Search results for: SPU – Signal Processing Unit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3146

Search results for: SPU – Signal Processing Unit

3146 Electronic System Design for Respiratory Signal Processing

Authors: C. Matiz C., N. Olarte L., A. Rubiano F.

Abstract:

This paper presents the design related to the electronic system design of the respiratory signal, including phases for processing, followed by the transmission and reception of this signal and finally display. The processing of this signal is added to the ECG and temperature sign, put up last year. Under this scheme is proposed that in future also be conditioned blood pressure signal under the same final printed circuit and worked.

Keywords: Conditioning, Respiratory Signal, Storage, Teleconsultation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
3145 A Review in Advanced Digital Signal Processing Systems

Authors: Roza Dastres, Mohsen Soori

Abstract:

Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.

Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
3144 A Novel Method for Blood Glucose Measurement by Noninvasive Technique Using Laser

Authors: V.Ashok, A.Nirmalkumar, N.Jeyashanthi

Abstract:

A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on atomic gas (He-Ne) laser operating at 632.8nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.

Keywords: Anisotropy factor, Blood glucose, Diabetes Mellitus, Noninvasive method, Photo detectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3292
3143 Enhanced Gram-Schmidt Process for Improving the Stability in Signal and Image Processing

Authors: Mario Mastriani, Marcelo Naiouf

Abstract:

The Gram-Schmidt Process (GSP) is used to convert a non-orthogonal basis (a set of linearly independent vectors) into an orthonormal basis (a set of orthogonal, unit-length vectors). The process consists of taking each vector and then subtracting the elements in common with the previous vectors. This paper introduces an Enhanced version of the Gram-Schmidt Process (EGSP) with inverse, which is useful for signal and image processing applications.

Keywords: Digital filters, digital signal and image processing, Gram-Schmidt Process, orthonormalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2882
3142 Array Signal Processing: DOA Estimation for Missing Sensors

Authors: Lalita Gupta, R. P. Singh

Abstract:

Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.

Keywords: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3017
3141 Stochastic Resonance in Nonlinear Signal Detection

Authors: Youguo Wang, Lenan Wu

Abstract:

Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.

Keywords: Probability of detection error, signal detection, stochastic resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
3140 Signal Driven Sampling and Filtering a Promising Approach for Time Varying Signals Processing

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

The mobile systems are powered by batteries. Reducing the system power consumption is a key to increase its autonomy. It is known that mostly the systems are dealing with time varying signals. Thus, we aim to achieve power efficiency by smartly adapting the system processing activity in accordance with the input signal local characteristics. It is done by completely rethinking the processing chain, by adopting signal driven sampling and processing. In this context, a signal driven filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by analysing the input signal local variations. Thus, it correlates the processing activity with the signal variations. It leads towards a drastic computational gain of the proposed technique compared to the classical one.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Rate Filtering, Computational Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
3139 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: Antenna array, signal detection, ToA, AoA estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
3138 Design of Medical Information Storage System – ECG Signal

Authors: A. Rubiano F, N. Olarte, D. Lara

Abstract:

This paper presents the design, implementation and results related to the storage system of medical information associated to the ECG (Electrocardiography) signal. The system includes the signal acquisition modules, the preprocessing and signal processing, followed by a module of transmission and reception of the signal, along with the storage and web display system of the medical platform. The tests were initially performed with this signal, with the purpose to include more biosignal under the same system in the future.

Keywords: Acquisition, ECG Signal, Storage, Web Platform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
3137 Pulsed Multi-Layered Image Filtering: A VLSI Implementation

Authors: Christian Mayr, Holger Eisenreich, Stephan Henker, René Schüffny

Abstract:

Image convolution similar to the receptive fields found in mammalian visual pathways has long been used in conventional image processing in the form of Gabor masks. However, no VLSI implementation of parallel, multi-layered pulsed processing has been brought forward which would emulate this property. We present a technical realization of such a pulsed image processing scheme. The discussed IC also serves as a general testbed for VLSI-based pulsed information processing, which is of interest especially with regard to the robustness of representing an analog signal in the phase or duration of a pulsed, quasi-digital signal, as well as the possibility of direct digital manipulation of such an analog signal. The network connectivity and processing properties are reconfigurable so as to allow adaptation to various processing tasks.

Keywords: Neural image processing, pulse computation application, pulsed Gabor convolution, VLSI pulse routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
3136 EEG Signal Processing Methods to Differentiate Mental States

Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon

Abstract:

EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.

Keywords: EEG, focus, mental state, outlier, signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
3135 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: KLMS, online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
3134 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: Graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
3133 Design and Fabrication of a Low Cost Heart Monitor using Reflectance Photoplethysmogram

Authors: Nur Ilyani Ramli, Mansour Youseffi, Peter Widdop

Abstract:

This paper presents a low cost design of heart beat monitoring device using reflectance mode PhotoPlethysmography (PPG). PPG is known for its simple construction, ease of use and cost effectiveness and can provide information about the changes in cardiac activity as well as aid in earlier non-invasive diagnostics. The proposed device is divided into three phases. First is the detection of pulses through the fingertip. The signal is then passed to the signal processing unit for the purpose of amplification, filtering and digitizing. Finally the heart rate is calculated and displayed on the computer using parallel port interface. The paper is concluded with prototyping of the device followed by verification procedure of the heartbeat signal obtained in laboratory setting.

Keywords: Reflectance mode PPG, Heart beat detection, Circuitdesign, PCB design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4560
3132 AC Signals Estimation from Irregular Samples

Authors: Predrag B. Petrović

Abstract:

The paper deals with the estimation of amplitude and phase of an analogue multi-harmonic band-limited signal from irregularly spaced sampling values. To this end, assuming the signal fundamental frequency is known in advance (i.e., estimated at an independent stage), a complexity-reduced algorithm for signal reconstruction in time domain is proposed. The reduction in complexity is achieved owing to completely new analytical and summarized expressions that enable a quick estimation at a low numerical error. The proposed algorithm for the calculation of the unknown parameters requires O((2M+1)2) flops, while the straightforward solution of the obtained equations takes O((2M+1)3) flops (M is the number of the harmonic components). It is applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The proposed method of processing can be used for precise RMS measurements (for power and energy) of a periodic signal based on the presented signal reconstruction. The paper investigates the errors related to the signal parameter estimation, and there is a computer simulation that demonstrates the accuracy of these algorithms.

Keywords: Band-limited signals, Fourier coefficient estimation, analytical solutions, signal reconstruction, time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
3131 64 bit Computer Architectures for Space Applications – A study

Authors: Niveditha Domse, Kris Kumar, K. N. Balasubramanya Murthy

Abstract:

The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.

Keywords: RISC MicroProcessor, RPC – RISC Processor Core, PBX – Processor to Block Interface part of the Interconnection Network, BPX – Block to Processor Interface part of the Interconnection Network, FPU – Floating Point Unit, SPU – Signal Processing Unit, WB – Wishbone Interface, CTU – Clock and Test Unit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
3130 A New Approach to Signal Processing for DC-Electromagnetic Flowmeters

Authors: Michael Schukat

Abstract:

Electromagnetic flowmeters with DC excitation are used for a wide range of fluid measurement tasks, but are rarely found in dosing applications with short measurement cycles due to the achievable accuracy. This paper will identify a number of factors that influence the accuracy of this sensor type when used for short-term measurements. Based on these results a new signal-processing algorithm will be described that overcomes the identified problems to some extend. This new method allows principally a higher accuracy of electromagnetic flowmeters with DC excitation than traditional methods.

Keywords: Electromagnetic Flowmeter, Kalman Filter, ShortMeasurement Cycles, Signal Estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
3129 Algorithm of Measurement of Noise Signal Power in the Presence of Narrowband Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and narrowband interference is considered using functional transformations of the input mix in the postdetection processing channel. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: Noise signal, continuous narrowband interference, signal power, spectrum width, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
3128 Wavelet-Based Data Compression Technique for Wireless Sensor Networks

Authors: P. Kumsawat, N. Pimpru, K. Attakitmongcol, A.Srikaew

Abstract:

In this paper, we proposed an efficient data compression strategy exploiting the multi-resolution characteristic of the wavelet transform. We have developed a sensor node called “Smart Sensor Node; SSN". The main goals of the SSN design are lightweight, minimal power consumption, modular design and robust circuitry. The SSN is made up of four basic components which are a sensing unit, a processing unit, a transceiver unit and a power unit. FiOStd evaluation board is chosen as the main controller of the SSN for its low costs and high performance. The software coding of the implementation was done using Simulink model and MATLAB programming language. The experimental results show that the proposed data compression technique yields recover signal with good quality. This technique can be applied to compress the collected data to reduce the data communication as well as the energy consumption of the sensor and so the lifetime of sensor node can be extended.

Keywords: Wireless sensor network, wavelet transform, data compression, ZigBee, skipped high-pass sub-band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
3127 Wireless Based System for Continuous Electrocardiography Monitoring during Surgery

Authors: K. Bensafia, A. Mansour, G. Le Maillot, B. Clement, O. Reynet, P. Ariès, S. Haddab

Abstract:

This paper presents a system designed for wireless acquisition, the recording of electrocardiogram (ECG) signals and the monitoring of the heart’s health during surgery. This wireless recording system allows us to visualize and monitor the state of the heart’s health during a surgery, even if the patient is moved from the operating theater to post anesthesia care unit. The acquired signal is transmitted via a Bluetooth unit to a PC where the data are displayed, stored and processed. To test the reliability of our system, a comparison between ECG signals processed by a conventional ECG monitoring system (Datex-Ohmeda) and by our wireless system is made. The comparison is based on the shape of the ECG signal, the duration of the QRS complex, the P and T waves, as well as the position of the ST segments with respect to the isoelectric line. The proposed system is presented and discussed. The results have confirmed that the use of Bluetooth during surgery does not affect the devices used and vice versa. Pre- and post-processing steps are briefly discussed. Experimental results are also provided.

Keywords: Electrocardiography, monitoring, surgery, wireless system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
3126 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array

Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk

Abstract:

In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.

Keywords: Antenna pattern, array, signal processing, spatial resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069
3125 Optimal Data Compression and Filtering: The Case of Infinite Signal Sets

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

We present a theory for optimal filtering of infinite sets of random signals. There are several new distinctive features of the proposed approach. First, we provide a single optimal filter for processing any signal from a given infinite signal set. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
3124 Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation

Authors: Dejan Stantic, Jun Jo

Abstract:

ECG contains very important clinical information about the cardiac activities of the heart. Often the ECG signal needs to be captured for a long period of time in order to identify abnormalities in certain situations. Such signal apart of a large volume often is characterised by low quality due to the noise and other influences. In order to extract features in the ECG signal with time-varying characteristics at first need to be preprocessed with the best parameters. Also, it is useful to identify specific parts of the long lasting signal which have certain abnormalities and to direct the practitioner to those parts of the signal. In this work we present a method based on wavelet transform, standard deviation and variable threshold which achieves 100% accuracy in identifying the ECG signal peaks and heartbeat as well as identifying the standard deviation, providing a quick reference to abnormalities.

Keywords: Electrocardiogram-ECG, Arrhythmia, Signal Processing, Wavelet Transform, Standard Deviation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2907
3123 A Real-Time Signal Processing Technique for MIDI Generation

Authors: Farshad Arvin, Shyamala Doraisamy

Abstract:

This paper presents a new hardware interface using a microcontroller which processes audio music signals to standard MIDI data. A technique for processing music signals by extracting note parameters from music signals is described. An algorithm to convert the voice samples for real-time processing without complex calculations is proposed. A high frequency microcontroller as the main processor is deployed to execute the outlined algorithm. The MIDI data generated is transmitted using the EIA-232 protocol. The analyses of data generated show the feasibility of using microcontrollers for real-time MIDI generation hardware interface.

Keywords: Signal processing, MIDI, Microcontroller, EIA-232.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
3122 Temporal Signal Processing by Inference Bayesian Approach for Detection of Abrupt Variation of Statistical Characteristics of Noisy Signals

Authors: Farhad Asadi, Hossein Sadati

Abstract:

In fields such as neuroscience and especially in cognition modeling of mental processes, uncertainty processing in temporal zone of signal is vital. In this paper, Bayesian online inferences in estimation of change-points location in signal are constructed. This method separated the observed signal into independent series and studies the change and variation of the regime of data locally with related statistical characteristics. We give conditions on simulations of the method when the data characteristics of signals vary, and provide empirical evidence to show the performance of method. It is verified that correlation between series around the change point location and its characteristics such as Signal to Noise Ratios and mean value of signal has important factor on fluctuating in finding proper location of change point. And one of the main contributions of this study is related to representing of these influences of signal statistical characteristics for finding abrupt variation in signal. There are two different structures for simulations which in first case one abrupt change in temporal section of signal is considered with variable position and secondly multiple variations are considered. Finally, influence of statistical characteristic for changing the location of change point is explained in details in simulation results with different artificial signals.

Keywords: Time series, fluctuation in statistical characteristics, optimal learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 560
3121 Design and Fabrication of a Miniature Railway Vehicle

Authors: Max Ti-Kuang Hou, Hui-Mei Shen, Chiang-Ni Lu, I-Jen Hsu

Abstract:

We present design, fabrication, and characterization of a small (12 mm × 12 mm × 8 mm) movable railway vehicle for sensor carrying. The miniature railway vehicle (MRV) was mainly composed of a vibrational structure and three legs. A railway was designed and fabricated to power and guide the MRV. It also transmits the sensed data from the MRV to the signal processing unit. The MRV with legs on the railway was moving due to its high-frequency vibration. A model was derived to describe the motion. Besides, FEM simulations were performed to design the legs. Then, the MRV and the railway were fabricated by precision machining. Finally, an infrared sensor was carried and tested. The result shows that the MRV without loading was moving along the railway and its maximum speed was 12.2 mm/s. Moreover, the testing signal was sensed by the MRV.

Keywords: Locomotion, Micro-Robot, Miniature Railway Vehicle, Stick-Slip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
3120 Control Signal from EOG Analysis and Its Application

Authors: Myoung Ro Kim, Gilwon Yoon

Abstract:

A game using electro-oculography (EOG) as control signal was introduced in this study. Various EOG signals are generated by eye movements. Even though EOG is a quite complex type of signal, distinct and separable EOG signals could be classified from horizontal and vertical, left and right eye movements. Proper signal processing was incorporated since EOG signal has very small amplitude in the order of micro volts and contains noises influenced by external conditions. Locations of the electrodes were set to be above and below as well as left and right positions of the eyes. Four control signals of up, down, left and right were generated. A microcontroller processed signals in order to simulate a DDR game. A LCD display showed arrows falling down with four different head directions. This game may be used as eye exercise for visual concentration and acuity. Our proposed EOG control signal can be utilized in many other applications of human machine interfaces such as wheelchair, computer keyboard and home automation.

Keywords: DDR game, EOG, eye movement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4791
3119 Embedded Electrochemistry with a Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents

Authors: Amer Dawoud, Rashid Mia, Arati Biswakarma, Jesy Motchaalangaram, Wujan Miao, Karl Wallace

Abstract:

The development of an embedded miniaturized drone-based system for remote detection of Chemical Warfare Agents (CWAs) is proposed. The paper focuses on the software/hardware system design of the electrochemical Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) signal processing for future deployment on drones. The paper summarizes the progress made towards hardware and electrochemical signal processing for signature detection of CWA. Also, the miniature potentiostat signal is validated by comparing it with the high-end lab potentiostat signal.

Keywords: Drone-based, remote detection chemical warfare agents, miniaturized, potentiostat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 522
3118 Review of Surface Electromyogram Signals: Its Analysis and Applications

Authors: Anjana Goen, D. C. Tiwari

Abstract:

Electromyography (EMG) is the study of muscles function through analysis of electrical activity produced from muscles. This electrical activity which is displayed in the form of signal is the result of neuromuscular activation associated with muscle contraction. The most common techniques of EMG signal recording are by using surface and needle/wire electrode where the latter is usually used for interest in deep muscle. This paper will focus on surface electromyogram (SEMG) signal. During SEMG recording, several problems had to been countered such as noise, motion artifact and signal instability. Thus, various signal processing techniques had been implemented to produce a reliable signal for analysis. SEMG signal finds broad application particularly in biomedical field. It had been analyzed and studied for various interests such as neuromuscular disease, enhancement of muscular function and human-computer interface.

Keywords: Evolvable hardware (EHW), Functional Electrical Simulation (FES), Hidden Markov Model (HMM), Hjorth Time Domain (HTD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3514
3117 Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition

Authors: Chuan Li, Ming Liang

Abstract:

Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.

Keywords: Integral transform, empirical mode decomposition, oil debris, signal processing, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712