Search results for: Steady State Creep
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2244

Search results for: Steady State Creep

2094 Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan

Authors: Ahtesham Javaid, Costin S. Bildea

Abstract:

The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.

Keywords: Dehydrogenation and hydrogenation, Reaction coupling, Design and control, Process integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4707
2093 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia

Abstract:

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Keywords: T106A turbine cascade, shear-layer separation, steady and unsteady conditions, turbulence models, OpenFOAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
2092 Thermal Analysis of a Sliding Electric Contact System Using Finite Element Method

Authors: Adrian T. Pleșca

Abstract:

In this paper a three dimensional thermal model of a sliding contact system is proposed for both steady-state or transient conditions. The influence of contact force, electric current and ambient temperature on the temperature distribution, has been investigated. A thermal analysis of the different type of the graphite material of fixed electric contact and its influence on contact system temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Sliding electric contact, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
2091 Stabilization and Observation of Attitude Control Systems for Micro Satellites

Authors: A. Elakkary, A. Echchatbi, N. Elalami

Abstract:

In this paper, we are interested in attitude control of a satellite, which using wheels of reaction, by state feedback. First, we develop a method allowing us to put the control and its integral in the state-feedback form. Then, by using the theorem of Gronwall- Bellman, we put the sufficient conditions so that the nonlinear system modeling the satellite is stabilisable and observed by state feedback.

Keywords: Satellite, attitude control, state feedback, attitude stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
2090 The Role of the State towards Employability of Malaysian PWDs – Myth or Reality?

Authors: Suet Leng Khoo, Tiun Ling Ta, Lay Wah Lee

Abstract:

In this era of globalization, the role of the State in all aspects of development is widely debated. Some scholars contend the 'demise' and diminishing role of the State whilst others claim that the State is still “de facto developmental". Clearly, it is vital to ascertain which of these two contentions are reflective of the role of the State as nations ascend their development trajectories. Based on the findings of this paper, the perception that the Malaysian State plays an active and committed role towards distributing equitable educational opportunities and enhancing employability of Malaysian PWDs is actually a myth and not reality. Thus, in order to fulfill the promise of Vision 2020 to transform Malaysia into a caring and socially-inclusive society; this paper calls for a more interventionist and committed role by the Malaysian State to translate the universal rights of education and employment opportunities for PWDs from mere policy rhetoric into inclusive realities.

Keywords: People with Disabilities, Malaysia, role of State, equal employment opportunities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
2089 Numerical Investigation of Unsteady MHD Flow of Second Order Fluid in a Tube of Elliptical Cross-Section on the Porous Boundary

Authors: S. B. Kulkarni, Hasim A. Chikte, V. Murali Mohan

Abstract:

Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of elliptic cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter, magnetic parameter and elastico-viscosity parameter, which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter, magnetic parameter tends to zero, and porosity tends to infinity. The numerical results were simulated in MATLAB software to analyze the effect of Elastico-viscous parameter, porosity parameter, and magnetic parameter on velocity profile. Boundary conditions were satisfied. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Elliptic cross-section, Magnetic parameter, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
2088 Dynamic Modeling and Simulation of Threephase Small Power Induction Motor

Authors: Nyein Nyein Soe, Thet Thet Han Yee, Soe Sandar Aung

Abstract:

This paper is proposed the dynamic simulation of small power induction motor based on Mathematical modeling. The dynamic simulation is one of the key steps in the validation of the design process of the motor drive systems and it is needed for eliminating inadvertent design mistakes and the resulting error in the prototype construction and testing. This paper demonstrates the simulation of steady-state performance of induction motor by MATLAB Program Three phase 3 hp induction motor is modeled and simulated with SIMULINK model.

Keywords: Squirrel cage induction motor, modeling andsimulation, MATLAB software, torque, speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4484
2087 Newton-Raphson State Estimation Solution Employing Systematically Constructed Jacobian Matrix

Authors: Nursyarizal Mohd Nor, Ramiah Jegatheesan, Perumal Nallagownden

Abstract:

Newton-Raphson State Estimation method using bus admittance matrix remains as an efficient and most popular method to estimate the state variables. Elements of Jacobian matrix are computed from standard expressions which lack physical significance. In this paper, elements of the state estimation Jacobian matrix are obtained considering the power flow measurements in the network elements. These elements are processed one-by-one and the Jacobian matrix H is updated suitably in a simple manner. The constructed Jacobian matrix H is integrated with Weight Least Square method to estimate the state variables. The suggested procedure is successfully tested on IEEE standard systems.

Keywords: State Estimation (SE), Weight Least Square (WLS), Newton-Raphson State Estimation (NRSE), Jacobian matrix H.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
2086 Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator

Authors: Haithem Elderrat, Huw Davies, Emmanuel Brousseau

Abstract:

Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.

Keywords: Anti-vibration devices, dry foam, FFFluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
2085 Dynamic Modeling and Simulation of Industrial Naphta Reforming Reactor

Authors: Gholamreza Zahedi, M. Tarin, M. Biglari

Abstract:

This work investigated the steady state and dynamic simulation of a fixed bed industrial naphtha reforming reactors. The performance of the reactor was investigated using a heterogeneous model. For process simulation, the differential equations are solved using the 4th order Runge-Kutta method .The models were validated against measured process data of an existing naphtha reforming plant. The results of simulation in terms of components yields and temperature of the outlet were in good agreement with empirical data. The simple model displays a useful tool for dynamic simulation, optimization and control of naphtha reforming.

Keywords: Dynamic simulation, fixed bed reactor, modeling, reforming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2921
2084 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: State estimation, control systems, observer systems, unscented Kalman filter, nonlinear vehicle dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537
2083 The Role of the State Budget: An Evaluation of Public Expenditures and Taxes in Turkey

Authors: Erdal Eroğlu, Özhan Çetinkaya

Abstract:

The purpose of this paper is to show how state plays a regulatory role in the relations of distribution by analyzing tax and expenditure in Turkey. This paper has two main arguments. First, state intervenes in economic and social life via budget policies and steers the relations of distribution within the scope of the reproduction of the capital accumulation and legitimacy. Secondly, a great amount of public expenditure benefits capital owners while state gains its tax income mainly from low and middle income groups.

Keywords: Distribution, public expenditure, state budget, taxes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
2082 Predictions and Comparisons of Thermohydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer-Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings (GFBs) are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional (3D) fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: Fluid structure interaction multi-physics simulations, gas foil bearing, oil-free, transient thermohydrodynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 380
2081 Thermal Analysis of the Fuse with Unequal Fuse Links Using Finite Element Method

Authors: Adrian T.Pleşca

Abstract:

In this paper a three dimensional thermal model of high breaking capacity fuse with unequal fuse links is proposed for both steady-state or transient conditions. The influence of ambient temperature and electric current on the temperature distribution inside the fuse, has been investigated. A thermal analysis of the unbalanced distribution of the electric current through the fuse elements and their influence on fuse link temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Electric fuse, fuse links, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
2080 Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.

Keywords: heat generation, cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
2079 Nonlinear Dynamical Characterization of Heart Rate Variability Time Series of Meditation

Authors: B. S. Raghavendra, D. Narayana Dutt

Abstract:

Many recent electrophysiological studies have revealed the importance of investigating meditation state in order to achieve an increased understanding of autonomous control of cardiovascular functions. In this paper, we characterize heart rate variability (HRV) time series acquired during meditation using nonlinear dynamical parameters. We have computed minimum embedding dimension (MED), correlation dimension (CD), largest Lyapunov exponent (LLE), and nonlinearity scores (NLS) from HRV time series of eight Chi and four Kundalini meditation practitioners. The pre-meditation state has been used as a baseline (control) state to compare the estimated parameters. The chaotic nature of HRV during both pre-meditation and meditation is confirmed by MED. The meditation state showed a significant decrease in the value of CD and increase in the value of LLE of HRV, in comparison with premeditation state, indicating a less complex and less predictable nature of HRV. In addition, it was shown that the HRV of meditation state is having highest NLS than pre-meditation state. The study indicated highly nonlinear dynamic nature of cardiac states as revealed by HRV during meditation state, rather considering it as a quiescent state.

Keywords: Correlation dimension, Embedding dimension, Heartrate variability, Largest Lyapunov exponent, Meditation, Nonlinearity score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
2078 Solvatochromic Shift and Estimation of Dipole Moment of Quinine Sulphate Dication

Authors: S. Joshi, D. Pant

Abstract:

Absorption and fluorescence spectra of quinine sulphate (QSD) have been recorded at room temperature in wide range of solvents of different polarities. The ground-state dipole moment of QSD was obtained from quantum mechanical calculations and the excited state dipole moment of QSD was estimated from Bakhshiev-s and Kawski-Chamma-Viallet-s equations by means of solvatochromic shift method. Higher value of dipole moment is observed for excited state as compared to the corresponding ground state value and this is attributed to the more polar excited state of QSD.

Keywords: Dipole moment, Quinine sulphate dication, Solvatochromic shift

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
2077 Discrete Modified Internal Model Control for a nth-order Plant with an Integrator and Dead-time

Authors: Manato Ono, Hiromitsu Ogawa, Naohiro Ban, Yoshihisa Ishida

Abstract:

This paper deals with a design method of a discrete modified Internal Model Control (IMC) for a plant with an integrator and dead time. If there is a load disturbance in the input or output side of the plant, the proposed control system can eliminate the steady-state error caused by it. The disturbance compensator in this method is simple and its order is low regardless of that of a plant. The simulation studies show that the proposed method has superior performance for a load disturbance rejection and robustness.

Keywords: Internal Model Control, Smith Predictor, Dead time, Integrator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
2076 A Design of Fractional-Order PI Controller with Error Compensation

Authors: Mazidah Tajjudin, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

Fractional-order controller was proven to perform better than the integer-order controller. However, the absence of a pole at origin produced marginal error in fractional-order control system. This study demonstrated the enhancement of the fractionalorder PI over the integer-order PI in a steam temperature control. The fractional-order controller was cascaded with an error compensator comprised of a very small zero and a pole at origin to produce a zero steady-state error for the closed-loop system. Some modification on the error compensator was suggested for different order fractional integrator that can improve the overall phase margin.

Keywords: Fractional-order PI, Ziegler-Nichols tuning, Oustaloup's Recursive Approximation, steam temperature control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
2075 A Servo Control System Using the Loop Shaping Design Procedure

Authors: Naohiro Ban, Hiromitsu Ogawa, Manato Ono, Yoshihisa Ishida

Abstract:

This paper describes an expanded system for a servo system design by using the Loop Shaping Design Procedure (LSDP). LSDP is one of the H∞ design procedure. By conducting Loop Shaping with a compensator and robust stabilization to satisfy the index function, we get the feedback controller that makes the control system stable. In this paper, we propose an expanded system for a servo system design and apply to the DC motor. The proposed method performs well in the DC motor positioning control. It has no steady-state error in the disturbance response and it has robust stability.

Keywords: Loop Shaping Design Procedure (LSDP), servosystem, DC motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
2074 Using Finite Element Method for Determination of Poles Number in Optimal Design of Linear Motor

Authors: Abdolamir Nekoubin

Abstract:

One of Effective parameters on the performance of linear induction motors is number of poles which must be selected and optimized to increase power efficiency and motor performance significantly. In this paper a double-sided linear induction motor with different poles number by using MAXWELL3D software is designed and with finite element method is analyzed electromagnetically. Then for dynamic simulation, linear motor by using MATLAB software is simulated. The results show that by adding poles number, system time response is increased and motor after more time reaches to steady state. Also propulsion force of motor is increased.

Keywords: Linear motor, poles number, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
2073 Steady State Simulation and Experimental Study of an Ethane Recovery Unit in an Iranian Natural Gas Refinery

Authors: Arash Esmaeili, Omid Ghabouli

Abstract:

The production and consumption of natural gas is on the rise throughout the world as a result of its wide availability, ease of transportation, use and clean-burning characteristics. The chief use of ethane is in the chemical industry in the production of Ethene (ethylene) by steam cracking. In this simulation, obtained ethane recovery percent based on Gas sub-cooled process (GSP) is 99.9 by mole that is included 32.1% by using de-methanizer column and 67.8% by de-ethanizer tower. The outstanding feature of this process is the novel split-vapor concept that employs to generate reflux for de-methanizer column. Remain amount of ethane in export gas cause rise in gross heating value up to 36.66 MJ/Nm3 in order to use in industrial and household consumptions.

Keywords: Ethane recovery, Hydrocarbon dew point, Simulation, Water dew point

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
2072 Computer-Aided Analysis of Flow in a Rotating Single Disk

Authors: Mohammad Shanbghazani, Vahid Heidarpour, Iraj Mirzaee

Abstract:

In this study a two dimensional axisymmetric, steady state and incompressible laminar flow in a rotating single disk is numerically investigated. The finite volume method is used for solving the momentum equations. The numerical model and results are validated by comparing it to previously reported experimental data for velocities, angles and moment coefficients. It is demonstrated that increasing the axial distance increases the value of axial velocity and vice versa for tangential and total velocities. However, the maximum value of nondimensional radial velocity occurs near the disk wall. It is also found that with increase rotational Reynolds number, moment coefficient decreases.

Keywords: Rotating disk, Laminar flow, Numerical, Momentum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
2071 Hydrodynamic Processes in Bubbly Liquid Flow in Tubes and Nozzles

Authors: Raisa Kh. Bolotnova, Marat N. Galimzianov, Andrey S. Topolnikov, Valeria A. Buzina, Uliana O. Agisheva

Abstract:

The hydrodynamic processes in bubbly liquid flowing in tubes and nozzles are studied theoretically and numerically. The principal regularities of non-stationary processes of boiling liquid outflow are established under conditions of experiments when the depressurization of a tube with high pressure inside occurs. The steady-state solution of bubbly liquid flow in the nozzle of round cross section with high pressure and temperature conditions inside bubbles is studied accounting for phase transition and chemical reactions.

Keywords: bubbly liquid, cavitation, chemical reactions, phase transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
2070 Inconsistency Discovery in Multiple State Diagrams

Authors: Mohammad N. Alanazi, David A. Gustafson

Abstract:

In this article, we introduce a new approach for analyzing UML designs to detect the inconsistencies between multiple state diagrams and sequence diagrams. The Super State Analysis (SSA) identifies the inconsistencies in super states, single step transitions, and sequences. Because SSA considers multiple UML state diagrams, it discovers inconsistencies that cannot be discovered when considering only a single UML state diagram. We have introduced a transition set that captures relationship information that is not specifiable in UML diagrams. The SSA model uses the transition set to link transitions of multiple state diagrams together. The analysis generates three different sets automatically. These sets are compared to the provided sets to detect the inconsistencies. SSA identifies five types of inconsistencies: impossible super states, unreachable super states, illegal transitions, missing transitions, and illegal sequences.

Keywords: Modeling Languages, Object-Oriented Analysis, Sequence Diagrams, Software Models, State Diagrams, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
2069 A Modified Genetic Based Technique for Solving the Power System State Estimation Problem

Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy

Abstract:

Power system state estimation is the process of calculating a reliable estimate of the power system state vector composed of bus voltages' angles and magnitudes from telemetered measurements on the system. This estimate of the state vector provides the description of the system necessary for the operation and security monitoring. Many methods are described in the literature for solving the state estimation problem, the most important of which are the classical weighted least squares method and the nondeterministic genetic based method; however both showed drawbacks. In this paper a modified version of the genetic algorithm power system state estimation is introduced, Sensitivity of the proposed algorithm to genetic operators is discussed, the algorithm is applied to case studies and finally it is compared with the classical weighted least squares method formulation.

Keywords: Genetic algorithms, ill-conditioning, state estimation, weighted least squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
2068 Analysis of a Fluid Behavior in a Rectangular Enclosure under the Effect of Magnetic Field

Authors: Y.Bakhshan, H.Ashoori

Abstract:

In this research, a 2-D computational analysis of steady state free convection in a rectangular enclosure filled with an electrically conducting fluid under Effect of Magnetic Field has been performed. The governing equations (mass, momentum, and energy) are formulated and solved by a finite volume method (FVM) subjected to different boundary conditions. A parametric study has been conducted to consider the influence of Grashof number (Gr), Prantdl number (Pr) and the orientation of magnetic field on the flow and heat transfer characteristics. It is observed that Nusselt number (Nu) and heat flux will increase with increasing Grashof and Prandtl numbers and decreasing the slope of the orientation of magnetic field.

Keywords: Rectangular Cavity, magneto-hydrodynamic, free convection, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
2067 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study

Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari

Abstract:

The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two wellknown scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a casestudy. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means, which allows simulating the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With this model is possible to obtain quite accurate and reliable results that allow identifying effective combinations building-HVAC system. The second step has consisted of using output data obtained as input to the calculation model, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing determining the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while our calculation model provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model for different design options.

Keywords: Energy, Buildings, Systems, Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
2066 A Preliminary Study on Effects of Community Structures on Epidemic Spreading and Detection in Complex Networks

Authors: Yi Yu, Gaoxi Xiao

Abstract:

Community structures widely exist in almost all real-life networks. Extensive researches have been carried out on detecting community structures in complex networks. However, many aspects of how community structures may affect the dynamics and properties of complex networks still remain unclear. In this work, we examine the impacts of community structures on the epidemic spreading and detection in complex networks. Extensive simulation results show that community structures may not help decrease the infection size at steady state, yet they could indeed help slow down the infection spreading. Also, networks with strong community structures may expect to have a smaller average infection size when equipped with a number of sparsely deployed monitors.

Keywords: Complex network, epidemic spreading, infection size, infection monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
2065 On a Discrete-Time GIX/Geo/1/N Queue with Single Working Vacation and Partial Batch Rejection

Authors: Shan Gao

Abstract:

This paper treats a discrete-time finite buffer batch arrival queue with a single working vacation and partial batch rejection in which the inter-arrival and service times are, respectively, arbitrary and geometrically distributed. The queue is analyzed by using the supplementary variable and the imbedded Markov-chain techniques. We obtain steady-state system length distributions at prearrival, arbitrary and outside observer-s observation epochs. We also present probability generation function (p.g.f.) of actual waiting-time distribution in the system and some performance measures.

Keywords: Discrete-time, finite buffer, single working vacation, batch arrival, partial rejection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551