Propagation of Cos-Gaussian Beam in Photorefractive Crystal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
Propagation of Cos-Gaussian Beam in Photorefractive Crystal

Authors: A. Keshavarz

Abstract:

A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed.

Keywords: Beam propagation, cos-Gaussian beam, Numerical simulation, Photorefractive crystal.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1110644

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677

References:


[1] L. W. Casperson, A. A. Tovar, “Hermite-sinusoidal-Gaussian beams in complex optical systems”, J. Opt. Soc. Am. A, vol. 15, no. 4, pp. 954– 960, Apr. 1998.
[2] A. Belafhal, M. Ibnchaikh, “Propagation properties of Hermite-cosh- Gaussian laser beams”, Opt. Commun., vol. 186, pp. 269–276, Dec. 2000.
[3] A. A. Tovar, L. W. Casperson, “Production and propagation of Hermite-sinusoidal-Gaussian laser beams”, J. Opt. Soc. Am. A, vol. 15, no. 9, pp. 2425–2432, Sep. 1998.
[4] R. Chen, Y. Ni, A. Chu, “Propagation of a cos-Gaussian beam in a Kerr medium”, Optics & Laser Technology, vol. 43, no. 3, pp. 483–487, Apr. 2011.
[5] I. George, A. Stegman, N. Christodoulides, M. Segeve, “Optical Spatial Soliton: Historical Prespectives”, IEEE J. Selected topics in Quantum Electron, vol. 6, no. 6, pp.1419-1427, Nov-Dec. 2000.
[6] M. Tiemann, T. Halfmann, T. Tschudi, “Photorefractive spatial solitons as waveguiding elements for optical telecommunication”, Opt. Commun., vol. 282, no. 17 pp. 3612–3619, Sep. 2009.
[7] R. W. Boyd, Nonlinear Optics, London: Academic, 1992.
[8] A. Zakery and A. Keshavarz , “Simulation of the incoherent interaction between two bright spatial photorefractive screening solitons in one and two dimensions” J. Phys. D: Appl. Phys. vol. 37, no. 24, pp. 3409-3418, Dec. 2004.
[9] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals: 1. Steady- State”, Ferroelectrics, vol. 22, no. 1, pp. 949-960, 1979.
[10] J. Petter, C. Denz, “Guiding and dividing waves with Photorefractive solitons ”, Opt. Commun., vol. 188, no. 1, pp. 55–61, Feb. 2001.