
 

 

  
Abstract—In the present time, energy crises is considered a 

severe problem across the world. For the protection of global 
environment and maintain ecological balance, energy saving is 
considered one of the most vital issues from the view point of fuel 
consumption. As the industrial sectors everywhere continue efforts to 
improve their energy efficiency, recovering waste heat losses 
provides an attractive opportunity for an emission free and less costly 
energy resource. In the other hand the using of solar energy has 
become more insistent particularly after the high gross of prices and 
running off the conventional energy sources. Therefore, it is essential 
that we should endeavor for waste heat recovery as well as solar 
energy by making significant and concrete efforts. For these reasons 
this investigation is carried out to study and analyze the performance 
of a power plant working by a combined cycle in which heat recovery 
system generator (HRSG) gets its energy from the waste heat of a gas 
turbine unit. Evaluation of the performance of the plant is based on 
different thermal efficiencies of the main components in addition to 
the second law analysis considering the exergy destructions for the 
whole components. The contribution factors including the solar as 
well as the wasted energy are considered in the calculations. The final 
results have shown that there is significant exergy destruction in solar 
concentrator and the combustion chamber of the gas turbine unit. 
Other components such as compressor, gas turbine, steam turbine and 
heat exchangers having insignificant exergy destruction. Also, solar 
energy can contribute by about 27% of the input energy to the plant 
while the energy lost with exhaust gases can contribute by about 64% 
at maximum cases.  
 

Keywords—Solar energy, environment, efficiency, waste heat, 
steam generator, performance, exergy destruction.  

I. INTRODUCTION 
NDUSTRIAL waste heat refers to energy that is generated 
in industrial processes without being put to practical use. 

Sources of waste heat include hot combustion gases 
discharged to the atmosphere, heated products exiting 
industrial processes, and heat transfer from hot equipment 
surfaces. The exact quantity of industrial waste heat is poorly 
quantified, but various studies have estimated that as much as 
20 to 50% of industrial energy consumption is ultimately 
discharged as waste heat. While some waste heat losses from 
industrial processes are inevitable, facilities can reduce these 
losses by improving equipment efficiency or installing waste 
heat recovery technologies. Waste heat recovery entails 
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capturing and reusing the waste heat in industrial processes for 
heating or for generating mechanical or electrical work. 
Example uses for waste heat include generating electricity, 
preheating combustion air, preheating furnace loads, 
absorption cooling, and space heating. The recovered heat can 
replace fossil energy that would have otherwise been used in 
the combustion process. Such methods for recovering waste 
heat can help facilities significantly reduce their fossil fuel 
consumption, as well as reduce associated operating costs and 
pollutant emissions [1].  

In the other hand solar energy has experienced phenomenal 
growth in recent years due to both technological 
improvements resulting in cost reductions and government 
policies supportive of renewable energy development and 
utilization. While the cost of solar energy has declined rapidly 
in the recent past, it still remains much higher than the cost of 
conventional energy technologies. Like other renewable 
energy technologies, solar energy benefits from fiscal and 
regulatory incentives and mandates, including tax credits and 
exemptions, feed-in-tariff, preferential interest rates, 
renewable portfolio standards and voluntary green power 
programs in many countries. Despite the huge technical 
potential, development and large-scale, market-driven 
deployment of solar energy technologies world-wide still has 
to overcome a number of technical and financial barriers [2].  

Integrating the solar energy with the waste heat to augment 
the performance of the thermal power plants has a great 
interest in the matter of producing electrical energy, which is 
under the category of Integrated Solar Combined Cycle 
(ISCC) technology, or hybrid solar-gas. This solution 
represents an optimum sustainable and efficient combination 
by integrating a solar field (parabolic trough collectors or a 
tower and heliostats) with a combined cycle plant, which 
combines gas and steam cycles together, by depending on the 
waste heat coming out of gas turbine unit.  

The hybridization of technologies confers great advantages 
to the combined solution: the solar portion operates 
continuously as designed including when the available 
radiation fluctuates. The efficiency of the conventional 
combined cycle plant is improved and fuel consumption is 
reduced, therefore reducing the CO2 emissions.  

In comparison with the existing Rankin cycle plants, an 
ISCC plant offers three principal advantages. First, solar 
energy can be converted to electric energy at a higher 
efficiency. Second, the incremental unit cost for the larger 
steam turbine in the integrated plant is less than the overall 
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( )0.4 0.670.163c a ab c wT T D D h ET−= +           (7)                                                         
 
where   

( ) ( )2 3 1 3 /100 .ab ab ab c aET T T Tε ε⎡ ⎤= − + + −⎣ ⎦          (8) 

 
From the above equations we notice that there is no need 

for a numerical method as in the other analytical methods, just 
we start with an estimate value for the cover temperature T1, 
and then we find the overall loss coefficient. Finally to get 
sure of the value of T1 we have to determine the useful energy 
gain from (1), after finding the value of the removal factor FR 
and efficiency factor F' as follows: 

 
o

L
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U

′ =             (9) 

  
where Uo is the overall heat transfer coefficient and is given 
by: 
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In this equation hfi represents the heat transfer coefficient of 

the heating fluid inlet to the tube. Then T1 can be obtained 
from the following equation: 
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/ 1u a

fi R
r
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Q AT T FA U F
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= + −        (11) 

 

 
After that we check the solution by repeating the 

calculations with this new value of T1 until the value of the 
useful energy get fixed. Finally the value of the heating fluid 
output temperature can be determined from the following 
equation:  
 

                          pff

u
fifo Cm

Q
TT +=                                   (12) 

B. The Gas Turbine Unit 
A gas turbine is an engine which allows the conversion of 

the energy of fuel in some form of useful power, such as 
mechanical power. In the ISCC cycle the main purpose of 
analyzing the gas turbine unit is to evaluate the waste energy 
within the exhaust gases. Estimating the exhaust gases mass 
flow and its temperature is the main goal of the GT 
mathematical solution. The procedure to achieve this goal is to 
evaluate the compressor, the combustion chamber and turbine 
performances. 

The thermal analysis of the gas turbine unit is carried out by 
considering air with variable specific heat. Thus, to find the 
isentropic processes through the compressor or the turbine the 
relative pressure (Pr) is taken in consideration, which has a 
relationship with the entropy as follows [9]: 

                                (13)   
 
where   

      (14)                   
 

In the entropy equation the constants a1 to a7 are 
temperature coefficients according to the type of the gas. As 
shown in these equations the temperature is the main variable, 
this means that if temperature is known we can find Pr and 
vice versa. So in the compressor the relative pressure (Pr2) at 
the end of the compression process is function of the 
compressor pressure ratio (CPR) as follows: 
 

                                                               (15) 
   

Then, the exit temperature of the compressor as a function 
of Pr2 is calculated where it is used to calculate the enthalpy 
of air with variable specific heats from the following relation 
[9]: 

 
2 43

3 5 62 4
1 2 3 4 5T

a T a T aa T a Th R T a
T

⎛ ⎞
= + + + + +⎜ ⎟

⎝ ⎠
   (16) 

 
Applying combustion equation for one mole of octane (as a 

fuel used in the present case) with dry air yields: 
 

8 18 2 2 2. 8 9 . 12.5C H X D A CO H O X D A O+ → + + −   (17)                  
 
where X is the total number of moles of the dry air supplied 
per one mole of fuel. Accordingly, for adiabatically 
combustion, the products temperature is calculated by trial and 
error. The products are expanded in the gas turbine giving the 
output power from the turbine.  

C. The Steam Turbine Unit 
The steam turbine is an engine in which a steam flow, at 

high pressure and temperature, is expanded transforming its 
energy into kinetic energy, which is as well converted into 
work by moving the rotational parts of the turbine. At the inlet 
conditions to the steam turbine, the state of the steam of the 
point (i) is superheated. Accordingly, the state of the steam is 
given by [10]: 
  

(sup.) ( ) ,sup. sup.( )i i g ph h C T= +    
 

,sup.
p

p

C
C R

R
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                     (19)     

 

5 2

8 3 11 4

4.132 0.001559 0.5315 10

0.4209 10 0.1284 10

pC
T T

R

T T

−

− −

⎛ ⎞
= − + ×⎜ ⎟

⎝ ⎠
− × + ×

  (20) 

 
where R is the gas constant of steam and taken as 0.462 
KJ/Kg. K. 
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         (21)                                                                  

                                                                                                                                                                           
where hfg is the latent heat of the steam and given as a function 
of temperature by [ 11]. 
  

2501.897 2.07 1.192 10 1.586 10  (22) 
             

Hence, for an isentropic condition in the steam turbine, the 
exit point (i+1) of steam is usually in wet region where the 
dryness fraction x can be calculated and is used to calculate 
the enthalpy of the steam. 

D. Heat Recovery Steam Generator 
The heat recovery steam generator (HRSG) is an important 

subsystem of a combined power plant which uses the energy 
from the exhaust gases of the turbine for transferring heat to 
water and generating steam at high temperature and pressure. 
The exhaust gases leave the gas turbine at approximately 
ambient pressure and at very high temperature (500oC to 
600oC). This energy is used for the HRSG to produce steam. 

Although there are many configurations of HRSG, most of 
them are divided in the same number of sections as the steam 
turbine. There is one section for high pressure (HP), low 
pressure (LP) and sometimes for an intermediate pressure (IP).  

A HRSG is composed basically of individual heat 
exchangers which exchange the energy from the exhaust gases 
of the turbine with the water/steam of the Rankin cycle. 

The water enters first in the economizer for being pre-
heated and then goes through the evaporator where the steam 
is generated at constant pressure and temperature. Finally the 
steam is superheated in the superheater. After that, the 
superheated steam enters the turbine where it is expanded and 
the power is generated. 

The majority of the heat is transferred by convection and for 
increasing the heat surface finned tubes are used. As the heat 
transfer on the waterside is much higher than on the exhaust 
gas side, due to the bigger temperature difference between gas 
and water than between gas and steam, the fins are used on the 
gas side to rise the heat transfer.

 
 

IV. EXERGY ANALYSIS OF THE ISCC COMPONENTS 
Exergy is a measure of the quality or grade of energy and it 

can be destroyed in the thermal system. The second law states 
that part of the exergy entering a thermal system with fuel, 
electricity, flowing streams of matter, and so on is destroyed 
within the system due to irreversibilities. The second law of 
thermodynamics uses an exergy balance for the analysis and 
the design of thermal systems [12]. 

Exergy not only can be destroyed by irreversibilities but 
also can be transferred to a system or from a system, as in 
losses accompanying heat transfers to the surroundings. 
Improved resource utilization can be realized by reducing 
exergy destruction within a system and/or losses.  

An objective in exergy analysis is to identify sites where 
exergy destructions and losses occur and rank order them for 

significance. This allows attention to be centered on the 
aspects of system operation that offer the greatest 
opportunities for improvement [13].  

The exergy rate balance for a control volume can be written 
in the following general form: 
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i e
dfeefii

cv
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PWQ
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T

dt
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1  (23) 

 
The general equation of exergy destruction for a steady 

flow system can be expressed by [14]: 
                  

, ,

out in
o gen o e e i i

b out b in

Q QEXD T S T m s m s
T T

⎛ ⎞
= = + − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑    (24)  

     
where Sgen is the entropy generation , Tb,out and Tb,in are the 
temperatures of the system boundary where heat is transferred 
out and into the system, respectively. 

Based on the developed equation, the entropy generation for 
each component of the solar combined cycle is given below. 

A. An Adiabatic Air Compressor & Gas Turbine        

( ) ( ln ln )e e
gen e i p

i i

T PS m s s m C R
T P

= − = −             (25)                   

 
where m is the mass flow rate and represents air mass (ma) in 
the compressor, while it is mixture of the fuel and air (mf + 
ma) in the gas turbine, respectively. 

B.  An Adiabatic Combustion Chamber                                                     

gen prod react P P r rS S S N S N S= − = −∑ ∑      (26) 
 
where the air and product gases are at a total pressure 
(pressure after compressor) and the entropies in (26) are to be 
calculated at the partial pressure of each components of the 
mixture. 

C. An Adiabatic Steam Turbine                                     

( )gen s e iS m s s= −         (27)                   
 
where ms is the steam mass flow rate, whereas se and si are the 
ACTUAL entropy at exit and inlet sections of the steam 
turbine, respectively. 

D. Condenser of the Rankin Cycle  

( )cw
gen s e i

o

QS m s s
T

= − +                               (28)                   

 
where Qcw is the rate of heat rejected to the cooling water per 
Kg of steam and the sink temperature is assumed to be To. 

E.  An Adiabatic Heat Exchanger 
Including steam generator and solar- Rankin heat 

exchanger:               
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• Maximum exergy destruction can be occurred in the 
combustion chamber i.e. 39% of the input energy to gas 
turbine while the exergy destruction in the concentrating 
collector is 33% from the incident solar radiation. 
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