Probing Anomalous *WW* and *WWZ* Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

I. Turk Cakir, A. Senol, A. T. Tasci, O. Cakir

Abstract—We study the anomalous $WW\gamma$ and WWZ couplings by calculating total cross sections of two processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous ($\Delta\kappa\gamma$, $\lambda\gamma$) and ($\Delta\kappaz$, λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101, 0.065) and (0.320, 0.002) at an integrated luminosity of L_{int}=100 fb⁻¹.

Keywords—Anomalous Couplings, Future Circular Collider, Large Hadron electron Collider, *W*-boson and *Z*-boson.

I. INTRODUCTION

THE $SU(2) \times U(1)$ gauge symmetry of the Standard Model (SM) results in the triple gauge boson interactions. A precise determination of the trilinear gauge boson couplings is necessary to test the validity of the SM and the presence of new physics up to a high energy scale. Since the tree-level couplings of the $WW\gamma$ and WWZ vertices are fixed by the SM, any deviations from their SM values would indicate the new physics beyond the SM. The photoproduction of the W and Z bosons through triple gauge boson interactions in the leptonhadron colliders HERA+LC and in the Large Hadron electron Collider (LHeC) has been studied theoretically in the papers [1]-[3] and [4], respectively. An investigation of the potential of the LHeC to probe anomalous $WW\gamma$ coupling has been presented in [5], [6].

The present bounds on the anomalous $WW\gamma$ and WWZ couplings are provided by the LEP [7], Tevatron [8], [9] and LHC [10], [11] experiments.

Recently, the ATLAS [10], [11] and CMS [12], [13] Collaborations have established updated constraints on the anomalous WW γ and *WWZ* couplings from the $\gamma W(Z)$ and W^+W^- production processes. The results from ATLAS and

I. Turk Cakir is with the Istanbul Aydin University, Applications and Research Center for Advanced Studies 34295, Sefakoy, Istanbul, Turkey (phone: +90-5333815529; fax: +90-212-4441428/22206; e-mail: ilkay.turkcakir @gmail.com).

A. Senol and A. T. Tasci are with Kastamonu University, Department of Physics, 37100, Kuzeykent, Kastamonu, Turkey (e-mail: asenol@kastamonu.edu.tr, atasci@kastamonu.edu.tr).

O. Cakir is with Istanbul Aydin University, Applications and Research Center for Advanced Studies 34295, Sefakoy, Istanbul, Turkey and Ankara University, Department of Physics, 06100, Tandogan, Ankara, Turkey (e-mail: ocakir@science.ankara.edu.tr).

CMS experiments based on two-parameter analysis of the anomalous couplings are given in Table I.

In this work, we investigate the $ep \rightarrow v_e q\gamma X$ and $ep \rightarrow v_e qZX$ processes with anomalous $WW\gamma$ and WWZ couplings at the high energy electron-proton collider LHeC and FCC-ep (Future Circular Collider-electron proton) collider [14]. LHeC is considered to be realised by accelerating electrons 140 GeV and colliding them with the 7 TeV protons. We take into account the energies of the FCC-ep as 80 GeV for electron beam and 50 TeV for proton beam. We also consider the possibility of the electron beam polarization at LHeC [15] and FCC-ep which extends the sensitivity to anomalous triple gauge boson couplings.

 $TABLE \ I$ The Available 95% C.L. Two-Parameter Bounds on Anomalous Couplings (AKY, λ Y) and (AKZ, λ Z) from the Atlas and CMS

	EXPERIMENTS				
	ATLAS	CMS	ATLAS (upper- lower)	CMS (upper- lower)	
Δκγ	-0.420,0.480	-0.250, 0.250	0.900	0.500	
λγ	-0.068,0.062	-0.050, 0.042	0.130	0.092	
ΔκΖ	-0.045,0.045	-0.160, 0.180	0.090	0.340	
λz	-0.063,0.063	-0.055, 0.055	0.126	0.110	

II. ANOMALOUS COUPLINGS

The *WW* γ and *WWZ* interaction vertices are described by an effective Lagrangian with the coupling constants $g_{WW\gamma}$ and g_{WWZ} and dimensionless parameter pairs ($\Delta\kappa\gamma,\lambda\gamma$) and ($\Delta\kappa z$, λz)

$$\begin{split} & L = igww_{\gamma} [g_{1}^{\gamma} (W_{\mu\nu}^{\dagger} W^{\mu} A^{\nu} - W^{\mu\nu} W_{\mu}^{\dagger} A_{\nu}) + \kappa_{\gamma} W_{\mu}^{\dagger} W_{\nu} A^{\mu\nu} + \frac{\lambda_{\gamma}}{m_{W}^{2}} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} A^{\nu\rho}] + \\ & igww_{Z} [g_{1}^{Z} (W_{\mu\nu}^{\dagger} W^{\mu} Z^{\nu} - W^{\mu\nu} W_{\mu}^{\dagger} Z_{\nu}) + \kappa_{Z} W_{\mu}^{\dagger} W_{\nu} Z^{\mu\nu} + \frac{\lambda_{Z}}{m_{W}^{2}} W_{\rho\mu}^{\mu} W_{\nu}^{\mu} Z^{\nu\rho}] \quad (1) \end{split}$$

where $g_{WW\gamma} = g_e = g \sin \theta_W$ and $g_{WWZ} = g \cos \theta_W$. In general these vertices involve six C and P conserving couplings [16]. However, the electromagnetic gauge invariance requires that $g_1^{\gamma} = 1$. The anomalous couplings are defined as $\kappa_V = 1 + \Delta \kappa_V$ where $V=\gamma, Z$ and $g_1^Z = 1 + \Delta g_1^Z$. The $W_{\mu\nu}, Z_{\mu\nu}$ and $A_{\mu\nu}$ are the field strength tensors for the *W*- boson, *Z* - boson and photon, respectively.

The one-loop corrections to the $WW\gamma$ and WWZ vertices within the framework of the SM have been studied in [17]-[19]. These corrections to the $\Delta \kappa_V$ and λ_V have been found to be of the order of 10⁻² and 10⁻³, respectively. The values of the couplings $\kappa_{\gamma} = \kappa_Z = 1$ and $\lambda_{\gamma} = \lambda_Z = 0$ correspond to the case of the SM. Since unitarity restricts the *WW* γ and *WWZ* couplings to their SM values at very high energies, the triple gauge couplings are modified as $\Delta \kappa_V (q^2) = \Delta \kappa_V (0)/(1+q^2/\Lambda^2)^2$ and $\lambda_V (q^2) = \lambda_V (0)/(1+q^2/\Lambda^2)^2$ where $V = \gamma_z Z$. The q^2 is the square of momentum transfer into the process and Λ is the new physics energy scale. The $\Delta \kappa_V (0)$ and $\lambda_V (0)$ are the values of the anomalous couplings at $q^2 = 0$. We assume the values of the anomalous couplings remain approximate constant in the interested energy scale ($\Lambda^2 > q^2$). We take $\Delta \kappa_V$ and λ_V as free parameters in the considered range and find the bounds on these couplings effectively. For the numerical calculations, we have implemented interactions terms in the CalcHEP [20].

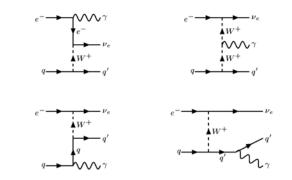
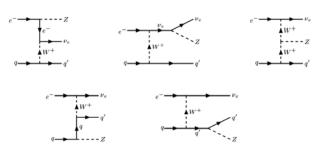
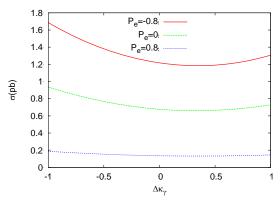
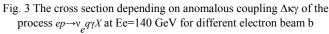


Fig. 1 Representative Feynman diagrams for subprocess $eq \rightarrow v_{\rho} \gamma q'$


Fig. 2 Representative Feynman diagrams for subprocess $eq \rightarrow v_{\rho}Zq$

III. PRODUCTION CROSS SECTIONS FOR LHEC

According to the effective Lagrangian, the anomalous vertices for triple gauge interactions $WW\gamma$ and WWZ are presented in the Feynman graphs as shown in Figs. 1 and 2. In order to calculate the cross sections for the process $ep \rightarrow v_e q\gamma X$ and $ep \rightarrow v_e qZX$, we apply the transverse momentum cut on photon and jet as $p_T^{\gamma} > 50$ GeV, $p_T^{j} > 20$ GeV; missing transverse momentum cut $p_T^{\gamma} > 20$ GeV, pseudorapidity cuts $|\eta_{\gamma,j}| < 3.5$; a cone radius cut between photons and jets $\Delta R_{\gamma,j} > 1.5$. Using these cuts and the parton distribution functions of CTEQ6L [21], the total cross sections of the process $ep \rightarrow v_e q\gamma X$ as a function of anomalous couplings $\Delta \kappa_{\gamma}$ and λ_{γ} for $E_e = 140$ GeV with electron beam polarizations $P_e = \pm 0.8$ and $P_e = 0$ are

presented in Figs. 3 and 4. In Figs. 5 and 6, the total cross sections of the $ep \rightarrow v_e qZX$ process are given for the same energy. It is clear from these figures that the polarization $(P_e=-0.8)$ enhances the cross sections according to the unpolarized case.

polarizations

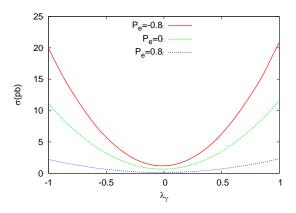


Fig. 4 The cross section depending on anomalous coupling $\lambda \gamma$ of the process $ep \rightarrow v_{e}q\gamma X$ at Ee=140 GeV for different electron beam

polarizations

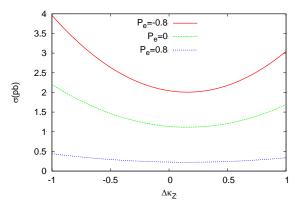


Fig. 5 The cross section depending on anomalous $\Delta \kappa_Z$ coupling of the process $ep \rightarrow v_{\rho} qZX$ for $E_{\rho} = 140 \text{ GeV}$

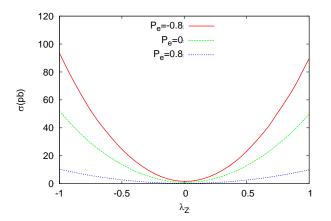


Fig. 6 The cross section depending on anomalous λ_Z coupling of the process $ep \rightarrow v_e qZX$ for E_e =140 GeV

IV. ANALYSIS FOR LHEC

In order to estimate the sensitivity to the anomalous $WW\gamma$ and WWZ couplings, we use the χ^2 function:

$$\chi^{2}(\Delta\kappa_{V},\lambda_{V}) = \left(\frac{\sigma_{SM} - \sigma(\Delta\kappa_{V},\lambda_{V})}{\Delta\sigma_{SM}}\right)^{2}$$
(2)

where $\Delta \sigma_{SM} = \sigma_{SM} \sqrt{\delta_{stat.}^2}$ with $\delta_{stat.} = 1/\sqrt{N_{SM}}$ and $N_{SM} = \sigma_{SM} L$. In our calculations, we consider that two of the couplings ($\Delta \kappa, \lambda$) are assumed to deviate from their SM value. We estimate the sensitivity to the anomalous couplings at 95 C.L. at the LHeC for the integrated luminosities of 10 fb⁻¹ and 100 fb⁻¹. The contour plots of anomalous couplings in $\Delta \kappa_{\gamma} - \lambda_{\gamma}$ plane for the integrated luminosities of 10 fb⁻¹ at electron beam energies $E_e = 140$ GeV are given in Fig. 7. The contour plots of anomalous couplings in $\Delta \kappa_Z - \lambda_Z$ plane for the integrated luminosities of 10 fb⁻¹ at electron beam energies of 10 fb⁻¹ and 100 fb⁻¹ at electron beam energies of 10 fb⁻¹ and 100 fb⁻¹ at electron beam energies of 10 fb⁻¹ and 100 fb⁻¹ at electron beam energies of 10 fb⁻¹ and 100 fb⁻¹ at electron beam energies of 10 fb⁻¹ and 100 fb⁻¹ at electron beam

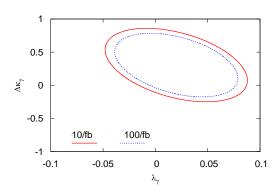


Fig. 7 Two dimensional 95% C.L contour plot anomalous couplings in the $\lambda_{\gamma} - \Delta \kappa_{\gamma}$ plane for the integrated luminosity of 10 fb⁻¹ and 100 fb⁻¹ at electron beam energy $E_e = 140$ GeV with polarization $P_e = -0.8$

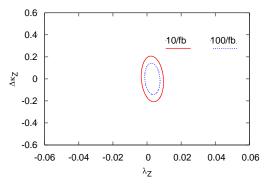


Fig. 8 Two-dimensional 95% C.L contour plot of anomalous couplings in the $\lambda_Z - \Delta \kappa_Z$ plane for the integrated luminosity of 10 fb⁻¹ and 100 fb⁻¹ at electron beam energy E_e =140 GeV with polarization Pe=-0.8

The difference of the upper and lower bounds on the anomalous couplings $\Delta \kappa_V$ and λ_V (where $V=\gamma$, Z) can be written as

$$\delta\Delta\kappa_{V} = \Delta\kappa_{V}^{upper} - \Delta\kappa_{V}^{lower}, \\ \delta\lambda_{V} = \lambda_{V}^{upper} - \lambda_{V}^{lower}$$
(3)

The current limits on anomalous couplings and the difference of the upper and lower bounds for electron beam energies of 140 GeV with integrated luminosities L_{int} =10 fb⁻¹ and 100 fb⁻¹ at LHeC with the unpolarized (polarized) electron beam are given in Table II. We have obtained two-parameter limits on $\delta\Delta\kappa_{\gamma}$ and $\delta\lambda_{\gamma}$ which can be compared to the ATLAS and CMS results. However, the limits on $\delta\lambda_{Z}$ is found to be much more sensitive than the current limits.

 TABLE II

 The 95% C.L. CURRENT LIMITS ON THE ANOMALOUS COUPLINGS AND THE

 DIFFERENCE OF THE UPPER AND LOWER BOUNDS FOR ELECTRON BEAM

 ENERGY OF E_e =140 GEV WITH L_{INT} =100 FB⁻¹ FOR POLARIZED AND

 UNPOLARIZED FLECTRON BEAM

	UNPOLARIZED ELECTRON BEAM							
Pe	Δκγ	δΔκγ	λγ	δλγ				
-0.8	-0.182,0.793	0.975	-0.039, 0.079	0.118				
0	0.192,0.798	0.990	-0.041, 0.081	0.122				
0.8	0.251,0.844	1.095	-0.047, 0.086	0.133				
Pe	ΔκΖ	δΔκΖ	λz	δλz				
-0.8	-0.143,0.142	0.285	-0.001, 0.008	0.009				
0	0.273,0.089	0.362	-0.003, 0.009	0.012				
0.8	0.253,0.215	0.468	-0.004, 0.010	0.014				

V. PRODUCTION CROSS SECTIONS FOR FCC-EP

For calculate the cross sections for the process $ep \rightarrow v_e q\gamma X$ and $ep \rightarrow v_e qZX$, we apply the transverse momentum cut on photon and jet as $p_T^{\gamma} > 20$ GeV, $p_T^{j} > 20$ GeV; missing transverse momentum cut $p_T^{\gamma} > 20$ GeV, pseudorapidity cuts $\eta_{\gamma,j}$ the range of between -5 and 0; Using these cuts and the parton distribution functions of CTEQ6M [14], the total cross sections of the process $ep \rightarrow v\gamma qX$ as a function of anomalous couplings $\Delta \kappa_{\gamma}$ and λ_{γ} for $E_e = 80$ GeV with $(P_e = \pm 0.8)$ and without $(P_e=0)$ electron beam polarization are presented in Figs. 9 and 10. It is clear from these figures that the polarization $(P_e=-0.8)$ enhances the cross sections according to the unpolarized case.

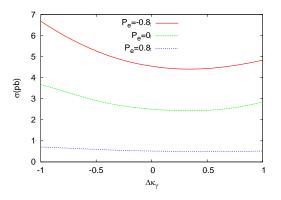


Fig. 9 The cross section depending on anomalous coupling $\Delta \kappa_{\gamma}$ of the process $ep \rightarrow v_e q\gamma X$ at $E_e = 80$ GeV for different electron beam

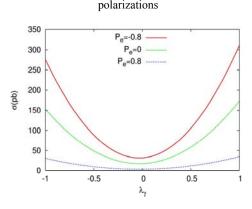


Fig. 10 The cross section depending on anomalous λ_{γ} coupling of the process $ep \rightarrow v_e q\gamma X$ for E_e =80 GeV

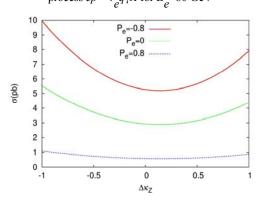


Fig. 11 The cross section depending on anomalous $\Delta \kappa_Z$ coupling of the process $ep \rightarrow v_e qZX$ for E_e =80 GeV

The cross sections depending on anomalous couplings $\Delta \kappa_Z$ and λ_Z of the process $e_P \rightarrow v_e qZX$ for $E_e = 80$ GeV with $P_e = \pm 0.8$ and without $(P_e=0)$ electron beam polarization are presented in Figs. 11 and 12.

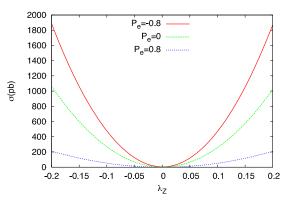


Fig. 12 The cross section depending on anomalous λ_Z coupling of the process $ep \rightarrow v_{\rho} qZX$ for E_{ρ} =80 GeV

VI. ANALYSIS FOR FCC-EP

The contour plots of anomalous couplings in $\Delta \kappa_{\gamma} - \lambda_{\gamma}$ plane for the integrated luminosities of 10 fb⁻¹ and 100 fb⁻¹ at electron beam energies $E_e = 80$ GeV are given in Fig. 13. For the process $e_P \rightarrow v_e qZX$, we make analysis of the signal and backgrounds when Z decays leptonically, $Z \rightarrow l^+ l^-$ where $l = e, \mu$. The contour plots of anomalous couplings in $\Delta \kappa_Z - \lambda_Z$ plane for the integrated luminosities of 10 fb⁻¹ and 100 fb⁻¹ at electron beam energies of $E_e = 80$ GeV are presented in Fig. 14.

The difference of the upper and lower bounds on the anomalous couplings $\Delta \kappa_V$ and λ_V (where $V=\gamma$, Z) can be written as

$$\delta\Delta\kappa_{V} = \Delta\kappa_{V}^{upper} - \Delta\kappa_{V}^{lower}, \\ \delta\lambda_{V} = \lambda_{V}^{upper} - \lambda_{V}^{lower}$$
(4)

The current limits on anomalous couplings and the difference of the upper and lower bounds for electron beam energies of E_e =80 GeV with integrated luminosities 100 fb⁻¹ at FCC-ep with the unpolarized (polarized) electron beam are given in Table III. We have obtained two-parameter limits on $\delta\Delta\kappa_{\gamma}$ and $\delta\lambda_{\gamma}$ which can be compared to the ATLAS and CMS results. However, the current limits on $\delta\lambda_Z$ is found to be much more sensitive at the FCC-ep.

 TABLE III

 The 95% C.L. Current Limits on the Anomalous Couplings and the

 Difference of the Upper and Lower Bounds for Electron Beam

 Energy OF E_e =80 GeV with L_{brt} =100 Fb⁻¹ for Polarized Electron Beam

	E	101		
Pe	Δκγ	δΔκγ	λγ	δλγ
-0.8	-0.100:1.001	1.101	-0.026:0.039	0.0650
Pe	ΔκΖ	δΔκΖ	λz	δλz
-0.8	-0.019:0.301	0.320	-0.0011:0.0012	0.0023

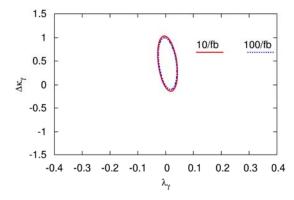


Fig. 13 Two dimensional 95% C.L contour plot anomalous couplings in the $\lambda_{\gamma} - \Delta \kappa_{\gamma}$ plane for the integrated luminosity of 10 fb⁻¹ and 100 fb⁻¹ at electron beam energy $E_e = 80$ GeV with polarization $P_e = -0.8$

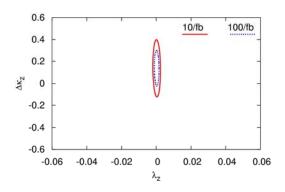


Fig. 14 Two-dimensional 95% C.L contour plot of anomalous couplings in the $\lambda_Z^{-\Delta \kappa_Z}$ plane for the integrated luminosity of 10fb⁻¹

and 100 fb⁻¹ at electron beam energy $E_e = 80$ GeV with polarization

VII. CONCLUSION

The WWy and WWZ anomalous interactions through the processes $ep \rightarrow v_e q \gamma X$ and $ep \rightarrow v_e q Z X$ can be studied independently at the LHeC and FCC-ep. We obtain two-parameter accessible ranges of triple gauge boson anomalous couplings at LHeC and FCC-ep with the polarized electron beam at the energies E_e =140 GeV and E_p =7 TeV, and E_e =80 GeV and E_p =50 TeV, respectively. Our limits compare with the results from two-parameter analysis given by ATLAS and CMS Collaborations [10]-[13]. We find that the sensitivities to anomalous couplings $\Delta \kappa_V (V=\gamma, Z)$ will be of the order of 10⁻¹, which is an order of magnitude larger than the SM loop level sensitivity of 10⁻², however a measurement of these couplings above 10⁻² would offer a possible new physics signal. We

conclude that the anomalous couplings λ_{γ} and λ_{Z} can be well constrained with the sensitivity of the order of 10^{-2} and 10^{-3} at the FCC-ep with polarized electron beam. The LHeC and FCC-ep could give complementary information about anomalous couplings compared to Tevatron and LHC.

ACKNOWLEDGMENT

The work of O.C. is partially supported by State Planning Organisation (DPT) - Ministry of Development under the grant No. DPT2006K-120470. A.S. would like to thank Abant Izzet Baysal University Department of Physics where of part this study was carried out for their hospitality

References

- U. Baur, *et al.*, "Measuring the WWγ Vertex in Single W Production at ep Colliders", Nucl. Phys. B, vol.325, 1989, pp. 253.
- [2] C.S. Kim, et al., "Photoproduction of massive gauge bosons in highenergy electron - proton collisions", Z. Phys. C, vol. 53, 1992, pp. 601-608.
- [3] S. Atag, *et al.*, "Anomalous WW gamma vertex in gamma p collision", Phys. Rev. D, vol. 63, 2001, pp. 033004.
- [4] C. Brenner Mariotto, et al., "Analysis of the photoproduction of massive gauge bosons at the LHeC", Phys. Rev. D, vol. 86, 2012, pp. 033009.
- [5] S. Sudhansu Biswal, *et al.*, "Anomalous Triple Gauge Vertices at the Large Hadron-Electron Collider", arXiv:1405.6056 (hep-ph), 2014, pp. 11.
- [6] I.T. Cakir, et al., "Search for Anomalous WWγ and WWZ couplings with polarized e-beam at the LHeC", Acta. Phys. Pol. B, vol. 45, 2014, pp. 1947-1962.
- [7] S. Schael, et al., ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations, "Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP", Phys. Rept., vol. 532, 2013, pp. 119-244.
- [8] T. Aaltonen, et al., "CDF Collaboration, Measurement of the W+W-Production Cross Section and Search for Anomalous WWγ and WWZ Couplings in pp Collisions", Phys. Rev. Lett., vol. 104, 2010, pp. 201801.
- [9] V.M. Abazov, *et al.*, D0 Collaboration, "Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wγ production in pp⁻ collisions at √s=1.96 TeV", Phys. Lett. B, vol. 718, 2012, pp. 451-459.
- [10] G. Aad, et al., ATLAS Collaboration, "Measurement of W+W– production in pp collisions at √s=7TeV with the ATLAS detector and limits on anomalous WWZ and WWγ couplings", Phys. Rev. D, vol. 87, pp. 112001, 2013. Erratum-ibid. D, vol. 88, 2013, pp. 079906.
- [11] G. Aad, et al., ATLAS Collaboration, "Measurements of Wγ and Zγ production in pp collisions at √s=7TeV with the ATLAS detector at the LHC", Phys. Rev. D, vol. 87, 2013, pp. 112003.
- [12] S. Chatrchyan, *et al.*, CMS Collaboration, "Measurement of the W+W– Cross section in pp Collisions at $\sqrt{s}=7$ TeV and Limits on Anomalous WW γ and WWZ couplings", Eur. Phys. J. C, vol. 73, 2013, pp. 2610.
- [13] S. Chatrchyan, et al., CMS Collaboration, "Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at √s = 7 TeV and limits on anomalous triple gauge boson couplings", Phys. Rev. D, vol. 89, 2014, pp. 092005.
- [14] FCC Collaboration, Future Circular Collider Study Kickoff Meeting, 2014.
- [15] J. L. Abelleira Fernandez, et al., LHeC Study Group Collaboration, "A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector", J. Phys. G, vol. 39, 2012, pp. 075001.
- [16] K. Hagiwara, et al., "Probing the Weak Boson Sector in e+ e--> W+ W", Nucl. Phys. B, vol. 282, 1987, pp. 253.
- [17] E. N. Argyres, *et al.* "One loop corrections to three vector boson vertices in the Standard Model", *Nucl. Phys. B*, vol. 391, 1993, pp. 23.
- [18] P. Kalyniak, et al. "Extracting W boson couplings from the e+ eproduction of four leptons", Phys. Rev. D, vol. 48, 1993, pp. 5081-5092.
- [19] G. Couture, et al. "Anomalous Magnetic and Quadrupole Moments of the W Boson in the Two Higgs Doublet Model", Phys. Rev. D, vol. 36, 1987, pp. 859.
- [20] A. Belyaev, et al., "CalcHEP 3.4 for collider physics within and beyond the Standard Model", Comput. Phys. Commun., vol. 184, 2013, pp. 1729-1769.
- [21] J. Pumplin, et al., "New generation of parton distributions with uncertainties from global QCD analysis", JHEP, vol. 0207, 2002, pp. 012.