Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids
Authors: Chih-Jer Lin, Chun-Ying Lee, Chiang-Ho Cheng, Geng-Fung Chen
Abstract:
This paper investigates experimental studies on vibration suppression for a cantilever beam using an Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a class of smart materials that can undergo significant reversible changes immediately in its rheological and mechanical properties under the influence of an applied electric field. Firstly, an ER sandwich beam is fabricated by inserting a starch-based ERF into a hollow composite beam. At the same time, experimental investigations are focused on the frequency response of the ERF sandwich beam. Second, the ERF sandwich beam is attached to a cantilever beam to become as a shock absorber. Finally, a fuzzy semi-active vibration control is designed to suppress the vibration of the cantilever beam via the ERF sandwich shock absorber. To check the consistency of the proposed fuzzy controller, the real-time implementation validated the performance of the controller.
Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, fuzzy control, Real-time control.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087135
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231References:
[1] W. M. Winslow, “Induced Fibration of Suspensions,” Journal of Applied
Physics, vol. 20, 1949, pp.1137-1140.
[2] R. S. Stanway, J. L. Sproston, A. K. El Wahed, “Applications of
electro-rheological fluids in vibration control: A survey,” Smart Mater.
Struct., vol. 5, 1996, pp.464-482.
[3] M. V. Gandhi, B. S. Thompson, “A new generation of innovative
ultra-advanced intelligent composite materials featuring
electro-rheological fluids: an experimental investigation,” J. Compos.
Mater. , vol. 23, 1989, pp.1232-1254.
[4] S. B. Choi, Y. K. Park, M. S. Suh, “Elastodynamic characteristics of
hollow cantilever beams containing an electro-rheological fluid:
Experimental results,” AIAA J., vol. 32, 1992, pp.438-440.
[5] M. Yalcintas, J. Pl Coulter, D. L. Don, “Structural modeling and optimal
control of electro-rheological material based adaptive beams,” Smart
Mater. Struct., vol. 4, 1995, pp.207-214..
[6] S. B. Choi, Y. K. Park, C. C. Cheong, “Active vibration control of
intelligent composite laminate structures incorporating an
electro-rheological fluid,” J. Intell. Mater. Syst. Structures, vol. 7, 1996,
pp.411-419.
[7] C. D. Rahn, S. Joshi, “Modeling and control of an electro-rheological
sandwich beam,” J. Vib. Acoust., vol. 120, 1998, pp.221-227.
[8] K. X. Wei, G. Meng, W. M. Zhang, “Vibration characteristics of a
rotating beam filled with electrorheological fluid,” J. Intell. Mater. Syst.
Structures, vol. 18, 2007, pp.1165-1173.
[9] H. Frahm,“Device for damping vibrations of bodies,”USpatent no.
989958, 1911, http://patft.uspto.gov/netahtml/PTO/srchnum.htm.
[10] M. J. Brennan, “Some recent developments in adaptivetuned vibration
absorbers/neutralizers,” Shock and Vibration, vol. 13, 2006, pp. 531–543.
[11] L. Kela, P. Vahaoja, “Recent studies of adaptivetuned vibration
absorbers/neutralizers,”AppliedMechanicsReviews, vol. 62, 2009, pp.
060801-1–060801-9.
[12] A. K. Ghorbani-Tanha, M. Rahimian, A. Noorzad, “A novel semiactive
variable stiffness device and its applicationin a new semiactive tuned
vibration absorber,” J. Engineering Mechanics,vol. 137, 2011, pp.
390–399.
[13] C. Y. Lee, C. C. Chen, T. H. Yang, C. J. Lin, “Structural vibration control
using a tunable hybrid shape memory material vibration absorber,” J.
Intell. Mater. Syst. Structures, vol. 23, 2012, pp.1725-1734.