Search results for: Riccati differential equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1628

Search results for: Riccati differential equation

1628 An Analytical Method for Solving General Riccati Equation

Authors: Y. Pala, M. O. Ertas

Abstract:

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
1627 Numerical Solution of Riccati Differential Equations by Using Hybrid Functions and Tau Method

Authors: Changqing Yang, Jianhua Hou, Beibo Qin

Abstract:

A numerical method for Riccati equation is presented in this work. The method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The operational matrices of derivative and product of hybrid functions are presented. These matrices together with the tau method are then utilized to transform the differential equation into a system of algebraic equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

Keywords: Hybrid functions, Riccati differential equation, Blockpulse, Chebyshev polynomials, Tau method, operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588
1626 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order

Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi

Abstract:

In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.

Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
1625 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics

Authors: Mahdi Nouri

Abstract:

In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.

Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
1624 State Dependent Riccati Equation Based Roll Autopilot for 122mm Artillery Rocket

Authors: Muhammad Kashif Siddiq, Fang Jian Cheng, Yu Wen Bo

Abstract:

State-dependent Riccati equation based controllers are becoming increasingly popular because of having attractive properties like optimality, stability and robustness. This paper focuses on the design of a roll autopilot for a fin stabilized and canard controlled 122mm artillery rocket using state-dependent Riccati equation technique. Initial spin is imparted to rocket during launch and it quickly decays due to straight tail fins. After the spin phase, the roll orientation of rocket is brought to zero with the canard deflection commands generated by the roll autopilot. Roll autopilot has been developed by considering uncoupled roll, pitch and yaw channels. The canard actuator is modeled as a second-order nonlinear system. Elements of the state weighing matrix for Riccati equation have been chosen to be state dependent to exploit the design flexibility offered by the Riccati equation technique. Simulation results under varying conditions of flight demonstrate the wide operating range of the proposed autopilot.

Keywords: Fin stabilized 122mm artillery rocket, Roll Autopilot, Six degree of freedom trajectory model, State-dependent Riccati equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108
1623 Delay-independent Stabilization of Linear Systems with Multiple Time-delays

Authors: Ping He, Heng-You Lan, Gong-Quan Tan

Abstract:

The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matrix theory. An illustrative example and the simulation result, show that the approach to linear systems with multiple time-delays is effective.

Keywords: Linear system, Delay-independent stabilization, Lyapunovfunctional, Riccati algebra matrix equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
1622 Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi

Abstract:

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

Keywords: Exact solution, The (3+1)-dimensional breaking soliton equation, ( G G )-expansion method, Riccati equation, Modified Fexpansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
1621 Control of Pendulum on a Cart with State Dependent Riccati Equations

Authors: N. M. Singh, Jayant Dubey, Ghanshyam Laddha

Abstract:

State Dependent Riccati Equation (SDRE) approach is a modification of the well studied LQR method. It has the capability of being applied to control nonlinear systems. In this paper the technique has been applied to control the single inverted pendulum (SIP) which represents a rich class of nonlinear underactuated systems. SIP modeling is based on Euler-Lagrange equations. A procedure is developed for judicious selection of weighting parameters and constraint handling. The controller designed by SDRE technique here gives better results than existing controllers designed by energy based techniques.

Keywords: State Dependent Riccati Equation (SDRE), Single Inverted Pendulum (SIP), Linear Quadratic Regulator (LQR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3085
1620 Existence of Iterative Cauchy Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

Keywords: Fractional calculus, fractional differential equation, Cauchy equation, Riemann-Liouville fractional operators, Volterra integral equation, non-expansive mapping, iterative differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
1619 Numerical Study of Some Coupled PDEs by using Differential Transformation Method

Authors: Reza Abazari, Rasool Abazari

Abstract:

In this paper, the two-dimension differential transformation method (DTM) is employed to obtain the closed form solutions of the three famous coupled partial differential equation with physical interest namely, the coupled Korteweg-de Vries(KdV) equations, the coupled Burgers equations and coupled nonlinear Schrödinger equation. We begin by showing that how the differential transformation method applies to a linear and non-linear part of any PDEs and apply on these coupled PDEs to illustrate the sufficiency of the method for this kind of nonlinear differential equations. The results obtained are in good agreement with the exact solution. These results show that the technique introduced here is accurate and easy to apply.

Keywords: Coupled Korteweg-de Vries(KdV) equation, Coupled Burgers equation, Coupled Schrödinger equation, differential transformation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3000
1618 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem

Authors: Mohd Agos Salim Nasir, Ros Fadilah Deraman, Siti Salmah Yasiran

Abstract:

The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.

Keywords: Goursat problem, partial differential equation, Adomian decomposition method, Boole's integration rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
1617 Oscillation Theorems for Second-order Nonlinear Neutral Dynamic Equations with Variable Delays and Damping

Authors: Da-Xue Chen, Guang-Hui Liu

Abstract:

In this paper, we study the oscillation of a class of second-order nonlinear neutral damped variable delay dynamic equations on time scales. By using a generalized Riccati transformation technique, we obtain some sufficient conditions for the oscillation of the equations. The results of this paper improve and extend some known results. We also illustrate our main results with some examples.

Keywords: Oscillation theorem, second-order nonlinear neutral dynamic equation, variable delay, damping, Riccati transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
1616 Optimal Space Vector Control for Permanent Magnet Synchronous Motor based on Nonrecursive Riccati Equation

Authors: Marian Gaiceanu, Emil Rosu

Abstract:

In this paper the optimal control strategy for Permanent Magnet Synchronous Motor (PMSM) based drive system is presented. The designed full optimal control is available for speed operating range up to base speed. The optimal voltage space-vector assures input energy reduction and stator loss minimization, maintaining the output energy in the same limits with the conventional PMSM electrical drive. The optimal control with three components is based on the energetically criteria and it is applicable in numerical version, being a nonrecursive solution. The simulation results confirm the increased efficiency of the optimal PMSM drive. The properties of the optimal voltage space vector are shown.

Keywords: Matlab/Simulink, optimal control, permanent magnet synchronous motor, Riccati equation, space vector PWM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
1615 Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability

Authors: N. Kumaresan , J. Kavikumar, Kuru Ratnavelu

Abstract:

In this paper, solution of fuzzy differential equation under general differentiability is obtained by simulink. The simulink solution is equivalent or very close to the exact solution of the problem. Accuracy of the simulink solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.

Keywords: Fuzzy differential equation, Generalized differentiability, H-difference and Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
1614 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease

Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.

Keywords: Parkinson's disease, Step method, delay differential equation, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
1613 Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation

Authors: Tarun Kumar Rawat, Abhirup Lahiri, Ashish Gupta

Abstract:

In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.

Keywords: Single-ended input differential amplifier, Noise, stochastic differential equation, mean and variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
1612 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation

Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu

Abstract:

In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.

Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
1611 Instability of a Nonlinear Differential Equation of Fifth Order with Variable Delay

Authors: Cemil Tunc

Abstract:

In this paper, we study the instability of the zero solution to a nonlinear differential equation with variable delay. By using the Lyapunov functional approach, some sufficient conditions for instability of the zero solution are obtained.

Keywords: Instability, Lyapunov-Krasovskii functional, delay differential equation, fifth order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
1610 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations

Authors: Fuziyah Ishak, Siti Norazura Ahmad

Abstract:

Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.

Keywords: Accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
1609 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback

Authors: M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.

Keywords: Parkinson's disease, stability, simulation, two delay differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
1608 Group Invariant Solutions of Nonlinear Time-Fractional Hyperbolic Partial Differential Equation

Authors: Anupma Bansal, Rajeev Budhiraja, Manoj Pandey

Abstract:

In this paper, we have investigated the nonlinear time-fractional hyperbolic partial differential equation (PDE) for its symmetries and invariance properties. With the application of this method, we have tried to reduce it to time-fractional ordinary differential equation (ODE) which has been further studied for exact solutions.

Keywords: Nonlinear time-fractional hyperbolic PDE, Lie Classical method, exact solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
1607 Stability Analysis of Linear Fractional Order Neutral System with Multiple Delays by Algebraic Approach

Authors: Lianglin Xiong, Yun Zhao, Tao Jiang

Abstract:

In this paper, we study the stability of n-dimensional linear fractional neutral differential equation with time delays. By using the Laplace transform, we introduce a characteristic equation for the above system with multiple time delays. We discover that if all roots of the characteristic equation have negative parts, then the equilibrium of the above linear system with fractional order is Lyapunov globally asymptotical stable if the equilibrium exist that is almost the same as that of classical differential equations. An example is provided to show the effectiveness of the approach presented in this paper.

Keywords: Fractional neutral differential equation, Laplace transform, characteristic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
1606 Solution of Fuzzy Differential Equation under Generalized Differentiability by Genetic Programming

Authors: N. Kumaresan, J. Kavikumar, M. Kumudthaa, Kuru Ratnavelu

Abstract:

In this paper, solution of fuzzy differential equation under general differentiability is obtained by genetic programming (GP). The obtained solution in this method is equivalent or very close to the exact solution of the problem. Accuracy of the solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.

Keywords: Fuzzy differential equation, Generalized differentiability, Genetic programming and H-difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
1605 Periodic Solutions for a Higher Order Nonlinear Neutral Functional Differential Equation

Authors: Yanling Zhu

Abstract:

In this paper, a higher order nonlinear neutral functional differential equation with distributed delay is studied by using the continuation theorem of coincidence degree theory. Some new results on the existence of periodic solutions are obtained.

Keywords: Neutral functional differential equation, higher order, periodic solution, coincidence degree theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
1604 Stability of Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

Keywords: Fractional calculus, fractional differential equation, Lane-Emden equation, Riemann-Liouville fractional operators, Volterra integral equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
1603 Existence of Solution for Singular Two-point Boundary Value Problem of Second-order Differential Equation

Authors: Xiguang Li

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory in coin, we study the existence of solution of singular two point’s boundary value problem for second-order differential equation, which improved and generalize the result of related paper.

Keywords: Singular differential equation, boundary value problem, coin, fixed point theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
1602 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays

Authors: Felix Che Shu

Abstract:

We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.

Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1601 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Fengxia Zheng

Abstract:

By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.

Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
1600 Exp-Function Method for Finding Some Exact Solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries Equations

Authors: Ehsan Mahdavi

Abstract:

In this paper, we apply the Exp-function method to Rosenau-Kawahara and Rosenau-KdV equations. Rosenau-Kawahara equation is the combination of the Rosenau and standard Kawahara equations and Rosenau-KdV equation is the combination of the Rosenau and standard KdV equations. These equations are nonlinear partial differential equations (NPDE) which play an important role in mathematical physics. Exp-function method is easy, succinct and powerful to implement to nonlinear partial differential equations arising in mathematical physics. We mainly try to present an application of Exp-function method and offer solutions for common errors wich occur during some of the recent works.

Keywords: Exp-function method, Rosenau Kawahara equation, Rosenau Korteweg-de Vries equation, nonlinear partial differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
1599 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method

Authors: Nemat Abazari, Reza Abazari

Abstract:

In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.

Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558