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Abstract—In this work, we successfully extended one-dimensional
differential transform method (DTM), by presenting and proving
some theorems, to solving nonlinear high-order multi-pantograph
equations. This technique provides a sequence of functions which
converges to the exact solution of the problem. Some examples are
given to demonstrate the validity and applicability of the present
method and a comparison is made with existing results.
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I. INTRODUCTION

THE nonlinear multi-pantograph equation reads

f(t, u(q0t), u′(q1t), u′′(q2t)) = 0, t ∈ [t0, T ], (1)

where , qj ∈ (0, 1), for j = 0, 1, 2.
The pantograph type equations have been studied exten-

sively owing to the numerous applications in which these
equations arise. The name pantograph originated from the
work of Ockendon and Tayler [1] on the collection of cur-
rent by the pantograph head of an electric locomotive, this
equations are appeared in modeling of various problems in
engineering and sciences such as biology, economy, control
and electrodynamics. For some applications of this equation
we refer the interested reader to [2], [3], [4], [5], [6], [7], [8].
The linear form of Eq. (1) was studied by many authors numer-
ically and analytically. Zhan-Hua Yu applied the Variational
iteration method to solve the multi-pantograph delay equation
[4]; Sezer et al. [5], [6] obtained the approximate solution of
multi-pantograph equation using Taylor polynomials and A.
Saadatmandi et al. [9] applied the Variational iteration method
to solve the generalized pantograph equation.

In all previous work, the linear and variable coefficient
form of pantograph equation was studied, In this work we
consider the following two problems

Problem 1. Nonlinear pantograph equations with initial con-
ditions:

f(t, u(q0t), , u′(q1t), u′′(q2t)) = 0, t ∈ [t0, T ],
u(t0) = a, u′(t0) = b,

(2)

Problem 2. Nonlinear pantograph equations with boundary
conditions:

f(t, u(q0t), , u′(q1t), u′′(q2t)) = 0, t ∈ [t0, T ],
u(t0) = a, u(T ) = b,

(3)
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The method that is developed in this work depends on DTM,
introduced by Zhou [10] in a study about electrical circuits.
It is a semi-numerical-analytical technique that formulates
Taylor series in a totally different manner. With this technique,
the given differential equation and related initial conditions
are transformed into a recurrence equation that finally
leads to the solution of a system of algebraic equations
as coefficients of a power series solution. This method is
useful for obtaining exact and approximate solutions of
linear and nonlinear differential equations. There is no need
for linearization or perturbations, large computational work
and round-off errors are avoided. It has been used to solve
effectively, easily and accurately a large class of linear
and nonlinear problems with approximations. It is possible
to solve system of differential equations [11], [12], [13],
differential-algebraic equations [14], difference equations
[15], differential difference equations [16], partial differential
equations [17], [18], [19], fractional differential equations [20],
[21], pantograph equations [22], one- dimensional Volterra
integral and integro-differential equations [23], [24], [25] by
using this method.

The layout of the paper is as follows: In Section II, the
differential transformation method (DTM) will be introduced.
In In Section III, some numerical results are given to clarify
the method and a comparison is made with the existing results.
Section IV is the brief conclusion of this paper. Finally some
references are listed in the end. Note that we have computed
the numerical results by Maple programming.

II. BASIC DEFINITIONS

The transformation of the k-th derivative of a function in
one variable is as follows:

Definition.1. If u(t) ∈ R can be expressed by Taylor’s series
about fixed point t0, then u(t) can be represented as

u(t) =
∞∑

k=0

u(k)(t0)
k!

(t− t0)k. (4)

If un(t) is be the n-partial sums of a Taylor’s series (4),
then

un(t) =
n∑

k=0

u(k)(t0)
k!

(t− t0)k +Rn(t). (5)

where un(t) is called the n-th Taylor polynomial for u(t)
about t0 and Rn(t) is remainder term.
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If U(k) is defined as

U(k) =
1
k!

[
dku(t)
dtk

]
t=t0

, (6)

where k = 0, 1, ..,∞, then Eq (4) reduce to

u(t) =
∞∑

k=0

U(k)(t− t0)k. (7)

and the n-partial sums of a Taylor’s series (5) reduce to

un(t) =
n∑

k=0

U(k)(t− t0)k +Rn(t). (8)

The U(k) defined in Eq (6), is called the differential transform
of function u(t).

For simplicity assume that t0 = 0, then solution (7) reduce
to

u(t) =
n∑

k=0

U(k)tk +Rn(t). (9)

From the above definitions, it can be found that the concept
of the one-dimensional differential transform is derived from
the Taylor series expansion. The following theorems that can
be deduced from Eqs. (6) and (7) are given below;

Theorem.1. Assume that W (k), U(k) and V (k), are the
differential transforms of the functions w(t), u(t) and v(t),
respectively, then
(a) If w(t) = u(t) ± v(t), then W (k) = U(k) ± V (k).
(b) If w(t) = λu(t), then W (k) = λU(k).
(c) If w(t) = dmu(t)

dtm , then W (k) = (k+m)!
k! U(k +m).

(d) If w(t) = u(t)v(t), then W (k) =
∑k

�=0 U(�)V (k−�).
(e) If w(x) = xm then

W (k) = δ(k −m) =

{
1 k = m,

0 otherwise

Proof: See ([14], and their references).

Now we state the fundamental theorem of this paper.

Theorem.2. If w(t) = u(qt), then W (k) = qkU(k).
Proof: From the definition II, we get

dk

dtk
w(t) =

dk

dtk
[
u(qt)

]
= qk d

k

dt̃k
u(t̃),

where t̃ = qt, therefore[
dk

dtk
w(t)

]
t=t0

= qk

[
dk

dt̃k
u(t̃)

]
t=t0

= qkk!U(k),

hence by (6)

W (k) =
1
k!

[
dkw(t)
dtk

]
t=t0

= qkU(k).

Theorem.3. If w(t) = u1(q1t)u2(q2t), then

W (k) =
k∑

�=0

q�
1q

k−�
2 U1(�)U2(k − �).

Proof: By using Leibnitz formula, we get

dk

dtk
w(t) =

dk

dtk
[
u1(q1t)u2(q2t)

]
=

k∑
�=0

(
k

�

)
d�

dt�
[
u1(q1t)

] dk−�

dtk−�

[
u2(q2t)

]

=
k∑

�=0

(
k

�

)
q�
1

d�

dt̃�
u1(t̃)qk−�

2

dk−�

dt̂k−�
u2(t̂),

where t̂ = q1t, and t̃ = q2t, therefore[
dk

dtk
w(t)

]
t=t0

=
k∑

�=0

(
k

�

)
q�
1q

k−�
2 �!(k−�)!U1(�)U2(k−�)

=
k∑

�=0

k!q�
1q

k−�
2 U1(�)U2(k − �),

then from (4), we get W (k)=
∑k

�=0 q
�
1q

k−�
2 U1(�)U2(k−�).

Theorem.4. If w(t) = dn

dtnu1(q1t) dm

dtmu2(q2t), then

W (k) =
k∑

�=0

q�+n
1 qk−�+m

2

(�+ n)!(k − �+m)!
�!(k − �)!

×

U1(�+ n)U2(k − �+m).

Proof: Analogously from to previous Theorems we get

dk

dtk
w(t) =

dk

dtk
[ dn

dtn
u1(q1t)

dm

dtm
u2(q2t)

]
=

k∑
�=0

(
k

�

)
d�

dt�
[ dn

dtn
u1(q1t)

] dk−�

dtk−�

[ dm

dtm
u2(q2t)

]

=
k∑

�=0

(
k

�

)
q�+n
1

d�+n

dt̃�+n
u1(t̃)qk−�+m

2

dk−�+m

dt̂k−�+m
u2(t̂),

where t̃ = q1t, and t̂ = q2t, therefore[
dk

dtk
w(t)

]
t=t0

=
k∑

�=0

(
k

�

)[
q�+n
1 (�+ n)!U1(�+ n)

]×
[
qk−�+m
2 (k−�+m)!U2(k−�+m)

]
=

k∑
�=0

k!(�+ n)!(k − �+m)!
�!(k − �)!

q�+n
1 qk−�+m

2 ×

U1(�+ n)U2(k − �+m),

then from (6), we get

W (k) =
k∑

�=0

q�+n
1 qk−�+m

2

(�+ n)!(k − �+m)!
�!(k − �)!

×

U1(�+ n)U2(k − �+m).

III. APPLICATIONS AND NUMERICAL EXAMPLES

This section is devoted to computational results. We
applied the method presented in this paper and solved
four prototype examples. Example. 1 and Example. 2 are
initial value pantograph equation and Examples. 3 and 4 are
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boundary value pantograph equations. In these examples,
we first obtain a recurrence systems for the differential
transform of nonlinear pantograph equation and solve it by
programming in MAPLE environment. These examples are
chosen such that there exist exact solutions for them.

Example.1. Consider the following nonlinear second-order
pantograph equation

u′′(
t

2
) +

[
u′(

t

2
)
]2

− 1
4
u(
t

2
) − 1

4
u(t) = 0, t ∈ [0, 1], (10)

subject to initial conditions u(0) = u′(0) = 1.
By applying differential transformation method on nonlinear

pantograph equation (10), for k = 0, 1, 2, ..., N , we get

(k + 2)!

k!
(
1

2
)k+2U(k + 2)

+

k∑
�=0

(
1

2
)k+2(� + 1)(k − � + 1)U(� + 1)U(k − � + 1)

− 1

4
(
1

2
)kU(k) − 1

4
U(k) = 0,

(11)

and from initial conditions u(0) = u′(0) = 1, we get
U(0) = U(1) = 1, respectively, where U(k) is the differential
transform of u(t).

By taking N = 5, the following system is obtained:
1
2
U(2)− 1

4
=0,

3
4
U(3)+ 1

2
U(2)− 3

8
=0,

3
4
U(4)+ 3

8
U(3)+ 1

4
U(2)2− 5

16
U(2)=0,

5
8
U(5)+ 1

4
U(4)+ 3

8
U(2)U(3)− 9

32
U(3)=0

15
32

U(6)+ 5
32

U(5)+ 1
4
U(2)U(4)+ 9

64
U(3)2− 17

64
U(4)=0,

21
64

U(7)+ 3
32

U(6)+ 5
32

U(2)U(5)+ 3
16

U(3)U(4)

− 33
128

U(5)=0,

(12)

Solving the above system and using the inverse transformation
rule (9), we get the following series solution

u(t) = 1+t+
1
2
t2+

1
6
t3+

1
24
t4+

1
120

t5+
1

720
t6+

1
5040

t7,

The closed form of above solution, when N → ∞ is
u(t) = et, which is exactly the same as the exact solution.

Example.2. Consider the following nonlinear second-order
pantograph equation

u′′(
t

2
) +

1
2

[
u′(

t

2
)
]2

− 7
8
u(t) =

1
4
, t ∈ [0, 1], (13)

subject to initial conditions u(0) = 2, and u′(0) = 0.
By applying differential transformation method on nonlinear

pantograph equation (13), for k = 0, 1, 2, ..., N , we get

(k + 2)!

k!
(
1

2
)k+2U(k + 2)

+
1

2

k∑
�=0

(
1

2
)k+2(� + 1)(k − � + 1)U(� + 1)U(k − � + 1)

− 7

8
U(k) =

1

4
δ(k),

(14)

and from initial conditions u(0) = 2, and u′(0) = 0, we get
U(0) = 2, and U(1) = 0, respectively, where U(k) is the
differential transform of u(t).

By taking N = 5, the following system is obtained:

2U(2)− 7
4

= 1
4
,

6U(3) = 0,

12U(4)− 1
8
U(2)2− 7

8
U(2) = 0,

20U(5)− 3
16

U(3)U(2)− 7
8
U(3) = 0,

30U(6)− 1
8
U(4)U(2)v − 9

128
U(3)2− 7

8
U(4) = 0,

42U(7)− 5
64

U(5)U(2)− 3
32

U(4)U(3)− 7
8
U(5) = 0,

(15)

Solving the above system and using the inverse transformation
rule (9), we get the following series solution

u(t) = 2 + t2 +
1
12
t4 +

1
360

t6,

For N → ∞, the closed form of above solution is
u(t) = et + e−t, which is exactly the same as the exact
solution.

Example.3. Consider the following nonlinear second-order
pantograph equation

u′′(t)− 8
3
u′(

t

2
)u(t)−8t2u(

t

2
)=−4

3
− 22

3
t−7t2− 5

3
t3, (16)

for t ∈ [0, 1] and subject to boundary conditions u(0) = 1,
and u(1) = 1.

By applying differential transformation method on nonlinear
pantograph equation (16), for k = 0, 1, 2, ..., N , we get

(k + 2)!

k!
U(k + 2) − 8

3

k∑
�=0

(
1

2
)�+1(� + 1)U(� + 1)U(k − �)

− 8

k∑
�=0

(
1

2
)k−�δ(� − 2)U(k − �) = −4

3
δ(k) − 22

3
δ(k − 1)

− 7δ(k − 2) − 5

3
δ(k − 3),

(17)

and the differential transform version of boundary conditions
u(0) = 1, and u(1) = 0, are respectively,

U(0) = 1,

N∑
k=0

U(k) = 1, (18)

where U(k) is the differential transform of u(t).
By taking N = 5, the following system is obtained from

differential transform version (17):

2U(2)− 4
3
U(1)+ 4

3
=0,

6U(3)− 4
3
U(1)2− 4

3
U(2)+ 22

3
=0,

12U(4)− 8
3
U(1)U(2)−U(3)−1=0,

20U(5)− 7
3
U(1)U(3)− 4

3
U(2)2− 2

3
U(4)−4U(1)+ 5

3
=0,

30U(6)−2U(1)U(4)− 7
3
U(2)U(3)− 5

12
U(5)−2U(2)=0,

42U(7)− 7
4
U(1)U(5)−2U(2)U(4)−U(3)2− 1

4
U(6)

−U(3)=0,

(19)

and from differential transform version of boundary condi-
tions (18), we get

U(0) = 1,
U(0) + U(1) + U(2) + U(3) + U(4) + U(5) = 1,

(20)

Solving the system (19) and differential transform version
of boundary condition (20), simultaneously, and using the
inverse transformation rule (5), we get the following series
solution u(t) = 1 + t − t3. Note that for N > 5 we evaluate
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the same solution, which is the exact solution of Eq.(16).

Example.4. As an application of present method, consider the
following nonlinear integro-differential equation with propor-
tional delay in kernel

u′(t) + (
1
2
t− 2)u(t) − 2

∫ t

0

u(
s

2
)2ds = 1, (21)

for t ≥ 0 and subject to initial condition u(0) = 0.
By substituted t = 0, in integro-differential equation (21),

we get u′(0) = 1, then the initial condition will be

u(0) = 0,
u′(0) = 1,

(22)

Taking derivatives of Eq. (21), we get

u′′(t) + (
1
2
t− 2)u′(t) +

1
2
u(t) − 2u(

t

2
)2 = 0, (23)

Then the integro-differential equation (21) subject to initial
condition u(0) = 0, reduced to pantograph equation (23)
subject to initial conditions u(0) = 0, and u′(0) = 1.

By applying differential transformation method on nonlinear
pantograph equation (23), for k = 0, 1, 2, ..., N , we get

(k + 2)!

k!
U(k + 2) +

k∑
�=0

[1
2
δ(� − 1) − 2δ(�)

]
U(k − �)

+
1

2
U(k) − 2

k∑
�=0

(
1

2
)kU(�)U(k − �) = 0,

(24)

and the differential transform version of initial conditions (22)
will be

U(0) = 0,

U(1) = 1,
(25)

where U(k) is the differential transform of u(t).
By taking N = 5, the following system is obtained from

differential transform version (24):

2U(2)−2=0,

6U(3)−4U(2)+1=0,

12U(4)−6U(3)+ 3
2
U(2)− 1

2
=0,

20U(5)−8U(4)+2U(3)− 1
2
U(2)=0,

30U(6)−10U(5)+ 5
2
U(4)− 1

4
U(3)− 1

8
U(2)2 =0,

42U(7)−12U(6)+3U(5)− 1
8
U(4)− 1

8
U(2)U(3)=0,

(26)

Solving the system (26), and using the inverse transformation
rule (5), we get the following series solution

u(t)= t+t2+
1
2
t3+

1
6
t4+

1
24
t5+

1
120

t6+
1

720
t7,

The closed form of above solution, when N → ∞ is

u(t) = tet,

which is exactly the same as the exact solution of integro-
differential equation (21).

IV. CONCLUSION

In this paper, we have shown that the differential transforma-
tion method can be used successfully for solving the nonlinear
IVPs and BVPs for pantograph equation and as application for
nonlinear integro-differential equation with proportional delay.
New theorems are introduced with their proofs and as appli-
cation some examples are carried out. This method is simple
and easy to use and solves the problem without any need for
discretizing the variables. Also, the method we present here
can be further expanded to solve integro-multi-pantograph-
differential equations and partial-multi-pantograph-differential
equations and the coupled systems of them for future studies.

ACKNOWLEDGMENT

The author is grateful to Prof. Abdollah Borhanifar from
university of Mohaghegh Ardabili, Iran, and Rasool Abazari
from Islamic Azad university-Ardabil Branch, Ardabil, Iran,
for fruitful discussions and helpful comments. This work is
partially supported by Grant-in-Aid from the Islamic Azad
university, Ardabil Branch, Iran.

REFERENCES

[1] J.R. Ockendon, A.B. Tayler, The dynamics of a current collection system
for an electric locomotive, Proc. R. Soc. Lond. Ser. A. 322 (1971) 447-
468.

[2] J.R. Ockendon, A.B. Tayler, The dynamics of a current collection system
for an electric locomotive, Proc. R. Soc. Lond. Ser. A, 322(1971)447-468.

[3] M. Arnold, B. Simeon, Pantograph and catenary dynamics: A benchmark
problem and its numerical solution, Appl. Numer. Math, 34 (2000) 345-
362.

[4] Zhan-Hua Yu, Variational iteration method for solving
the multi-pantograph delay equation, Phys. Lett. A,
http://doi:10.1016/j.physleta.2008.09.013.

[5] M. Sezer, S. Yalcinbas, N. Sahin, Approximate solution of multi-
pantograph equation with variable coefficients, J. Comput. Appl. Math.
214 (2008) 406-416.

[6] M. Sezer, A. Akyuz-Dascioglu, A Taylor method for numerical solution
of generalized pantograph equations with linear functional argument, J.
Comput. Appl. Math. 200 (2007) 217-225.

[7] M.D. Buhmann, A. Iserles, Stability of the discretized pantograph differ-
ential equation, J. Math. Comput. 60 (1993) 575-589.

[8] W.G. Ajello, H.I. Freedman, J. Wu, A model of stage structured popula-
tion growth with density depended time delay, SIAM J. Appl. Math. 52
(1992) 855-869.

[9] A. Saadatmandi, M. Dehghan, Variational iteration
method for solving a generalized pantograph equation,
http://doi:10.1016/j.camwa.2009.03.017.

[10] J.K. Zhou, Differential Transformation and its Application for Electrical
Circuits, Ph.D. Thesis, Huazhong University Press, Wuhan, China,(1986).

[11] Fatma Ayaz, Solutions of the system of differential equations by differ-
ential transform method, Appl. Math. Comput. 147 (2004) 547-567.

[12] M. Mossa Al-Sawalha , M.S.M. Noorani, Application of the differential
transformation method for the solution of the hyperchaotic Rossler system,
Communications in Nonlinear Science and Numerical Simulation 14
(2009) 509-1514.

[13] M. Mossa Al-sawalha, M.S.M. Noorani , A numeric-analytic method for
approximating the chaotic Chen system, Chaos, Solitons & Fractals, In
Press, Corrected Proof, Available online 21 April 2009.

[14] F. Ayaz, Application of differential transform method to differential-
algebraic equations, Appl. Math. Comput. 152 (2004) 649-657.

[15] A. Arikoglu, I. Ozkol, Solution of difference equations by using differ-
ential transform method, Appl. Math. Comput. 174 (2006) 1216-1228.

[16] A. Arikoglu, I. Ozkol, Solution of differentialdifference equations by
using differential transform method, Appl. Math. Comput. 181 (2006)
153-162.

[17] Figen Kangalgil, Fatma Ayaz, Solitary wave solutions for the KdV and
mKdV equations by differential transform method, Chaos, Solitons &
Fractals, 41 (2009) 464-472.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:3, No:10, 2009 

867International Scholarly and Scientific Research & Innovation 3(10) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:3
, N

o:
10

, 2
00

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
05

20
.p

df



[18] M.J. Jang, C.L. Chen, Y.C. Liy, Two-dimensional differential transform
for Partial differential equations, Appl. Math. Comp. 121 (2001) 261-270.

[19] Kurnaz A, Oturanc G, Kiris, The n-Dimensional differential transforma-
tion method for solving linear and nonlinear PDEs, Int J Comput Math,
82 (2005) 369-380.

[20] Momani S, Odibat Z, Hashim I, Algorithms for nonlinear fractional par-
tial differential equations: A selection of numerical methods, Topological
method in Nonlinear Analysis, 31 (2008) 211-226.

[21] A. Arikoglu, I. Ozkol, Solution of fractional differential equations by
using differential transform method, Chaos Soliton. Fract. 34 (2007) 1473-
1481.

[22] Y. Keskin, A. Kurnaz, M.E. Kiris, G. Oturanc, Approximate solutions of
generalized pantograph equations by the differential transform method,
Int. J. Nonlinear Sci. 8 (2007) 159-164.

[23] A. Arikoglu, I. Ozkol, Solution of boundary value problems for integro-
differential equations by using differential transform method, Appl. Math.
Comput. 168 (2005) 1145-1158.

[24] Z.M. Odibat, Differential transform method for solving Volterra integral
equations with separable kernels, Math. Comput. Model. 48 (7-8) (2008)
1144-1149.

[25] Aytac Arikoglu, Ibrahim Ozkol, Solutions of integral and integro-
differential equation systems by using differential transform method,
Computers and Mathematics with Applications 56 (2008) 2411-2417.

PLACE
PHOTO
HERE

Nemat Abazari was born in Ardabil, Iran, in 1972.
He received the B.Sc. degree from the University
of Tabriz, Iran, in 1994, M.Sc. degree from the
Valiasr University of Rafsanjan, Rafsanjan, Iran,
2001, and Ph.D in Geometry, Departmet of math-
ematics, Ankara University, Ankara, Turkey(2007
present), respectively. From 2001 to 2007 he was
a part-time lecturer in university of Mohaghegh
Ardabili, Islamic Azad university of Ardabil Branch
and Payame noor university of Ardabil.

PLACE
PHOTO
HERE

Reza Abazari was born in Ardabil, Iran, in 1982.
He received the B.Sc. degree from the Payame
noor university of Ardabil, Iran, in 2005, the M.Sc.
degree from the University of Mohaghegh Ardabili,
Ardabil, Iran, in 2007, respectively. He is currently
a part-time lecturer in university of Mohaghegh
Ardabili, Islamic Azad university of Ardabil Branch,
Payame noor university of Ardabil and a research
assistant in institute of Tahlilgarane Oulume Amarye
Sabalan.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:3, No:10, 2009 

868International Scholarly and Scientific Research & Innovation 3(10) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:3
, N

o:
10

, 2
00

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
05

20
.p

df




