%0 Journal Article
	%A Haithem Elderrat and  Huw Davies and  Emmanuel Brousseau
	%D 2015
	%J International Journal of Aerospace and Mechanical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 104, 2015
	%T Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator
	%U https://publications.waset.org/pdf/10001945
	%V 104
	%X Elastomeric polymer foam has been used widely in
the automotive industry, especially for isolating unwanted vibrations.
Such material is able to absorb unwanted vibration due to its
combination of elastic and viscous properties. However, the ‘creep
effect’, poor stress distribution and susceptibility to high
temperatures are the main disadvantages of such a system.
In this study, improvements in the performance of elastomeric
foam as a vibration isolator were investigated using the concept of
Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the
form of capsule shapes, and is mixed with viscous fluid, while the
mixture is contained in a closed vessel. When the FFFluid isolator is
affected by vibrations, energy is absorbed, due to the elastic strain of
the foam. As the foam is compressed, there is also movement of the
fluid, which contributes to further energy absorption as the fluid
shears. Also, and dependent on the design adopted, the packaging
could also attenuate vibration through energy absorption via friction
and/or elastic strain.
The present study focuses on the advantages of the FFFluid
concept over the dry polymeric foam in the role of vibration isolation.
This comparative study between the performance of dry foam and the
FFFluid was made according to experimental procedures. The paper
concludes by evaluating the performance of the FFFluid isolator in
the suspension system of a light vehicle. One outcome of this
research is that the FFFluid may preferable over elastomer isolators
in certain applications, as it enables a reduction in the effects of high
temperatures and of ‘creep effects’, thereby increasing the reliability
and load distribution. The stiffness coefficient of the system has
increased about 60% by using an FFFluid sample. The technology
represented by the FFFluid is therefore considered by this research
suitable for application in the suspension system of a light vehicle.
	%P 1472 - 1477