
 
Abstract—Understanding the neural mechanisms underlying 

motion detection in the human visual system has long been a 
fascinating challenge in neuroscience and artificial intelligence. This 
paper presents a spiking neural network model inspired by the 
processing of motion information in the primate visual system, 
particularly focusing on the Middle Temporal (MT) area. In our study, 
we propose a multi-layer spiking neural network model to perform 
motion detection tasks, leveraging the idea that synaptic delays in 
neuronal communication are pivotal in motion perception. Synaptic 
delay, determined by factors like axon length and myelin insulation, 
affects the temporal order of input spikes, thereby encoding motion 
direction and speed. Overall, our spiking neural network model 
demonstrates the feasibility of capturing motion detection principles 
observed in the primate visual system. The combination of synaptic 
delays, learning mechanisms, and shared weights and delays in SMD 
provides a promising framework for motion perception in artificial 
systems, with potential applications in computer vision and robotics. 

 
Keywords—Neural networks, motion detection, signature 

detection, convolutional neural network.  

I. INTRODUCTION 

HE human visual system is a marvel of biological 
engineering, capable of processing and interpreting 

complex visual information with remarkable precision. The 
journey of visual information begins in the retina, where 
photoreceptors convert incoming light from surrounding 
objects into electrical signals. These signals are then relayed 
through a network of nerve connections to the lateral geniculate 
nucleus (LGN). From there, the information is further 
transmitted to the primary visual cortex, known as V1. 

The human visual system does not stop at V1; it branches 
into two distinct pathways, the ventral and dorsal pathways. The 
dorsal pathway, often referred to as the "where" pathway, plays 
a critical role in guiding actions and recognizing the spatial 
locations of objects within a scene. Among the key regions in 
the dorsal pathway is the MT area, which is particularly 
noteworthy for its motion detection functionality. Neurons in 
the MT area possess spatio-temporal receptive fields, making 
them sensitive to a wide range of speeds and directions of 
moving visual stimuli. 

A prominent hypothesis regarding the neuronal mechanisms 
underlying motion detection revolves around synaptic delays. 

Synaptic delay refers to the time interval between the 
initiation of spike emission by a pre-synaptic neuron and the 
arrival of that spike at a post-synaptic neuron. This delay is 
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primarily determined by factors such as axon length and the 
presence of myelin, an insulating layer around the axon that 
accelerates signal propagation. 

 

 

Fig. 1 Vision processes in the human brain [1] 
 

According to this hypothesis, the order of input spikes and 
the time intervals between them encodes the direction and speed 
of motion, respectively. To design neurons that are selective to 
specific motion directions, they must receive input spikes from 
their synapses with specified time delays. This synchronization 
ensures that all spikes reach the neuron simultaneously, causing 
its membrane potential to surpass the threshold and initiate 
firing. 

Building upon this hypothesis, our study introduces a multi-
layer spiking neural network model designed to perform the 
task of motion detection. Neurons in this network are simulated 
using the Leaky Integrate and Fire (LIF) model. For the learning 
process, we employ a combination of Spike-Timing-Dependent 
Plasticity (STDP) and reinforcement learning, specifically 
Reward-modulated STDP. Additionally, a homeostasis 
mechanism is implemented to regulate neural activities. 

The model is constructed in two phases. First, we create a 
small spiking neural network to replicate the columnar 
processing observed in the MT area, with each neuron 
becoming selective to a specific motion direction. Then, the 
synapses of this trained network are employed in a larger 
network, referred to as the Spiking Motion Detector (SMD) 
model, which exhibits a unique mechanism explained in detail 
below. 

In the initial phase, we consider a 7x7 grid of neurons as the 
input layer. In the subsequent layer, we assign one neuron for 
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each desired motion direction (in our case, we consider four 
directions). Neurons in the first and second layers are fully 
connected, with random weights sampled from a uniform 
distribution between 0.5 and 1. To account for synaptic delays, 
we establish multiple synapses between neurons with different 
delays, selected from the set {1, 2, 3, 4}. All synapses 
connecting two neurons have equal initial synaptic weights. 

The third layer of this model is responsible for recognizing 
combinations of movements detected by the second layer. 
Similar to the previous layers, neurons in the second and third 
layers are connected via multiple synapses, featuring random 
weights and varying delays. 

For the training phase, we manually set the input stimulus for 
each desired motion direction to the input neurons, with a 
duration of 4 milliseconds. This configuration results in the 
second layer consisting of four neurons, while the third layer 
encompasses sixteen neurons to account for combinations of 
movements. Upon completing the learning process, we 
observed that each neuron in the second and third layers 
exhibited reinforced weights for synapses with the proper delay 
associated with detecting the desired motion, while the rest 
were suppressed. 

The SMD model is subsequently constructed by 
incorporating the previously trained network on all possible 7x7 
grids of input, considering both vertical and horizontal 
orientations with a stride of 1. Consequently, all neurons in the 
SMD that are selective to a specific motion direction or 
combination of two directions share the same synaptic weights 
(shared weights) and delays (shared delays). 

The input for the SMD model consists of a sequence of 
frames with a temporal resolution of 1 millisecond. To adapt to 
different spatial resolutions in the input frames, we include a 
preprocessing stage that downscales high-resolution frames. 
This preprocessing ensures compatibility with the model's 
architecture. 

For each input stimulus, several activity maps are generated 
in the second and third layers of the SMD. Each spike in these 
maps signifies the presence of a specific movement at a 
particular location within the input stimulus. The subsequent 
sections will delve into the experimental results of our model 
and its applications, particularly in online signature detection, 
along with a discussion of related work in the field and 
concluding remarks.  

II. RELATED WORKS 

The pursuit of understanding motion detection mechanisms 
in the human visual system has been a longstanding endeavor 
in neuroscience and artificial intelligence. To contextualize our 
proposed model, we delve into related work in the field, 
highlighting key studies and models that have contributed to our 
understanding of motion perception.  

A. Early Motion Detection Theories 

Early motion detection theories proposed the existence of 
specific mechanisms dedicated to perceiving motion. These 
theories, including the "correlation-type detectors" proposed by 
Adelson and Bergen [2], [3] laid the foundation for subsequent 

research by positing that visual motion is detected through 
spatial and temporal correlations in visual input. Singla [4] 
proposed a motion detection approach based on the frame 
difference method, which serves as a foundational technique in 
the field of motion detection  

B. Synaptic Delay Hypothesis 

The synaptic delay hypothesis, which forms the foundation 
of our model, was initially introduced by Shon et al. [5]. This 
hypothesis posits that the timing of spikes in neural 
communication, influenced by synaptic delays, encodes motion 
direction and speed. This idea revolutionized the understanding 
of motion perception by emphasizing the importance of precise 
timing in neural responses. Gu et al. [6] introduced the concept 
of spatio-temporal credit assignment with delayed feedback in 
deep spiking neural networks, shedding light on mechanisms 
for precise neural signal processing in dynamic environments. 

C. Spiking Neural Networks for Motion Processing 

Building on the concept of precise timing, researchers have 
explored the application of Spiking Neural Networks (SNNs) to 
model motion processing. Orchard et al. [7] presented an SNN 
architecture tailored for visual motion estimation, 
demonstrating that spiking neurons can capture the dynamics of 
motion perception more effectively than traditional rate-based 
models. 

D.  Learning Mechanisms in Spiking Neurons 

Our model's incorporation of STDP and reinforcement 
learning is rooted in the work of Izhikevich [8]. His research 
focused on solving the distal reward problem by linking STDP 
with dopamine signaling. This work sheds light on the plasticity 
mechanisms that underlie learning in spiking neurons, enabling 
our model to adapt and improve over time. Fang et al. [9] 
introduced a novel approach that leverages deep residual 
learning within SNNs, showcasing advancements in the 
application of deep learning to motion perception. 

The function that can simulate this behavior is an exponential 
function. Therefore, it can be stated that the exponential 
function serves as the foundational model for implementing the 
STDP learning rule. Let us consider calculating the weight 
changes of the synapse between neurons i_th and j_th. Let tf

j 
represent the time of spiking of the pre-synaptic neuron, and tni 

be the time of spiking of the post-synaptic neuron. The weight 
changes of this synapse were equal to (1): 

 

∆𝑤 ∑ ∑ 𝑊 𝑡 𝑡          (1) 
 

where W(s) is the amount of changes using the STDP learning 
rule, which is described as (2): 
 

𝑊 𝑠  
𝐴 exp       𝑖𝑓  𝑠 0

𝐴 exp       𝑖𝑓  𝑠 0
      (2) 

 
where, A+, A-, -τ and +τ are the parameters, the coefficients of 
A+ and A- are dependent on wij and -τ and +τ are considered in 
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about a few milliseconds [10]. 

E. Biological Justification and Brain Processes 

Many motion detection studies lack considerations of 
biological justification and brain processes. For instance, 
experiments using deep networks for pedestrian movement 
detection report an accuracy of about 68%, highlighting the 
challenges of observational learning in deep networks [11]. 
Neural network studies show that tapping of neurons is crucial 
for recognizing different movements and speeds, emphasizing 
the importance of biologically inspired learning [7], [17]. 

F. Models Based on Hidden Markov Model, Dynamic 
Scheduling, and Support Vector Machine 

Various models, such as those based on hidden Markov 
models [12], dynamic scheduling [13], and feature 
identification using support vector machines [14], have been 
proposed. Notably, models based on dynamic scheduling have 
shown improved accuracy compared to hidden Markov models 
[13]. Support vector machine algorithms, particularly those 
extracting new features with lower dimensions, have also 
demonstrated efficacy in motion detection [14]. 

G. Online Signature Detection 

Our study applies motion detection principles to the domain 
of online signature detection. While motion detection and 
signature verification may seem unrelated, they share common 
ground in the analysis of dynamic patterns. In this context, the 
SUSIG dataset [15] has become a pivotal resource for 
benchmarking signature detection algorithms, offering a 
diverse set of genuine and forgery signatures. 

Our proposed model synthesizes insights from these diverse 
areas of research. By combining the synaptic delay hypothesis, 
SNNs, and learning mechanisms, we aim to create a model that 
not only advances our understanding of motion perception but 
also demonstrates practical applicability in real-world tasks 
such as online signature verification. The ensuing sections of 
this paper detail our model's architecture, experiments, and 
results, showcasing its potential for motion-based pattern 
recognition 

III. A LATENCY-BASED MOTION DETECTION MODEL 

Our proposed method is rooted in the hypothesis that 
synaptic delays are a pivotal factor in the neural encoding of 
motion direction and speed. We present a comprehensive multi-
layer spiking neural network model, designed to simulate the 
intricate processes involved in motion detection within the 
primate visual system, with a particular focus on the MT region. 

A. MT Columnar Processing (Phase 1) 

In the first phase of our model, we aim to replicate the 
columnar processing observed in the MT area, where neurons 
become selectively tuned to specific motion directions. The 
foundation of this phase lies in a 7x7 grid of neurons designated 
as the input layer. Subsequently, we create a layer with one 
neuron allocated for each desired motion direction, considering 
four distinct directions in our study. 

Neurons in the input and second layers are fully connected, 
and their connectivity is characterized by synaptic weights that 
are randomly initialized from a uniform distribution within the 
range of 0.5 to 1. To introduce the critical element of synaptic 
delays, we employ multiple synapses connecting neurons with 
different delay values selected from the set {1, 2, 3, 4}. Notably, 
all synapses between any two neurons in this layer initially 
possess equal synaptic weights. 

The third layer of our model takes on the responsibility of 
recognizing combinations of movements detected by the second 
layer. Like the preceding layers, neurons in the second and third 
layers are interconnected via multiple synapses, each featuring 
random weights and distinct delays. 

During the learning phase, we manually set the input 
stimulus for each desired motion direction. Each stimulus is 
characterized by a fixed duration of 4 milliseconds. As a result 
of this configuration, the second layer consists of precisely four 
neurons, whereas the third layer encompasses sixteen neurons, 
each dedicated to detecting specific combinations of 
movements. Upon the completion of the learning process, we 
observe that the synaptic weights associated with the proper 
delays for detecting the desired motion are reinforced, while 
those linked to other delays are suppressed. 

B. Spiking Motion Detector (SMD) Model (Phase 2) 

In the second phase, we construct the SMD model, which 
leverages the previously trained network from the first phase. 
This model extends its applicability to all possible 7x7 grids of 
input, encompassing both vertical and horizontal orientations 
with a stride of 1. Importantly, all neurons within the SMD 
model that are selective to specific motion directions or 
combinations of two directions share identical synaptic weights 
(shared weights) and delays (shared delays). 

The input for the SMD model consists of a sequence of 
frames, each offering a temporal resolution of 1 millisecond. To 
accommodate input frames with diverse spatial resolutions, we 
incorporate a preprocessing stage that down-scales high-
resolution frames. This preprocessing ensures the congruence 
of input data with the architectural specifications of the model. 

For each input stimulus, the SMD model generates multiple 
activity maps in the second and third layers. Each spike within 
these maps serves as an indicator of the presence of a particular 
movement at a designated location within the input stimulus. 
These activity maps collectively capture the intricate patterns 
of motion within the visual input.  

IV. EXPERIMENTAL RESULTS 

To rigorously evaluate the performance of our SMD model, 
we conducted extensive experiments, with a specific focus on 
the task of online signature detection. This evaluation was 
performed using the prestigious SUSIG dataset [8], which 
includes 940 genuine signatures from 94 individuals, along with 
940 forgery signatures, all recorded at high resolution. 
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(a)                (b) 
 

 

(c) 

Fig. 2 (a) Input sample (right direction), (b) Small spiking neural network for training direction sensitive neurons, and (c) SMD; model is 
constructed by considering network shows in part b on all possible 7×7 grids of input 
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Fig. 3 Sample signature in database and different scales 
 

A. Data Preprocessing and Feature Extraction 

In preparation for the experiments, we undertook data 
preprocessing steps to align the dataset with our model's 
architecture. This included down-scaling all signatures by a 
uniform factor of 300. This transformation effectively 
converted the continuous pen motions inherent in the signatures 
into the trained motions employed within our model. Various 
tests showed that if we consider one movement for every 300 
points between the points, while compressing the input data, the 
overall structure of the signature is also preserved. Certainly, 
reducing this number brings the input signature closer to the 
original structure, but at the same time, it also increases the 
processing time and complexity. On the other hand, scaling to 
1000 compresses the data and increases the processing speed, 
but the overall structure of the signature is also completely lost. 
For the signatures in the data, we convert the movements and 
directions in the signatures into four identifiable directions in 
the model and give the output of the model to classification 
algorithms. One of the signatures in the data along with the 
scales of 300 and 1000 is shown in Fig. 3. 

Crucially, we constructed feature vectors to represent each 
signature in a manner conducive to motion detection. These 
feature vectors encapsulate the number of spikes emitted by 
neurons in each map of the third layer. Importantly, they not 
only encode the presence or absence of specific motions but 
also retain temporal information, capturing the intricate 
dynamics of signature movements. The feature vector, X, for 
each signature is calculated (3): 

 

𝑋 ∑ 𝑆   𝑓𝑜𝑟 𝑖 1,2, … , 𝑀       (3) 
 
where N is the number of neurons in the third layer, M is the 
number of signatures, and Sij is the spike count of the j-th 
neuron in response to the i-th signature. 

B. Detection and Classification 

For the final detection task, we employed a diverse set of 
widely recognized classifiers, including K-Nearest Neighbors 
(KNN), Random Forest, Support Vector Machine (SVM), 
Simple Logistic, and Naive Bayes. These classifiers played a 
pivotal role in determining the authenticity of signatures based 
on the feature vectors extracted from the activity maps of the 
SMD model. 

The classification decision for a given signature i is 
determined by the classifier as (4): 

 

𝐶𝑙𝑎𝑠𝑠 𝑖   𝐹𝑜𝑟𝑔𝑒𝑟𝑦     𝑖𝑓 𝑃 𝑖   𝜃
𝐺𝑒𝑛𝑢𝑖𝑛𝑒      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (4) 

 
where P(i) is the probability assigned by the classifier for 
signature i being genuine, and 𝜃 is a classification threshold. 

The evaluation of our model's performance was conducted 
using a robust cross-validation technique, ensuring the 
reliability and generalizability of the results. Through this 
process, we assessed the model's ability to distinguish between 
genuine and forgery signatures accurately. 

The experimental results provide compelling evidence of the 
SMD model's proficiency in online signature detection. Table I 
illustrates the performance metrics achieved by our model. 
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TABLE I 
ACCURACY OF THE PROPOSED MODEL TO DETECT SUSIG SIGNATURES 

Classification 
algorithms 

Number of class 

Genius sig 

AUC
Accuracy 

Classification Forgery detection

Random Forest 40 0.999 100 99.3 

Random Forest 94 0.996 85.2 98.4 

KNN 94 0.981 81.9 84.9 

Naïve Bayes 94 0.987 69.7 66.2 

SVM 94 0.831 73.4 67.8 

Simple Logistic 94 1 100 97.2 

 

As indicated in Table I, our model successfully detected a 
remarkable 98.4% of forgery signatures, demonstrating its 
exceptional accuracy and effectiveness in authenticating 
signatures. This high level of accuracy underscores the practical 
applicability of our model in real-world security and 
authentication scenarios. 

V. CONCLUSIONS 

In conclusion, while our designed model exhibits high 
proficiency in detecting movements, it is not without 
weaknesses and deficiencies. One potential avenue for 
improvement lies in strengthening the training phase. Currently, 
the model identifies only four main directions, a limitation that 
could be addressed by extending recognition to eight directions 
through mechanism adjustments. Research indicates that the 
human brain recognizes eight directions and approximates other 
directions from these primary orientations [16]. However, it is 
crucial to note that generalizing the model to more directions 
increases complexity and training time. Expanding the model 
to recognize eight directions leads to an expansion in the layer 
of combined movements, resulting in the recognition of 64 
combined directions. Furthermore, the current use of single-
shot, aggregation, and leaky neurons limits the model's ability 
to identify directions between the recognized primary 
orientations. Future work involves exploring alternative neuron 
models and structural changes to incorporate mechanisms for 
identifying intermediary directions, similar to the human vision 
system. 

VI. FUTURE WORKS 

Moving forward, our exploration of latency-based motion 
detection in SNNs suggests several avenues for improvement. 
Key priorities include fine-tuning synaptic delay parameters to 
enhance precision, scaling up the model for real-world testing, 
introducing dynamic adaptation mechanisms, and aligning the 
model more closely with the human visual system. 
Additionally, we plan to assess transfer learning capabilities 
and explore hardware implementations. These efforts aim to 
refine the model's theoretical foundations, ensuring its 
adaptability and practical applicability across diverse domains 
such as artificial intelligence, computer vision, and robotics. 
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