has also been proposed. The validation results of 1D and 2D cases for the developed conjugate heat transfer code have shown close agreement with the solutions given by analysis.

Keywords: Computational Fluid Dynamics, Conjugate Heat transfer, Heat Conduction, Heat Transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1237 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions

Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel

Abstract:

A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.

Keywords: Automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
1236 Development of Autonomous Cable Inspection Robot for Nuclear Power Plant

Authors: Jae-Kyung LEE, Byung-Hak CHO, Kyung-Nam Jang, Sun-Chul Jung, Ki-Yong OH, Joon-Young PARK, Jong-Seog Kim

Abstract:

The cables in a nuclear power plant are designed to be used for about 40 years in safe operation environment. However, the heat and radiation in the nuclear power plant causes the rapid performance deterioration of cables in nuclear vessels and heat exchangers, which requires cable lifetime estimation. The most accurate method of estimating the cable lifetime is to evaluate the cables in a laboratory. However, removing cables while the plant is operating is not allowed because of its safety and cost. In this paper, a robot system to estimate the cable lifetime in nuclear power plants is developed and tested. The developed robot system can calculate a modulus value to estimate the cable lifetime even when the nuclear power plant is in operation.

Keywords: Autonomous robot, Cable Inspection, Indenter, Nuclear Power Plant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
1235 A Detailed Review on Pin Fin Heat Sink

Authors: Vedulla Manoj Kumar, B. Nageswara Rao, Sk. Farooq

Abstract:

Heat sinks are being considered in many advanced heat transfer applications including automotive and stationary fuel cells as well as cooling of electronic devices. However, there are innumerable fundamental issues in the fields of heat transfer and fluid mechanics perspectives which remains unresolved. The present review emphasizes on the progress of research in the field of pin fin heat sinks, while understanding the fluid dynamics and heat transfer characteristics with a detailed and sophisticated prediction of the temperature distribution, high heat flux removal and by minimizing thermal resistance. Lot of research work carried out across the globe to address this challenge and trying to come up with an economically viable and user friendly solution. The high activities for future pin fin heat sinks research and development to meet the current issue is recorded in this article.

Keywords: Heat sinks, heat transfer, heat flux, thermal resistance, electronic devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
1234 Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB

Authors: Tapano Kumar Hotta, S P Venkateshan

Abstract:

Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.

Keywords: Discrete heat source, mixed convection, natural convection, vertical channel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
1233 Using Hybrid System of Ground Heat Exchanger and Evaporative Cooler in Arid Weather Condition

Authors: Vahid Khalajzadeh, Ghassem Heidarinejad

Abstract:

In this paper, the feasibility study of using a hybrid system of ground heat exchangers (GHE) and direct evaporative cooling system in arid weather condition has been performed. The model is applied for Yazd and Kerman, two cities with arid weather condition in Iran. The system composed of three sections: Ground- Coupled-Circuit (GCC), Direct Evaporative Cooler (DEC) and Cooling Coil Unite (CCU). The GCC provides the necessary precooling for DEC. The GCC includes four vertical GHE which are designed in series configuration. Simulation results show that hybridization of GCC and DEC could provide comfort condition whereas DEC alone did not. Based on the results the cooling effectiveness of a hybrid system is more than unity. Thus, this novel hybrid system could decrease the air temperature below the ambient wet-bulb temperature. This environmentally clean and energy efficient system can be considered as an alternative to the mechanical vapor compression systems.

Keywords: Computational Fluid Dynamics (CFD), Cooling CoilUnit (CCU), Direct Evaporative Cooling (DEC), Ground CoupledCircuit (GCC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
1232 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture

Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani

Abstract:

The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated.  Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.

Keywords: Carbon capture and storage, oxy-combustion, netpower cycle, oxyturbine power cycles, heat exchanger design, supercritical carbon dioxide, pinch point analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
1231 Numerical Calculation of Heat Transfer in Water Heater

Authors: Michal Spilacek, Martin Lisy, Marek Balas, Zdenek Skala

Abstract:

This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. That result shows that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.

Keywords: Heat exchanger, heat transfer rate, numerical calculation, thermal images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786
1230 Development of Thermal Model by Performance Verification of Heat Pipe Subsystem for Electronic Cooling under Space Environment

Authors: MK Lee, JS Hong, SM Sin, HU Oh

Abstract:

Heat pipes are used to control the thermal problem for electronic cooling. It is especially difficult to dissipate heat to a heat sink in an environment in space compared to earth. For solving this problem, in this study, the Poiseuille (Po) number, which is the main measure of the performance of a heat pipe, is studied by CFD; then, the heat pipe performance is verified with experimental results. A heat pipe is then fabricated for a spatial environment, and an in-house code is developed. Further, a heat pipe subsystem, which consists of a heat pipe, MLI (Multi Layer Insulator), SSM (Second Surface Mirror), and radiator, is tested and correlated with the TMM (Thermal Mathematical Model) through a commercial code. The correlation results satisfy the 3K requirement, and the generated thermal model is verified for application to a spatial environment.

Keywords: CFD, Heat pipe, Radiator, Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1229 Heat Exchanger Design

Authors: Su Thet Mon Than, Khin Aung Lin, Mi Sandar Mon

Abstract:

This paper is intended to assist anyone with some general technical experience, but perhaps limited specific knowledge of heat transfer equipment. A characteristic of heat exchanger design is the procedure of specifying a design, heat transfer area and pressure drops and checking whether the assumed design satisfies all requirements or not. The purpose of this paper is how to design the oil cooler (heat exchanger) especially for shell-and-tube heat exchanger which is the majority type of liquid-to-liquid heat exchanger. General design considerations and design procedure are also illustrated in this paper and a flow diagram is provided as an aid of design procedure. In design calculation, the MatLAB and AutoCAD software are used. Fundamental heat transfer concepts and complex relationships involved in such exchanger are also presented in this paper. The primary aim of this design is to obtain a high heat transfer rate without exceeding the allowable pressure drop. This computer program is highly useful to design the shell-and-tube type heat exchanger and to modify existing deign.

Keywords: Shell-and-Tube Heat Exchanger, MatLAB and AutoCAD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7880
1228 Ionanofluids as Novel Fluids for Advanced Heat Transfer Applications

Authors: S. M. Sohel Murshed, C. A. Nieto de Castro, M. J. V. Lourenço, J. França, A. P. C. Ribeiro, S. I. C.Vieira, C. S. Queirós

Abstract:

Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermophysical properties compared to their base ionic liquids. This paper deals with the findings of thermal conductivity and specific heat capacity of ionanofluids as a function of a temperature and concentration of nanotubes. Simulation results using ionanofluids as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices. Results on thermal conductivity and heat capacity of ionanofluids as well as the estimation of heat transfer areas for ionanofluids and ionic liquids in a model shell and tube heat exchanger reveal that ionanofluids possess superior thermal conductivity and heat capacity and require considerably less heat transfer areas as compared to those of their base ionic liquids. This novel class of fluids shows great potential for advanced heat transfer applications.

Keywords: Heat transfer, Ionanofluids, Ionic liquids, Nanotubes, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
1227 Failure Analysis of Methanol Evaporator

Authors: D. Sufi Ahmadi, B. Bagheri

Abstract:

Thermal water hammer is a special type of water hammer which rarely occurs in heat exchangers. In biphasic fluids, if steam bubbles are surrounded by condensate, regarding lower condensate temperature than steam, they will suddenly collapse. As a result, the vacuum caused by an extreme change in volume lead to movement of the condensates in all directions and their collision the force produced by this collision leads to a severe stress in the pipe wall. This phenomenon is a special type of water hammer. According to fluid mechanics, this phenomenon is a particular type of transient flows during which abrupt change of fluid leads to sudden pressure change inside the tube. In this paper, the mechanism of abrupt failure of 80 tubes of 481 tubes of a methanol heat exchanger is discussed. Initially, due to excessive temperature differences between heat transfer fluids and simultaneous failure of 80 tubes, thermal shock was presupposed as the reason of failure. Deeper investigation on cross-section of failed tubes showed that failure was, ductile type of failure, so the first hypothesis was rejected. Further analysis and more accurate experiments revealed that failure of tubes caused by thermal water hammer. Finally, the causes of thermal water hammer and various solutions to avoid such mechanism are discussed.

Keywords: Thermal water hammer, Brittle Failure, Condensate thermal shock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626
1226 Improvement in Mechanical Behavior of Expulsion with Heat treated Thermite Welded Rail Steel

Authors: S.Rajanna, H.K.Shivanand, Akash Deep B.N

Abstract:

Thermite welding is mainly used in world. The reasons why the thermite welding method is widely used are that the equipment has good mobility and total working time of that is shorter than that of the enclosed arc welding method on site. Moreover, the operating skill, which required for thermite welding, is less than that of for enclosed arc welding. In the present research work, heat treatment and combined 'expulsion and heat treatment' techniques were used improve the mechanical properties and weldment structure. The specimens were cut in the transverse direction from expulsion with Heat treated and heat treated Thermite Welded rails. Specimens were prepared according to AWS standard and subjected to tensile test, Impact test and hardness and their results were tabulated. Microstructural analysis was carried out with the help of SEM. Then analyze to effect of heat treated and 'expulsion with heat treated' with the properties of their thermite welded rails. Compare the mechanical and microstructural properties of thermite welded rails between heat expulsion with heat treated and heat treated. Mechanical and microstructural response expulsion with heat treated thermite welded rail is higher value as compared to heat treatment.

Keywords: Expulsion, Heat treatment, Mechanical, Weldment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
1225 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Z. Veselý, M. Honner, J. Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. Complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: Computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
1224 Enhancement of Impingement Heat Transfer on a Flat Plate with Ribs

Authors: M. Kito, M. Takezaki, T. Shakouchi, K. Tsujimoto, T. Ando

Abstract:

Impinging jets are widely used in industrial cooling systems for their high heat transfer characteristics at stagnation points. However, the heat transfer characteristics are low in the downstream direction. In order to improve the heat transfer coefficient further downstream, investigations introducing ribs on jet-cooled flat plates have been conducted. Most studies regarding the heat-transfer enhancement using a rib-roughened wall have dealt with the rib pitch. In this paper, we focused on the rib spacing and demonstrated that the rib spacing must be more than 6 times the nozzle width to improve heat transfer at Reynolds number Re=5.0×103 because it is necessary to have enough space to allow reattachment of flow behind the first rib.

Keywords: Forced convection, heat transfer, impinging jet cooling, rib roughened wall

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
1223 An Experimental Study of the Effect of Coil Step on Heat Transfer Coefficient in Shell- Side of Shell-and-Coil Heat Exchanger

Authors: Mofid Gorji Bandpy, Hasan Sajjadi

Abstract:

In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers and various dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil and the effects of coil pitch on shell-side heat transfer coefficient of the heat exchanger were studied. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that with the increase of coil pitch, shell-side heat transfer coefficient is increased.

Keywords: Coil pitch, Shell-and-Coil heat exchanger, Mixed convection, Experimental investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
1222 Streamwise Vorticity in the Wake of a Sliding Bubble

Authors: R. O’Reilly Meehan, D. B. Murray

Abstract:

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876