Reductive Control in the Management of Redundant Actuation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Reductive Control in the Management of Redundant Actuation

Authors: Mkhinini Maher, Knani Jilani

Abstract:

We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented.

The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a « geometric ›› distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement.

Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.

Keywords: Mobile robot, actuation, redundancy, omnidirectional, inverse pseudo Moore-Penrose, reductive control.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1090864

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782

References:


[1] Julien Aragones Geovany A. Borges and Alain Fournier, Accuracy improvement for a redundant vehicle, proceedings of the IEEE International Symposium on Robotics, Stockholm, Sweeden, october 2002
[2] A. Murao, C. Chevallereau, Trajectoires optimales pour l’amble d’un quadrupède pour des critères énergétiques, Actes de IEEE Conférence Internationale Francophone d’Automatique, (CIFA), Nantes, France, juillet 2002, pp 528-533
[3] P. Dauchez, P. Coiffet and A. Fournier, Cooperation of tow robots in assembly tasks, Computing techniques for robots, Kogan Page, 1985, pp 197-218
[4] G. Campion, R. Hossa, Adaptive ouput linearizing control of wheeled mobile robot, proceedings of IFAC symposium on robot control, Nantes, France, September 1997, pp 261-266
[5] S.H. Lee, B.-J. Yi, S.H. Kim and Y.K. Kwak, Control of impact disturbance by redundantly actuated mechamism, proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea, may 2001, pp 3734-3741
[6] Byung-ju Yi and Whee Kuk Kim, The kinematics for redundantly actuated omni-directional mobile robots, proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, april 2000, pp 2485-2492
[7] B. Bayle, J.-Y. Fourquet and M. Renaud, Manipulability analysis for mobile manipulators, proceedings of the IEEE International Conference on Robotics and Automation, (ICRA), Seoul, Korea, May 2001, pp 1251-1256
[8] W. Khalil et E. Dombre, Modélisation identification et commande des robots, 2ième édition revue et augmentée, collection robotique, Hermes 1999
[9] Vijay Kumar and John, F. Gardner, Kinematics of redundantly actuated closed chains, IEEE Transactions on Robotics and Automation, Vol.6, No 2, April 1990, pp 269-274
[10] D. Folio and V. Cadenat, "A redundancy-based scheme to perform safevision-based tasks amidst obstacles”, IEEE Int. Conf. on Robotics and Biomimetics, 2006.
[11] J. Minguez, F. Lamiraux and J. P. Laumond, "Motion planning and obstacle avoidance”, in Springer Handbook of Robotics, B. Siciliano, O. Khatib (Eds.), Springer, 2008, pp. 827–852.