Search results for: Robot Motion Planning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1961

Search results for: Robot Motion Planning.

1781 Design of Modular Robotic Joints for Achieving Various Robot Configurations

Authors: Majid Tolouei-Rad, Anurag Dhull

Abstract:

This paper describes various stages of design and prototyping of a modular robot for use in various industrial applications. The major goal of current research has been to design and make different robotic joints at low cost capable of being assembled together in any given order for achieving various robot configurations. Five different types of joins were designed and manufactured where extensive research has been carried out on the design of each joint in order to achieve optimal strength, size, modularity, and price. This paper presents various stages of research and development undertaken to engineer these joints that include material selection, manufacturing, and strength analysis. The outcome of this research addresses the birth of a new generation of modular industrial robots with a wider range of applications and greater efficiency.

Keywords: Actuator, control system, configuration, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
1780 Bio-mechanical Analysis of Human Joints and Extension of the Study to Robot

Authors: S. Parasuraman, Ler Shiaw Pei

Abstract:

In this paper, the bio-mechanical analysis of human joints is carried out and the study is extended to the robot manipulator. This study will first focus on the kinematics of human arm which include the movement of each joint in shoulder, wrist, elbow and finger complexes. Those analyses are then extended to the design of a human robot manipulator. A simulator is built for Direct Kinematics and Inverse Kinematics of human arm. In the simulation of Direct Kinematics, the human joint angles can be inserted, while the position and orientation of each finger tips (end-effector) are shown. Inverse Kinematics does the reverse of the Direct Kinematics. Based on previous materials obtained from kinematics analysis, the human manipulator joints can be designed to follow prescribed position trajectories.

Keywords: Kinematics, Human Joints, Robotics, Robot Dynamics, Manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
1779 Development of Roller-Based Interior Wall Painting Robot

Authors: Mohamed T. Sorour, Mohamed A. Abdellatif, Ahmed A. Ramadan, Ahmed A. Abo-Ismail

Abstract:

This paper describes the development of an autonomous robot for painting the interior walls of buildings. The robot consists of a painting arm with an end effector roller that scans the walls vertically and a mobile platform to give horizontal feed to paint the whole area of the wall. The painting arm has a planar twolink mechanism with two joints. Joints are driven from a stepping motor through a ball screw-nut mechanism. Four ultrasonic sensors are attached to the mobile platform and used to maintain a certain distance from the facing wall and to avoid collision with side walls. When settled on adjusted distance from the wall, the controller starts the painting process autonomously. Simplicity, relatively low weight and short painting time were considered in our design. Different modules constituting the robot have been separately tested then integrated. Experiments have shown successfulness of the robot in its intended tasks.

Keywords: Automated roller painting, Construction robots, Mobile robots, service robots, two link planar manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6910
1778 Intelligent Control of Robotized Workcell by Augmented Reality Application

Authors: L. Novakova-Marcincinova, J. Novak-Marcincin, M. Janak

Abstract:

The computer aided for design, analysis, control, visualization and simulation of robotized workcells is very interesting in this time. Computer Aided Robot Control (CARC) is a subsystem of the system CIM including the computer aided systems of all activities connected with visualization and working of robotized workcells. There are three basic ideas: current CAD/CAM/CAE systems for design and 3D visualization, special PC based control and simulation systems and Augmented Reality Aided Manufacturing (ARAM) systems. This paper describes example of Open Source software application that can to be utilized at planning of the robotized workcells, visualization and off-line programming the automated processes realized by authors.

Keywords: Intelligent control, augmented reality, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
1777 DTMF Based Robot Assisted Tele Surgery

Authors: Vikas Pandey, T. L. Joshy, Vyshak Vijayan, N. Babu

Abstract:

A new and cost effective robotic device was designed for remote tele surgery using dual tone multi frequency technology (DTMF). Tele system with Dual Tone Multiple Frequency has a large capability in sending and receiving of data in hardware and software. The robot consists of DC motors for arm movements and it is controlled manually through a mobile phone through DTMF Technology. The system enables the surgeon from base station to send commands through mobile phone to the patient’s robotic system which includes two robotic arms that translate the input into actual instrument manipulation. A mobile phone attached to the microcontroller 8051 which can activate robot through relays. The Remote robot-assisted tele surgery eliminates geographic constraints for getting surgical expertise where it is needed and allows an expert surgeon to teach or proctor the performance of surgical technique by real-time intervention.

Keywords: Robot, Microcontroller, DTMF, Tele surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2547
1776 3D Sensing and Mapping for a Tracked Mobile Robot with a Movable Laser Ranger Finder

Authors: Toyomi Fujita

Abstract:

This paper presents a sensing system for 3D sensing and mapping by a tracked mobile robot with an arm-type sensor movable unit and a laser range finder (LRF). The arm-type sensor movable unit is mounted on the robot and the LRF is installed at the end of the unit. This system enables the sensor to change position and orientation so that it avoids occlusions according to terrain by this mechanism. This sensing system is also able to change the height of the LRF by keeping its orientation flat for efficient sensing. In this kind of mapping, it may be difficult for moving robot to apply mapping algorithms such as the iterative closest point (ICP) because sets of the 2D data at each sensor height may be distant in a common surface. In order for this kind of mapping, the authors therefore applied interpolation to generate plausible model data for ICP. The results of several experiments provided validity of these kinds of sensing and mapping in this sensing system.

Keywords: Laser Range Finder, Arm-Type Sensor Movable Unit, Tracked Mobile Robot, 3D Mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
1775 Reductive Control in the Management of Redundant Actuation

Authors: Mkhinini Maher, Knani Jilani

Abstract:

We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented.

The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a « geometric ›› distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement.

Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.

Keywords: Mobile robot, actuation, redundancy, omnidirectional, inverse pseudo Moore-Penrose, reductive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
1774 The Robot Hand System that can Control Grasping Power by SEMG

Authors: Tsubasa Seto, Kentaro Nagata, Kazushige Magatani

Abstract:

SEMG (Surface Electromyogram) is one of the bio-signals and is generated from the muscle. And there are many research results that use forearm EMG to detect hand motions. In this paper, we will talk about our developed the robot hand system that can control grasping power by SEMG. In our system, we suppose that muscle power is proportional to the amplitude of SEMG. The power is estimated and the grip power of a robot hand is able to be controlled using estimated muscle power in our system. In addition, to perform a more precise control can be considered to build a closed loop feedback system as an object to a subject to pressure from the edge of hand. Our objectives of this study are the development of a method that makes perfect detection of the hand grip force possible using SEMG patterns, and applying this method to the man-machine interface.

Keywords: SEMG, multi electrode, robot hand, power control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1773 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3017
1772 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
1771 Hand Controlled Mobile Robot Applied in Virtual Environment

Authors: Jozsef Katona, Attila Kovari, Tibor Ujbanyi, Gergely Sziladi

Abstract:

By the development of IT systems, human-computer interaction is also developing even faster and newer communication methods become available in human-machine interaction. In this article, the application of a hand gesture controlled human-computer interface is being introduced through the example of a mobile robot. The control of the mobile robot is implemented in a realistic virtual environment that is advantageous regarding the aspect of different tests, parallel examinations, so the purchase of expensive equipment is unnecessary. The usability of the implemented hand gesture control has been evaluated by test subjects. According to the opinion of the testing subjects, the system can be well used, and its application would be recommended on other application fields too.

Keywords: Human-machine interface, hand control, mobile robot, virtual environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
1770 Tele-Operated Anthropomorphic Arm and Hand Design

Authors: Namal A. Senanayake, Khoo B. How, Quah W. Wai

Abstract:

In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built as a versatile robotic arm system. The robot has the ability to manipulate objects such as pick and place operations. It is also able to function by itself, in standalone mode. Firstly, the robotic arm is built in order to interface with a personal computer via a serial servo controller circuit board. The circuit board enables user to completely control the robotic arm and moreover, enables feedbacks from user. The control circuit board uses a powerful integrated microcontroller, a PIC (Programmable Interface Controller). The PIC is firstly programmed using BASIC (Beginner-s All-purpose Symbolic Instruction Code) and it is used as the 'brain' of the robot. In addition a user friendly Graphical User Interface (GUI) is developed as the serial servo interface software using Microsoft-s Visual Basic 6. The second part of the project is to use speech recognition control on the robotic arm. A speech recognition circuit board is constructed with onboard components such as PIC and other integrated circuits. It replaces the computers- Graphical User Interface. The robotic arm is able to receive instructions as spoken commands through a microphone and perform operations with respect to the commands such as picking and placing operations.

Keywords: Tele-operated Anthropomorphic Robotic Arm and Hand, Robot Motion System, Serial Servo Controller, Speech Recognition Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1769 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: Neural networks, motion detection, signature detection, convolutional neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73
1768 A Practical Solution of a Plant Pipes Monitoring System Using Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Bae-Ho Lee, Ji-Sung Lee

Abstract:

There has been a growing interest in the field of bio-mimetic robots that resemble the shape of an insect or an aquatic animal, among many others. One bio-mimetic robot serves the purpose of exploring pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. In order to move effectively inside a pipeline, the robot-s movement will resemble that of a lizard. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependant on periodical offline monitoring. This paper provides the Monitoring System that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Mobileand active monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
1767 Real-Time Control of a Two-Wheeled Inverted Pendulum Mobile Robot

Authors: S. W. Nawawi, M. N. Ahmad, J. H. S. Osman

Abstract:

The research on two-wheeled inverted pendulum (TWIP) mobile robots or commonly known as balancing robots have gained momentum over the last decade in a number of robotic laboratories around the world. This paper describes the hardware design of such a robot. The objective of the design is to develop a TWIP mobile robot as well as MATLAB interfacing configuration to be used as flexible platform comprises of embedded unstable linear plant intended for research and teaching purposes. Issues such as selection of actuators and sensors, signal processing units, MATLAB Real Time Workshop coding, modeling and control scheme will be addressed and discussed. The system is then tested using a wellknown state feedback controller to verify its functionality.

Keywords: Embedded System, Two-wheeled Inverted Pendulum Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4697
1766 Flexible Follower Response of a Translating Cam with Four Different Profiles for Rise-Dwell-Fall-Dwell motion

Authors: Jer-Rong Chang

Abstract:

The flexible follower response of a translating cam with four different profiles for rise-dwell-fall-dwell (RDFD) motion is investigated. The cycloidal displacement motion, the modified sinusoidal acceleration motion, the modified trapezoidal acceleration motion, and the 3-4-5 polynomial motion are employed to describe the rise and the fall motions of the follower and the associated four kinds of cam profiles are studied. Since the follower flexibility is considered, the contact point of the roller and the cam is an unknown. Two geometric constraints formulated to restrain the unknown position are substituted into Hamilton-s principle with Lagrange multipliers. Applying the assumed mode method, one can obtain the governing equations of motion as non-linear differential-algebraic equations. The equations are solved using Runge-Kutta method. Then, the responses of the flexible follower undergoing the four different motions are investigated in time domain and in frequency domain.

Keywords: translating cam, flexible follower, rise-dwell-falldwell, response

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
1765 Lego Mindstorms as a Simulation of Robotic Systems

Authors: Miroslav Popelka, Jakub Nožička

Abstract:

In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.

Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3787
1764 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: SOM network, torque distribution, torque slope, wheeled robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 528
1763 Material Density Mapping on Deformable 3D Models of Human Organs

Authors: Petru Manescu, Joseph Azencot, Michael Beuve, Hamid Ladjal, Jacques Saade, Jean-Michel Morreau, Philippe Giraud, Behzad Shariat

Abstract:

Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach.

Keywords: Biomechanical simulation, dose distribution, image guided radiation therapy, organ motion, tetrahedral mesh, 4D-CT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2967
1762 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot

Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan

Abstract:

With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.

Keywords: Service Robot, Object Recognition, 3D Sensors, Plane Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1761 Human Motion Capture: New Innovations in the Field of Computer Vision

Authors: Najm Alotaibi

Abstract:

Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.

Keywords: Human Motion Capture, Computer Vision, Vision based, Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
1760 Using Model to Plan of Strategic Objectives

Authors: Terezie Bartusková, Jitka Baňařová, Zuzana Kusněřová

Abstract:

Importance of strategic planning is unquestionable. However, the practical implementation of a strategic plan faces too many obstacles. The aim of the article is explained the importance of strategic planning and to find how companies in Moravian-Silesian Region deal with strategic planning, and to introduce the model, which helps to set strategic goals in financial indicators area. This model should be part of the whole process of strategic planning and can be use to predict the future values of financial indicators of the company with regard to the factor, which influence these indicators.

Keywords: Planning of Potentials, Planning of Strategic Objectives, Portfolio Planning, Significant Factors, Strategic Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196
1759 Fuzzy Error Recovery in Feedback Control for Three Wheel Omnidirectional Soccer Robot

Authors: Vahid Rostami, Omid sojodishijani , Saeed Ebrahimijam, Ali MohsenizanjaniNejad

Abstract:

This paper is described one of the intelligent control method in Autonomous systems, which is called fuzzy control to correct the three wheel omnidirectional robot movement while it make mistake to catch the target. Fuzzy logic is especially advantageous for problems that can not be easily represented by mathematical modeling because data is either unavailable, incomplete or the process is too complex. Such systems can be easily up grated by adding new rules to improve performance or add new features. In many cases , fuzzy control can be used to improve existing traditional controller systems by adding an extra layer of intelligence to the current control method. The fuzzy controller designed here is more accurate and flexible than the traditional controllers. The project is done at MRL middle size soccer robot team.

Keywords: Robocup , omnidirectional , fuzzy control, soccer robot , intelligent control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1758 Dual Mode Navigation for Two-Wheeled Robot

Authors: N.M Abdul Ghani, L.K. Haur, T.P.Yon, F Naim

Abstract:

This project relates to a two-wheeled self balancing robot for transferring loads on different locations along a path. This robot specifically functions as a dual mode navigation to navigate efficiently along a desired path. First, as a plurality of distance sensors mounted at both sides of the body for collecting information on tilt angle of the body and second, as a plurality of speed sensors mounted at the bottom of the body for collecting information of the velocity of the body in relative to the ground. A microcontroller for processing information collected from the sensors and configured to set the path and to balance the body automatically while a processor operatively coupled to the microcontroller and configured to compute change of the tilt and velocity of the body. A direct current motor operatively coupled to the microcontroller for controlling the wheels and characterized in that a remote control is operatively coupled to the microcontroller to operate the robot in dual navigation modes.

Keywords: Two-Wheeled Balancing Robot, Dual Mode Navigation, Remote Control, Desired Path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
1757 A Study on the Factors Affecting Student Behavior Intention to Attend Robotics Courses at the Primary and Secondary School Levels

Authors: Jingwen Shan

Abstract:

In order to explore the key factors affecting the robot program learning intention of school students, this study takes the technology acceptance model as the theoretical basis and invites 167 students from Jiading District of Shanghai as the research subjects. In the robot course, the model of school students on their learning behavior is constructed. By verifying the causal path relationship between variables, it is concluded that teachers can enhance students’ perceptual usefulness to robotics courses by enhancing subjective norms, entertainment perception, and reducing technical anxiety, such as focusing on the gradual progress of programming and analyzing learner characteristics. Students can improve perceived ease of use by enhancing self-efficacy. At the same time, robot hardware designers can optimize in terms of entertainment and interactivity, which will directly or indirectly increase the learning intention of the robot course. By changing these factors, the learning behavior of primary and secondary school students can be more sustainable.

Keywords: TAM, learning behavior intentions, robot courses, primary and secondary school students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
1756 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
1755 Detection of Moving Images Using Neural Network

Authors: P. Latha, L. Ganesan, N. Ramaraj, P. V. Hari Venkatesh

Abstract:

Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.

Keywords: Frame separation, Correlation Network, Neural network training, Radial Basis Function, object tracking, Motion Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3105
1754 Novel Mobile Climbing Robot Agent for Offshore Platforms

Authors: Akbar F. Moghaddam, Magnus Lange, Omid Mirmotahari, Mats Høvin

Abstract:

To improve HSE standards, oil and gas industries are interested in using remotely controlled and autonomous robots instead of human workers on offshore platforms. In addition to earlier reason this strategy would increase potential revenue, efficient usage of work experts and even would allow operations in more remote areas. This article is the presentation of a custom climbing robot, called Walloid, designed for offshore platform topside automation. This 4 arms climbing robot with grippers is an ongoing project at University of Oslo.

Keywords: Climbing Robots, Mobile Robots, Offshore Robotics, Offshore Platforms, Automation, Inspection, Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
1753 Pipelines Monitoring System Using Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Seong-Joon Baek, Bae-Ho Lee

Abstract:

Recently there has been a growing interest in the field of bio-mimetic robots that resemble the behaviors of an insect or an aquatic animal, among many others. One of various bio-mimetic robot applications is to explore pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. Special types of mobile robots are necessary for the pipeline monitoring tasks. In order to move effectively along a pipeline, the robot-s movement will resemble that of insects or crawling animals. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependent on periodical offline monitoring. This paper proposes a monitoring system that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Mobile and active monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
1752 Development of Autonomous Cable Inspection Robot for Nuclear Power Plant

Authors: Jae-Kyung LEE, Byung-Hak CHO, Kyung-Nam Jang, Sun-Chul Jung, Ki-Yong OH, Joon-Young PARK, Jong-Seog Kim

Abstract:

The cables in a nuclear power plant are designed to be used for about 40 years in safe operation environment. However, the heat and radiation in the nuclear power plant causes the rapid performance deterioration of cables in nuclear vessels and heat exchangers, which requires cable lifetime estimation. The most accurate method of estimating the cable lifetime is to evaluate the cables in a laboratory. However, removing cables while the plant is operating is not allowed because of its safety and cost. In this paper, a robot system to estimate the cable lifetime in nuclear power plants is developed and tested. The developed robot system can calculate a modulus value to estimate the cable lifetime even when the nuclear power plant is in operation.

Keywords: Autonomous robot, Cable Inspection, Indenter, Nuclear Power Plant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955